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Abstract 
In this paper, we present a novel approach NL2OCL to 
translate English specification of constraints to formal 
constraints such as OCL (Object Constraint language). In 
the used approach, input English constraints are 
syntactically and semantically analyzed to generate a SBVR 
(Semantics of Business Vocabulary and Rules) based 
logical representation that is finally mapped to OCL. During 
the syntactic and semantic analysis we have also addressed 
various syntactic and semantic ambiguities that make the 
presented approach robust. The presented approach is 
implemented in Java as a proof of concept. A case study has 
also been solved by using our tool to evaluate the accuracy 
of the presented approach. The results of evaluation are also 
compared to the pattern based approach to highlight the 
significance of the used approach.  

Introduction 
In the recent years, a few research contributions have been 
presented in the area of automatic translation of natural 
language (NL) specifications to formal specifications such 
as UML (OMG, 2007) (Unified Modeling Language) class 
models (Harmain, 2003), Java (Price and Riloff, 2000),  
and SQL (Structured Query Language) queries (Giordani, 
2008). However, the available tools are limited to 65%-
70% levels of accuracy in real time software development. 
Researchers have shown that the key reason of less 
accuracy is the various types of syntactic and semantic 
ambiguities (Kiyavitskaya, 2008) of the natural languages. 
For example, Mich (2004) showed that 71.8% of a sample 
of NL software specification is ambiguous. Hence, the 
ambiguous and incomplete specifications lead to 
inconsistent and absurd formal specifications such the 
software models or the software constraints. 

In this paper, we present a novel approach to increase 
OCL (OMG, 2010) acceptance in software designers and 
developers community by simplifying the generation of 
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OCL from English specification. However, the key 
challenge in generation of OCL from English specification 
was to overcome the inherent syntactic and semantic 
ambiguities (Uejima, 2003) in English. The NL2OCL 
approach works as the input English specification of 
constraints is first syntactically and semantically analyzed 
and then a SBVR (OMG, 2008) based logical 
representation is generated. A SBVR based representation 
is easy to machine process and easy to translate to other 
formal languages such as OCL due to its foundation on 
higher order logic (formal logic).  

The remaining paper is structured into the following 
sections: Section 2 illustrates the architecture of NL2OCL 
approach. Section 3 presents a case study used to evaluate 
the presented approach. Finally, the paper is concluded to 
discuss the future work. 

Semantic Analysis of English Constraints 
For translating English specification of constraints to OCL 
constraints, the NL2OCL approach was used. In NL2OCL 
approach, two inputs are given: a txt file containing 
English specification of a constraint, and a UML class 
model in EMF (Eclipse Modeling Framework) ECORE 
format. First English specification is syntactically and 
semantically analyzed to extract OCL elements and then 
finally an OCL expression is generated (see figure 1): 
 

 
 
 
 
 
 

Figure 1. English to OCL Translation Approach 
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Processing English Specification of Constraints 
The processing of input English (constraints) text is started 
with the preprocessing. Afterwards, the pre-processed 
English text is syntactically analyzed to identify the 
syntactic structures and dependencies among them. Output 
of the syntactic analysis is further semantically analyzed to 
generate a logical representation.  
Preprocessing English Text 
In the preprocessing phase, the input English text is 
preprocessed before deep processing. Following steps are 
involved in preprocessing:  

Part-of-Speech (POS) Tagging: In this step, the input 
English text is tokenized and part-of-speech is identified 
for each token. The Stanford POS tagger (Toutanova, 
2003) version 3.0.3 has been used to identify 44 various 
tags. The Stanford POS tagger is 97% (Manning, 2011) 
accurate. However, in a few cases, the Stanford POS tagger 
wrongly tags English words. For example in Figure 3, 
token ‘books’ is identified as a noun but the token ‘books’ 
is verb and should be tagged as ‘VBZ’ instead of ‘NNS’. 
 

English:   A customer books two items. 

Tagging: [A/DT]  [customer /NN]  [books/NNS]  [two/CD]  
[items/NNS]  [./.] 

Figure 2. Part-of-Speech tagged text 

This problem becomes more serious as we are using the 
Stanford Parser for syntactic analysis, and the POS tagging 
goes wrong rest of the parsing (such as parse tree and 
typed dependencies) by the Stanford parser goes wrong. 
 

 
Figure 3. A UML Class model 

We have addressed such cases by mapping all the tokens 
to the target UML model to confirm the tags. Example 
discussed in Figure 2 can be easily solved by mapping all 
the tags to the available information in UML class model 
of Figure 3. It is given in Figure 3 that, ‘books’ is a 
relationship and it should be tagged verb or ‘VBZ’ by 
using the mappings given in Table 1. 
 

Class model elements English language elements 

Class names   Common Nouns 
Object names  Proper Nouns 
Attribute names  Generative Nouns, Adjectives 

Method names  Action Verbs 
Associations  Action Verbs 

 

Table 1: Mapping UML class model to English 

Lemmatization: In lemmatization phase, the inflectional 
endings are removed and the base or dictionary form of a 
word is extracted, which is known as the lemma. We 
identify lemma (base form) of the tokens (all nouns and 
verbs) by removing various suffixes attached to the nouns 
and verbs e.g. in Figure 3, a verb “awarded” is analyzed as 
“award+ed”. Similarly, the noun “workers” is analyzed as 
“worker+ s”. Here, ‘s’ is helpful in identifying that person 
is plural.  
Syntactic Analysis 
We have used the Stanford parser to parse the pre-
processed English text. The Stanford parser is 84.1% 
accurate (Cer, 2010). However, the Stanford parser is not 
capable of voice-classification. Hence, we have developed 
a small rule-based module classifies the voice in English 
sentences. In syntax analysis phase, three steps are 
performed as below: 

Generating Syntax Tree: The Stanford parser is used to 
generate parse tree and typed dependencies (Marneffe, 
2006) from POS tagged text. However, there are some 
cases where the Stanford parser cannot identify correct 
dependencies. For example, in Figure 4, the Stanford 
Parser wrongly associates ‘employees’ with ‘bonus’. 
Whereas, that correct dependency should be 
prep_with(card-3, credit-11) to represent the 
actual meanings of the example i.e. the credit cards with 
free credit are given to the customers. 
 

English: The pay is given to all employees with bonus. 

Typed Dependency (Collapsed:  
    det(pay-2, The-1) 
    nsubjpass(given-4, pay-2) 
    auxpass(given-4, is-3) 
    det(employees-7, all-6) 
    prep_to(given-4, employees-7) 
    prep_with(employees-7, bonus-9) 

Figure 4. Typed Dependencies by the Stanford parser 
 

To handle such inaccurate dependencies, we need the 
context of this statement such as a UML class model is the 
context for a constraint. Hence, we can use the UML class 
model shown in figure 5 to correct dependencies. The 
relationships in UML class model such as the associations 
(directed and un-directed) can be used to deal with 
syntactic ambiguities such as attachment ambiguity 
(Kiyavitskaya, 2008). For example in Figure 6, it is shown 
that ‘Bonus’ is associated to ‘Pay’ and there is no 
association in ‘Employee’ and ‘Bonus’ classes. By using 
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this class association, we can correct the dependency as 
prep with(card-3, credit-11)instead of 
prep_with(customer-8, credit-11).  

 

 
Figure 5. A UML class model 

 

Voice Classification: In voice classification phase, the 
sentence is classified into active or passive voice category. 
We have used our rule-based module to identify the voice 
of a sentence as the Stanford parser does not provide this 
facility. The used rules for voice classification are based on 
grammatical structure of the English sentence. Various 
grammatical features manifest passive-voice representation 
such as the use of past participle tense with main verbs can 
be used for the identification of a passive-voice sentence. 
Similarly, the use of ‘by’ preposition in the object part is 
also another sign of a passive-voice sentence. However, the 
use of by is optional in passive-voice sentences.  

Intermediate Representation: Outcome of the syntactic 
analysis phase is an intermediate representation. A tabular 
representation is generated containing the syntactic chunks 
and their associated representation such as syntax type 
(such as a subject, a verb or an object), quantification, 
dependency, and associated preposition.  

 

# Chunk Syntax Quat. Depen. Prep. EOS 

1  Pay  Subject the  given   

2 is given  Verb   is   

3 employees  Object all   given to  

4 Bonus  Adverb   pay with True 

Table 2. An intermediary representation 
 

A major feature of this intermediary representation is 
that the active-voice and passive-voice are mapped to same 
representation such as subject of a passive-voice sentence 
is represented as object and object of a passive-voice 
sentence is represented as subject. 
Semantic Analysis 
In semantic analysis phase, we aim to understand the exact 
meanings of the input English text; to identify the 
relationships in various chunks and generate a logical 
representation. For semantic analysis English constraints, 
we have to analyze the text in respect of particular context 

such as UML class model. Our semantic analyzer performs 
following three steps to identify relations in various 
syntactic structures: 

Shallow Semantic Parsing: In shallow semantic 
parsing, the semantic or thematic roles are typically 
assigned to each syntactic structure in a English sentence. 
Semantic labeling on a substring (semantic predicate or a 
semantic argument) in a constraint (English sentence) ‘S’ 
can be applied. Every substring ‘s’ can be represented by a 
set of words indices: 

S  {1, 2, 3, …., n} 
Formally, the process of semantic role labeling is 

mapping from a set of substrings from c to the label set 
‘L’. Where L is a set of all argument semantic labels:  

L = {a1, a2, a3,…., m} 
We use SBVR vocabulary as the target semantic roles 

due to the fact that the mapping of SBVR vocabulary to 
OCL is easy and straightforward. We have identified 
mappings of English text elements to SBVR vocabulary 
(see Table 3). 
 

English Text elements SBVR Vocabulary 
Common Nouns Object Type 
Proper Nouns Individual Concept 
Generative Noun, Adjective Characteristic 
Action Verbs Verb Concepts 
Subject + verb + Object Fact Type  

 

Table 3: Mapping class model to English 
 

Following are the three main steps involved in the phase 
of semantic role labelling of English constraints: 

a. Identifying the Predicates: In first step, system 
identifies the words in the sentence that can be semantic 
predicates or semantic arguments. We have identified 
predicates in following two phases: 

Step I-. In English, predicates can be in the form of a 
simple verb, a phrasal verb or a verbal collocation.  

Step II- Predicate arguments are typically nouns in 
subject and object part of a sentence. In English, nouns can 
have pre-modifiers such as articles (determiners) and can 
also have post-modifiers such as prepositional phrases, 
relative (finite and non-finite) clauses, and adjective 
phrases. 

b. Sense Recognition: After a predicate is identified, we 
need to recognize the exact sense of the predicates so that 
accurate semantic roles may be assigned to the predicate. 
Sense recognition at this phase is important as some NL 
elements can be ambiguous e.g. a verb can be assigned the 
semantic role of ‘Verb Concept’ or a ‘Fact Type’. Such 
information is mapped to navigation expressions in OCL. 
We can identify correct semantic role be mapping 
information to the UML class model by checking that verb 
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is an operation or an association. If a verb is operation it is 
mapped to ‘Verb Concept’ else it is mapped to a ‘Fact 
Type’. 

c. Assigning the Thematic Roles: Once the predicates are 
identified, semantic roles are assigned by using the 
mappings given in Table 2. Role classification is 
performed as the syntactic information (part of speech and 
syntactic dependencies). The output of this phase is 
semantic roles assigned to the predicates and the predicate 
arguments (see Figure 6). 

English: A customer cannot  place more than one  order. 

Figure 6. Semantic roles assigned to input English sentence 
 

Deep Semantic Analysis: The computational semantics 
aim at grasping the entire meanings of a natural language 
sentence, rather than focusing on text portions only. For 
computational semantics, we need to analyze the deep 
semantics of the input English text. The deep semantic 
analysis involves generation of a fine-grained semantic 
representation from the input text. Various aspects are 
involved in deep semantics analysis. However, we are 
interested in quantification resolution (see Figure 7) and 
quantifier scope resolution: 

a. Resolving Quantifications: In English constraints, the 
quantifiers are most commonly used. We not only cover all 
two traditional types (Universal and Existential) of 
quantifications in FOL but also we have used two other 
types: Uniqueness and Solution quantification. Following 
are the details of identifying various quantifications in 
English constraints. 

i. Universal Quantification ( X): In English, the 
quantification structures such as ‘each’, ‘all’, and ‘every’ 
are mapped to universal quantification. Similarly, the 
determiners ‘a’ and ‘an’ used with the subject part of the 
sentence are treated as universal quantification due to the 
fact that we are processing constraints and generally 
constraints are mentioned for all the possible X in a 
universe. 

ii. Existential quantification ( X): The keywords like 
many, little, bit, a bit, few, a few, several, lot, many, much, 
more, some, etc are mapped to existential quantification. 

iii. Uniqueness Quantification ( =1X): The determiners 
‘a’ and ‘an’ used with object part of the sentence are 
treated as uniqueness quantification. 

iv. Solution Quantification (§X): If the keywords like 
more than or greater than are used with n then solution 
quantifier is mapped to At-most Quantification. Similarly, 
if the keywords like less than or smaller than are used with 

n then solution quantifier is mapped to At-least n 
Quantification. 

b. Quantifier Scope Resolution: After identifying the 
quantifications, we also need to resolve the scope of 
quantifiers in input English text. For quantification variable 
scoping, we have treated syntactic structures as logical 
entities. Moreover, the multiplicity given in the target 
UML class model also helps in identifying a particular type 
of quantification. For example, in figure 5, the multiplicity 
‘1’ specifies that customer can get at most one credit card. 
This will be equal to At-most n quantification in SBVR. 
 

 

English: A   customer cannot place   more than one order. 
    

 

Figure 7. Semantic roles assigned to input English sentence 
 

Semantic Interpretation: After shallow and deep 
semantic parsing, a final semantic interpretation is 
generated that is mapped to SBVR and OCL in later stages. 
A simple interpreter was written that uses the extracted 
semantic information and assigns an interpretation to a 
piece of text by placing its contents in a pattern known 
independently of the text. Figure 8 shows an example of 
the semantic interpretation we have used in the NL2OCL 
approach: 

 

English:   A customer can place one order. 

Semantic Interpretation:  
         ( place 
              (object_type = ( X ~ (customer ? X))) 
                (object_type = ( =1Y ~ (order ? Y)))) 

Figure 8. Semantic roles assigned to English sentence. 

Mapping Logical Form to OCL 
Once we get the logical representation of English 
constraint, it is mapped to the OCL by using model 
transformation technology. For model transformation of 
NL to OCL, we need following two things to generate 
OCL constraints: 
i. Select the appropriate OCL template (such as 

invariant, pre/post conditions, collections, etc) 
ii. Use set of mappings that can map source elements of 

logical form to the equivalent elements in used OCL 
templates.  

We have designed generic templates for common OCL 
expressions such as OCL invariant, OCL pre-condition, 
and OCL post-condition. User has to select one of these 
three templates manually. Once the user selects one of the 
constraints, the missed elements in the template are 

Object Type Object Type 

Verb 
Concept 

Object 
Type 

Object 
Type 

At-least n 
Quantification 

Universal 
Quantification 

Verb Concept 
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extracted from the logical representation of English 
constraint. Following is the template for invariant:  
package [UML-Package] 
context [Object-Type] 
inv: [Body] 

Following is the template we used for OCL pre-
condition: 
package [UML-Package] 
context[Object-Type : :Verb_Concept(Characteristic): 
Return_Type] 
pre: [Body]  

Following is the template we used for OCL post-
condition: 
package [UML-Package] 
context[Object-Type : :Verb_Concept(Characteristic): 
Return_Type] 
post: [Body] 
Result: [Body]        -- optional 
 

In the all above shown templates, elements written in 
brackets ‘[ ]’ are required. We get these elements from the 
logical representation of English sentence. Following 
mappings are used to extract these elements: 
 

i. UML-Package is package name of the target UML class 
model.  

ii. Object-Type is name of the class in the target UML 
Class model and the Object Type should also be in the 
subject part of the English Constraint. 

iii. Verb_Concept is one of the operations of the target 
class (such as context) in the UML Class model. 

iv. Characteristic is the list of input parameters of a Class 
and we get them from the UML class model.  

v. Return-Type is the return data type of the Object-Type 
and we get them from the UML class model. The return 
type is the data-type of the used Characteristic in 
English constraint and this data type is extracted from 
the UML class model.  

vi. Body can be a single expression or combination of more 
than one expression. Body is generated using mappings 
similar to given in Table 4, 5, 6, and 7. For complete 
mappings, reader should consult (Bajwa, 2011). 

Case Study 
In this section, we present a case study on the “Royal & 

Loyal” model. The Royal & Loyal model was originally 
presented for introducing OCL By Example in (Warmer 
and Kleppe, 2003). Afterwards, the Royal & Loyal model 
is used in various publications, e.g., (Tedjasukmana, 2006, 
Dzidek et al., 2005, Wahler, 2008). The same model is also 

shipped with several tools as an example model, e.g., 
(Dresden Technical University, 2007).  

The Royal & Loyal Model Constraints 
The Royal & Loyal case study has also been solved by 
Wahler (2008) in his PhD thesis. We aim to compare the 
results of our approach to Pattern based approach as 
Wahler’s approach is the only work that can generate OCL 
constraints from a natural language. There are 26 English 
constraints in the Royal & Loyal case study. Wahler solved 
18 English constraints into OCL out of 26 using his 
(pattern-based) approach. In comparison to Wahler’s 
pattern based approach, our NL-based approach has 
successfully translated 25 constraints to OCL. In the 
following section, we present three examples of constrains 
due to shortage of space.  
 
Example I 
 
English: The owner of a customer card must participate in 

at least one loyalty program. 

SBVR:   It is necessary that the owner of a 
customercard must participate in at least 
one loyaltyprogram. 

OCL: package: royal_and_loyal  
context CustomerCard 

     inv self.owner.programs -> 
Size()>= 1 

Other OCL: context CustomerCard 
        inv programParticipation: self 
.owner.programs ->size() > 0 

 
Example II 
 
English: There must be at least one transaction for a 

customer card with at least 100 points. 

SBVR:   It is necessary that there must be at least 
one transaction for a customercard with 
at least 100 points.  

OCL: package: royal_and_loyal  
context CustomerCard 
inv self.transaction-
>select(point >= 100)->Size()>=1  

Other OCL: context CustomerCard 
    inv transactionPoints : self 
.transactions->                        
select(points>100) -> notEmpty() 

 
Example III 
 
English: The service level of each membership must be a 

service level known to the loyalty program. 
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SBVR:   It is necessary that servicelevel of each 
membership must be a servicelevel 
known to loyaltyprogram. 

 OCL: package: royal_and_loyal  
 context Membership 
 inv self.currentLevel.levels -> 

includes(programs) 
Other OCL:  context Membership 
    inv knownServiceLevel: 
programs.levels -> 
includes(currentLevel) 

 
There was only one constraint that was not fully translated 
by our NL base approach due to the limitation that the 
vocabulary used in English constraint should also be part 
of the input UML class model. In the following English 
constraint, concepts ‘credits’ and ‘debits’ are not part of 
the Royal & Loyal model (Warmer and Kleppe, 2003: 
pp.22). 
 
If none of the services offered in a loyalty program credits 

or debits the loyalty accounts, then these instances are 
useless and should not be present. 

 

In comparison of both approaches (see Table 8), NL-based 
approach produced for better results than the pattern based 
appoach: 
 

Approach Type Total 
Constraints 

Solved 
Constraints Percentage 

Pattern based 
Approach 

26 18 69.23% 

NL Based 
Approach 

26 25 96.13% 

Table 8. Pattern based Approach vs NL Based Approach 

Another advantage over Wahler’s approach is that our NL-
based approach is fully automatic, while in Wahler’s 
pattern based approach, user has to do detailed manual 
analysis of the English constraints to choose the right 
pattern and then Wahler’s tool Copacabana (Wahler, 2008) 
translates the pattern instances to OCL code.  

Conclusion and Future Work 
The current presented work focuses on automated (object 
oriented) analysis of NL specification and generation of 
OCL constraints for UML models. The presented work not 
only complements the current research work in the field of 
automated software modeling but also simplifies the 
process of writing OCL constraints. The initial 
performance evaluation of our approach is very 
encouraging and symbols the efficacy. The Software 
modelers can get benefit of our tool as the NL2OCL can 
generate accurate OCL constraints with less effort. 

However, our tool is limited to process one English 
constraint (sentence) at a moment. In future, we aim to 
enhance our tool to process multiple constraints.  

References  
Bajwa, I.S., Lee, M.G. 2011. Transformation Rules for 
Translating Business Rules to OCL Constraints. in 7th European 
Conference on Modelling Foundations and Applications(ECMFA 
2011). Birmingham, UK. Jun 2011. pp:132-143 
Chen, B., Su J., and Tan, C.L.  2010. Resolving Event Noun 
Phrases to Their Verbal Mentions, in Empirical Methods in 
Natural Language Processing, Pages 872-881, Cambridge, MA, 
October, 2010 
Cer, D., Marneffe, M.C., Jurafsky, D. and Manning, C.D. (2010). 
Parsing to Stanford Dependencies: Trade-offs between speed and 
accuracy." InProceedings of LREC-10. 
Giordani A. 2008. Mapping Natural Language into SQL in a 
NLIDB, Natural Language and Information Systems, 2008, 
Volume 5039/2008, 367-371 
Harmain, H. M., Gaizauskas R. 2003. CM-Builder: A Natural 
Language-Based CASE Tool for Object- Oriented Analysis. 
Automated Software Engineering. 10(2):157-181. 
Warmer, J.B. and Kleppe, A.G. 2003.The object constraint 
language: getting your models ready for MDA. Second 
Editotion, Addison Wesley 
Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D. (2008). 
Requirements for tools for ambiguity identification and 
measurement in natural language requirements specifications, 
Requirements Engineering, Vol. 13, No. 3. (2008), pp. 207-239. 
Manning, C.D. (2011). Part-of-Speech Tagging from 97% to 
100%: Is It Time for Some Linguistics? In proceedings of 
CICLing (1) 2011. pp.171~189 
Marneffe, M.C., MacCartney Bill and Manning, C.D. 
(2006). Generating Typed Dependency Parses from Phrase 
Structure Parses. In LREC 2006. 
Mich, L., Franch, M., Inverardi, P.N.: Market research for 
requirements analysis using linguistic tools. Requir. Eng.(2004) 
pp.40-56 
OMG. 2007. Unified Modeling Language (UML), OMG 
Standard, v. 2.3. 
OMG. 2008. Semantics of Business Vocabulary and Rules 
(SBVR), OMG Standard, v. 1.0. 
OMG. 2010. Object Constraint Langauge (OCL), OMG Standard, 
v. 2.2. 
Price, D., Riloff, E., Zachary, J., and Harvey, B. 
(2000) "NaturalJava: A Natural Language Interface for 
Programming in Java", In Proceedings International Conference 
on Intelligent User Interfaces (IUI) 2000. 
Toutanova K., Klein D., Manning C., and Singer Y. 2003. 
Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency 
Network. In Proceedings of HLT-NAACL 2003, pp. 252-259.  
Uejima, H. , Miura, T., Shioya, I. (2003). Improving text 
categorization by resolving semantic ambiguity Communications, 
Computers and signal Processing, 2003 pp. 796-799 
Wahler M. 2008. Using Patterns to Develop Consistent Design 
Constraints. PhD Thesis, ETH Zurich, Switzerland, (2008) 
 
 

13




