

Semantic Analysis of Software Constraints

Imran Sarwar Bajwa, Mark Lee, Behzad Bordbar
 School of Computer Science, University of Birmingham, B15 2TT, Birmingham, UK

{i.s.bajwa, m.g.lee, b.bordbar}@cs.bham.ac.uk

Abstract
In this paper, we present a novel approach NL2OCL to
translate English specification of constraints to formal
constraints such as OCL (Object Constraint language). In
the used approach, input English constraints are
syntactically and semantically analyzed to generate a SBVR
(Semantics of Business Vocabulary and Rules) based
logical representation that is finally mapped to OCL. During
the syntactic and semantic analysis we have also addressed
various syntactic and semantic ambiguities that make the
presented approach robust. The presented approach is
implemented in Java as a proof of concept. A case study has
also been solved by using our tool to evaluate the accuracy
of the presented approach. The results of evaluation are also
compared to the pattern based approach to highlight the
significance of the used approach.

Introduction
In the recent years, a few research contributions have been
presented in the area of automatic translation of natural
language (NL) specifications to formal specifications such
as UML (OMG, 2007) (Unified Modeling Language) class
models (Harmain, 2003), Java (Price and Riloff, 2000),
and SQL (Structured Query Language) queries (Giordani,
2008). However, the available tools are limited to 65%-
70% levels of accuracy in real time software development.
Researchers have shown that the key reason of less
accuracy is the various types of syntactic and semantic
ambiguities (Kiyavitskaya, 2008) of the natural languages.
For example, Mich (2004) showed that 71.8% of a sample
of NL software specification is ambiguous. Hence, the
ambiguous and incomplete specifications lead to
inconsistent and absurd formal specifications such the
software models or the software constraints.

In this paper, we present a novel approach to increase
OCL (OMG, 2010) acceptance in software designers and
developers community by simplifying the generation of

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

OCL from English specification. However, the key
challenge in generation of OCL from English specification
was to overcome the inherent syntactic and semantic
ambiguities (Uejima, 2003) in English. The NL2OCL
approach works as the input English specification of
constraints is first syntactically and semantically analyzed
and then a SBVR (OMG, 2008) based logical
representation is generated. A SBVR based representation
is easy to machine process and easy to translate to other
formal languages such as OCL due to its foundation on
higher order logic (formal logic).

The remaining paper is structured into the following
sections: Section 2 illustrates the architecture of NL2OCL
approach. Section 3 presents a case study used to evaluate
the presented approach. Finally, the paper is concluded to
discuss the future work.

Semantic Analysis of English Constraints
For translating English specification of constraints to OCL
constraints, the NL2OCL approach was used. In NL2OCL
approach, two inputs are given: a txt file containing
English specification of a constraint, and a UML class
model in EMF (Eclipse Modeling Framework) ECORE
format. First English specification is syntactically and
semantically analyzed to extract OCL elements and then
finally an OCL expression is generated (see figure 1):

Figure 1. English to OCL Translation Approach

mapping

English
Constraints

Semantic
Roles

UML Class
Model

UML
Elements

OCL
Elements

OCL
Constraints

8

Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference

Processing English Specification of Constraints
The processing of input English (constraints) text is started
with the preprocessing. Afterwards, the pre-processed
English text is syntactically analyzed to identify the
syntactic structures and dependencies among them. Output
of the syntactic analysis is further semantically analyzed to
generate a logical representation.
Preprocessing English Text
In the preprocessing phase, the input English text is
preprocessed before deep processing. Following steps are
involved in preprocessing:

Part-of-Speech (POS) Tagging: In this step, the input
English text is tokenized and part-of-speech is identified
for each token. The Stanford POS tagger (Toutanova,
2003) version 3.0.3 has been used to identify 44 various
tags. The Stanford POS tagger is 97% (Manning, 2011)
accurate. However, in a few cases, the Stanford POS tagger
wrongly tags English words. For example in Figure 3,
token ‘books’ is identified as a noun but the token ‘books’
is verb and should be tagged as ‘VBZ’ instead of ‘NNS’.

English: A customer books two items.

Tagging: [A/DT] [customer /NN] [books/NNS] [two/CD]
[items/NNS] [./.]

Figure 2. Part-of-Speech tagged text

This problem becomes more serious as we are using the
Stanford Parser for syntactic analysis, and the POS tagging
goes wrong rest of the parsing (such as parse tree and
typed dependencies) by the Stanford parser goes wrong.

Figure 3. A UML Class model

We have addressed such cases by mapping all the tokens
to the target UML model to confirm the tags. Example
discussed in Figure 2 can be easily solved by mapping all
the tags to the available information in UML class model
of Figure 3. It is given in Figure 3 that, ‘books’ is a
relationship and it should be tagged verb or ‘VBZ’ by
using the mappings given in Table 1.

Class model elements English language elements

Class names Common Nouns
Object names Proper Nouns
Attribute names Generative Nouns, Adjectives

Method names Action Verbs
Associations Action Verbs

Table 1: Mapping UML class model to English

Lemmatization: In lemmatization phase, the inflectional
endings are removed and the base or dictionary form of a
word is extracted, which is known as the lemma. We
identify lemma (base form) of the tokens (all nouns and
verbs) by removing various suffixes attached to the nouns
and verbs e.g. in Figure 3, a verb “awarded” is analyzed as
“award+ed”. Similarly, the noun “workers” is analyzed as
“worker+ s”. Here, ‘s’ is helpful in identifying that person
is plural.
Syntactic Analysis
We have used the Stanford parser to parse the pre-
processed English text. The Stanford parser is 84.1%
accurate (Cer, 2010). However, the Stanford parser is not
capable of voice-classification. Hence, we have developed
a small rule-based module classifies the voice in English
sentences. In syntax analysis phase, three steps are
performed as below:

Generating Syntax Tree: The Stanford parser is used to
generate parse tree and typed dependencies (Marneffe,
2006) from POS tagged text. However, there are some
cases where the Stanford parser cannot identify correct
dependencies. For example, in Figure 4, the Stanford
Parser wrongly associates ‘employees’ with ‘bonus’.
Whereas, that correct dependency should be
prep_with(card-3, credit-11) to represent the
actual meanings of the example i.e. the credit cards with
free credit are given to the customers.

English: The pay is given to all employees with bonus.

Typed Dependency (Collapsed:
 det(pay-2, The-1)
 nsubjpass(given-4, pay-2)
 auxpass(given-4, is-3)
 det(employees-7, all-6)
 prep_to(given-4, employees-7)
 prep_with(employees-7, bonus-9)

Figure 4. Typed Dependencies by the Stanford parser

To handle such inaccurate dependencies, we need the
context of this statement such as a UML class model is the
context for a constraint. Hence, we can use the UML class
model shown in figure 5 to correct dependencies. The
relationships in UML class model such as the associations
(directed and un-directed) can be used to deal with
syntactic ambiguities such as attachment ambiguity
(Kiyavitskaya, 2008). For example in Figure 6, it is shown
that ‘Bonus’ is associated to ‘Pay’ and there is no
association in ‘Employee’ and ‘Bonus’ classes. By using

9

this class association, we can correct the dependency as
prep with(card-3, credit-11)instead of
prep_with(customer-8, credit-11).

Figure 5. A UML class model

Voice Classification: In voice classification phase, the
sentence is classified into active or passive voice category.
We have used our rule-based module to identify the voice
of a sentence as the Stanford parser does not provide this
facility. The used rules for voice classification are based on
grammatical structure of the English sentence. Various
grammatical features manifest passive-voice representation
such as the use of past participle tense with main verbs can
be used for the identification of a passive-voice sentence.
Similarly, the use of ‘by’ preposition in the object part is
also another sign of a passive-voice sentence. However, the
use of by is optional in passive-voice sentences.

Intermediate Representation: Outcome of the syntactic
analysis phase is an intermediate representation. A tabular
representation is generated containing the syntactic chunks
and their associated representation such as syntax type
(such as a subject, a verb or an object), quantification,
dependency, and associated preposition.

Chunk Syntax Quat. Depen. Prep. EOS

1 Pay Subject the given

2 is given Verb is

3 employees Object all given to

4 Bonus Adverb pay with True

Table 2. An intermediary representation

A major feature of this intermediary representation is
that the active-voice and passive-voice are mapped to same
representation such as subject of a passive-voice sentence
is represented as object and object of a passive-voice
sentence is represented as subject.
Semantic Analysis
In semantic analysis phase, we aim to understand the exact
meanings of the input English text; to identify the
relationships in various chunks and generate a logical
representation. For semantic analysis English constraints,
we have to analyze the text in respect of particular context

such as UML class model. Our semantic analyzer performs
following three steps to identify relations in various
syntactic structures:

Shallow Semantic Parsing: In shallow semantic
parsing, the semantic or thematic roles are typically
assigned to each syntactic structure in a English sentence.
Semantic labeling on a substring (semantic predicate or a
semantic argument) in a constraint (English sentence) ‘S’
can be applied. Every substring ‘s’ can be represented by a
set of words indices:

S {1, 2, 3, …., n}
Formally, the process of semantic role labeling is

mapping from a set of substrings from c to the label set
‘L’. Where L is a set of all argument semantic labels:

L = {a1, a2, a3,…., m}
We use SBVR vocabulary as the target semantic roles

due to the fact that the mapping of SBVR vocabulary to
OCL is easy and straightforward. We have identified
mappings of English text elements to SBVR vocabulary
(see Table 3).

English Text elements SBVR Vocabulary
Common Nouns Object Type
Proper Nouns Individual Concept
Generative Noun, Adjective Characteristic
Action Verbs Verb Concepts
Subject + verb + Object Fact Type

Table 3: Mapping class model to English

Following are the three main steps involved in the phase
of semantic role labelling of English constraints:

a. Identifying the Predicates: In first step, system
identifies the words in the sentence that can be semantic
predicates or semantic arguments. We have identified
predicates in following two phases:

Step I-. In English, predicates can be in the form of a
simple verb, a phrasal verb or a verbal collocation.

Step II- Predicate arguments are typically nouns in
subject and object part of a sentence. In English, nouns can
have pre-modifiers such as articles (determiners) and can
also have post-modifiers such as prepositional phrases,
relative (finite and non-finite) clauses, and adjective
phrases.

b. Sense Recognition: After a predicate is identified, we
need to recognize the exact sense of the predicates so that
accurate semantic roles may be assigned to the predicate.
Sense recognition at this phase is important as some NL
elements can be ambiguous e.g. a verb can be assigned the
semantic role of ‘Verb Concept’ or a ‘Fact Type’. Such
information is mapped to navigation expressions in OCL.
We can identify correct semantic role be mapping
information to the UML class model by checking that verb

10

is an operation or an association. If a verb is operation it is
mapped to ‘Verb Concept’ else it is mapped to a ‘Fact
Type’.

c. Assigning the Thematic Roles: Once the predicates are
identified, semantic roles are assigned by using the
mappings given in Table 2. Role classification is
performed as the syntactic information (part of speech and
syntactic dependencies). The output of this phase is
semantic roles assigned to the predicates and the predicate
arguments (see Figure 6).

English: A customer cannot place more than one order.

Figure 6. Semantic roles assigned to input English sentence

Deep Semantic Analysis: The computational semantics
aim at grasping the entire meanings of a natural language
sentence, rather than focusing on text portions only. For
computational semantics, we need to analyze the deep
semantics of the input English text. The deep semantic
analysis involves generation of a fine-grained semantic
representation from the input text. Various aspects are
involved in deep semantics analysis. However, we are
interested in quantification resolution (see Figure 7) and
quantifier scope resolution:

a. Resolving Quantifications: In English constraints, the
quantifiers are most commonly used. We not only cover all
two traditional types (Universal and Existential) of
quantifications in FOL but also we have used two other
types: Uniqueness and Solution quantification. Following
are the details of identifying various quantifications in
English constraints.

i. Universal Quantification (X): In English, the
quantification structures such as ‘each’, ‘all’, and ‘every’
are mapped to universal quantification. Similarly, the
determiners ‘a’ and ‘an’ used with the subject part of the
sentence are treated as universal quantification due to the
fact that we are processing constraints and generally
constraints are mentioned for all the possible X in a
universe.

ii. Existential quantification (X): The keywords like
many, little, bit, a bit, few, a few, several, lot, many, much,
more, some, etc are mapped to existential quantification.

iii. Uniqueness Quantification (=1X): The determiners
‘a’ and ‘an’ used with object part of the sentence are
treated as uniqueness quantification.

iv. Solution Quantification (§X): If the keywords like
more than or greater than are used with n then solution
quantifier is mapped to At-most Quantification. Similarly,
if the keywords like less than or smaller than are used with

n then solution quantifier is mapped to At-least n
Quantification.

b. Quantifier Scope Resolution: After identifying the
quantifications, we also need to resolve the scope of
quantifiers in input English text. For quantification variable
scoping, we have treated syntactic structures as logical
entities. Moreover, the multiplicity given in the target
UML class model also helps in identifying a particular type
of quantification. For example, in figure 5, the multiplicity
‘1’ specifies that customer can get at most one credit card.
This will be equal to At-most n quantification in SBVR.

English: A customer cannot place more than one order.

Figure 7. Semantic roles assigned to input English sentence

Semantic Interpretation: After shallow and deep
semantic parsing, a final semantic interpretation is
generated that is mapped to SBVR and OCL in later stages.
A simple interpreter was written that uses the extracted
semantic information and assigns an interpretation to a
piece of text by placing its contents in a pattern known
independently of the text. Figure 8 shows an example of
the semantic interpretation we have used in the NL2OCL
approach:

English: A customer can place one order.

Semantic Interpretation:
 (place
 (object_type = (X ~ (customer ? X)))
 (object_type = (=1Y ~ (order ? Y))))

Figure 8. Semantic roles assigned to English sentence.

Mapping Logical Form to OCL
Once we get the logical representation of English
constraint, it is mapped to the OCL by using model
transformation technology. For model transformation of
NL to OCL, we need following two things to generate
OCL constraints:
i. Select the appropriate OCL template (such as

invariant, pre/post conditions, collections, etc)
ii. Use set of mappings that can map source elements of

logical form to the equivalent elements in used OCL
templates.

We have designed generic templates for common OCL
expressions such as OCL invariant, OCL pre-condition,
and OCL post-condition. User has to select one of these
three templates manually. Once the user selects one of the
constraints, the missed elements in the template are

Object Type Object Type

Verb
Concept

Object
Type

Object
Type

At-least n
Quantification

Universal
Quantification

Verb Concept

11

extracted from the logical representation of English
constraint. Following is the template for invariant:
package [UML-Package]
context [Object-Type]
inv: [Body]

Following is the template we used for OCL pre-
condition:
package [UML-Package]
context[Object-Type : :Verb_Concept(Characteristic):
Return_Type]
pre: [Body]

Following is the template we used for OCL post-
condition:
package [UML-Package]
context[Object-Type : :Verb_Concept(Characteristic):
Return_Type]
post: [Body]
Result: [Body] -- optional

In the all above shown templates, elements written in
brackets ‘[]’ are required. We get these elements from the
logical representation of English sentence. Following
mappings are used to extract these elements:

i. UML-Package is package name of the target UML class
model.

ii. Object-Type is name of the class in the target UML
Class model and the Object Type should also be in the
subject part of the English Constraint.

iii. Verb_Concept is one of the operations of the target
class (such as context) in the UML Class model.

iv. Characteristic is the list of input parameters of a Class
and we get them from the UML class model.

v. Return-Type is the return data type of the Object-Type
and we get them from the UML class model. The return
type is the data-type of the used Characteristic in
English constraint and this data type is extracted from
the UML class model.

vi. Body can be a single expression or combination of more
than one expression. Body is generated using mappings
similar to given in Table 4, 5, 6, and 7. For complete
mappings, reader should consult (Bajwa, 2011).

Case Study
In this section, we present a case study on the “Royal &

Loyal” model. The Royal & Loyal model was originally
presented for introducing OCL By Example in (Warmer
and Kleppe, 2003). Afterwards, the Royal & Loyal model
is used in various publications, e.g., (Tedjasukmana, 2006,
Dzidek et al., 2005, Wahler, 2008). The same model is also

shipped with several tools as an example model, e.g.,
(Dresden Technical University, 2007).

The Royal & Loyal Model Constraints
The Royal & Loyal case study has also been solved by
Wahler (2008) in his PhD thesis. We aim to compare the
results of our approach to Pattern based approach as
Wahler’s approach is the only work that can generate OCL
constraints from a natural language. There are 26 English
constraints in the Royal & Loyal case study. Wahler solved
18 English constraints into OCL out of 26 using his
(pattern-based) approach. In comparison to Wahler’s
pattern based approach, our NL-based approach has
successfully translated 25 constraints to OCL. In the
following section, we present three examples of constrains
due to shortage of space.

Example I

English: The owner of a customer card must participate in

at least one loyalty program.

SBVR: It is necessary that the owner of a
customercard must participate in at least
one loyaltyprogram.

OCL: package: royal_and_loyal
context CustomerCard

 inv self.owner.programs ->
Size()>= 1

Other OCL: context CustomerCard
 inv programParticipation: self
.owner.programs ->size() > 0

Example II

English: There must be at least one transaction for a

customer card with at least 100 points.

SBVR: It is necessary that there must be at least
one transaction for a customercard with
at least 100 points.

OCL: package: royal_and_loyal
context CustomerCard
inv self.transaction-
>select(point >= 100)->Size()>=1

Other OCL: context CustomerCard
 inv transactionPoints : self
.transactions->
select(points>100) -> notEmpty()

Example III

English: The service level of each membership must be a

service level known to the loyalty program.

12

SBVR: It is necessary that servicelevel of each
membership must be a servicelevel
known to loyaltyprogram.

 OCL: package: royal_and_loyal
 context Membership
 inv self.currentLevel.levels ->

includes(programs)
Other OCL: context Membership
 inv knownServiceLevel:
programs.levels ->
includes(currentLevel)

There was only one constraint that was not fully translated
by our NL base approach due to the limitation that the
vocabulary used in English constraint should also be part
of the input UML class model. In the following English
constraint, concepts ‘credits’ and ‘debits’ are not part of
the Royal & Loyal model (Warmer and Kleppe, 2003:
pp.22).

If none of the services offered in a loyalty program credits

or debits the loyalty accounts, then these instances are
useless and should not be present.

In comparison of both approaches (see Table 8), NL-based
approach produced for better results than the pattern based
appoach:

Approach Type Total
Constraints

Solved
Constraints Percentage

Pattern based
Approach

26 18 69.23%

NL Based
Approach

26 25 96.13%

Table 8. Pattern based Approach vs NL Based Approach

Another advantage over Wahler’s approach is that our NL-
based approach is fully automatic, while in Wahler’s
pattern based approach, user has to do detailed manual
analysis of the English constraints to choose the right
pattern and then Wahler’s tool Copacabana (Wahler, 2008)
translates the pattern instances to OCL code.

Conclusion and Future Work
The current presented work focuses on automated (object
oriented) analysis of NL specification and generation of
OCL constraints for UML models. The presented work not
only complements the current research work in the field of
automated software modeling but also simplifies the
process of writing OCL constraints. The initial
performance evaluation of our approach is very
encouraging and symbols the efficacy. The Software
modelers can get benefit of our tool as the NL2OCL can
generate accurate OCL constraints with less effort.

However, our tool is limited to process one English
constraint (sentence) at a moment. In future, we aim to
enhance our tool to process multiple constraints.

References
Bajwa, I.S., Lee, M.G. 2011. Transformation Rules for
Translating Business Rules to OCL Constraints. in 7th European
Conference on Modelling Foundations and Applications(ECMFA
2011). Birmingham, UK. Jun 2011. pp:132-143
Chen, B., Su J., and Tan, C.L. 2010. Resolving Event Noun
Phrases to Their Verbal Mentions, in Empirical Methods in
Natural Language Processing, Pages 872-881, Cambridge, MA,
October, 2010
Cer, D., Marneffe, M.C., Jurafsky, D. and Manning, C.D. (2010).
Parsing to Stanford Dependencies: Trade-offs between speed and
accuracy." InProceedings of LREC-10.
Giordani A. 2008. Mapping Natural Language into SQL in a
NLIDB, Natural Language and Information Systems, 2008,
Volume 5039/2008, 367-371
Harmain, H. M., Gaizauskas R. 2003. CM-Builder: A Natural
Language-Based CASE Tool for Object- Oriented Analysis.
Automated Software Engineering. 10(2):157-181.
Warmer, J.B. and Kleppe, A.G. 2003.The object constraint
language: getting your models ready for MDA. Second
Editotion, Addison Wesley
Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D. (2008).
Requirements for tools for ambiguity identification and
measurement in natural language requirements specifications,
Requirements Engineering, Vol. 13, No. 3. (2008), pp. 207-239.
Manning, C.D. (2011). Part-of-Speech Tagging from 97% to
100%: Is It Time for Some Linguistics? In proceedings of
CICLing (1) 2011. pp.171~189
Marneffe, M.C., MacCartney Bill and Manning, C.D.
(2006). Generating Typed Dependency Parses from Phrase
Structure Parses. In LREC 2006.
Mich, L., Franch, M., Inverardi, P.N.: Market research for
requirements analysis using linguistic tools. Requir. Eng.(2004)
pp.40-56
OMG. 2007. Unified Modeling Language (UML), OMG
Standard, v. 2.3.
OMG. 2008. Semantics of Business Vocabulary and Rules
(SBVR), OMG Standard, v. 1.0.
OMG. 2010. Object Constraint Langauge (OCL), OMG Standard,
v. 2.2.
Price, D., Riloff, E., Zachary, J., and Harvey, B.
(2000) "NaturalJava: A Natural Language Interface for
Programming in Java", In Proceedings International Conference
on Intelligent User Interfaces (IUI) 2000.
Toutanova K., Klein D., Manning C., and Singer Y. 2003.
Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency
Network. In Proceedings of HLT-NAACL 2003, pp. 252-259.
Uejima, H. , Miura, T., Shioya, I. (2003). Improving text
categorization by resolving semantic ambiguity Communications,
Computers and signal Processing, 2003 pp. 796-799
Wahler M. 2008. Using Patterns to Develop Consistent Design
Constraints. PhD Thesis, ETH Zurich, Switzerland, (2008)

13

