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Abstract

Recommender systems assist users in the daunting task of
sifting through large amounts of data in order to select rel-
evant information or items. Common examples include con-
sumer products and services, such as for songs, books, arti-
cles, etc. Unfortunately, such systems may be subject to at-
tack by malicious users who want to manipulate the system’s
recommendations to suit their needs: to promote their own
(or demote a competitor’s) product/service, or to cause dis-
ruption in the recommender system. Attacks can cause the
recommender system to become unreliable and untrustwor-
thy, resulting in user dissatisfaction. Developers already face
tradeoffs in system efficiency and accuracy, and designing for
robustness adds an additional dimension for consideration.
In this paper, we show how the underlying implementation
choices for item-based and user-based Collaborative Filtering
recommender systems can affect the accuracy and robustness
of recommender systems. We also show how accuracy and
robustness can change over a system’s lifetime by analyzing
a set of temporal snapshots from system usage over time. Re-
sults provide insight into some of the tradeoffs between ro-
bustness and accuracy that operators may need to consider in
development and evaluation.

Introduction
Recommender systems assist users in the daunting task of
sifting through large amounts of data in order to determine
the best action to take regarding the selection of a vari-
ety of consumer products and services including movies,
songs, books, articles, and restaurants, among others. Rec-
ommender systems are implemented as content-based, col-
laborative filtering (user-based or item-based), or a hybrid
of the two (Adomavicius and Tuzhilin 2005). Furthermore,
these systems are subject to attack by malicious users who
want to manipulate the system’s recommendations to suit
their needs: to promote their own product/service, to de-
mote a competitor’s product/service, or to cause disruption
in the recommender system. Research in attacks on recom-
mender systems started in 2002 (O’Mahony, Hurley, and Sil-
vestre 2002) and has continued to be studied, especially in
the areas of attack detection and improvements in algorithm
robustness (Lam and Riedl 2004; O’Mahony et al. 2004;

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

O’Mahony, Hurley, and Silvestre 2005; Chirita, Nejdl, and
Zamfir 2005; Burke et al. 2006; Mobasher et al. 2007;
Mehta and Nejdl 2008). These intentional attacks can cause
the recommender system to become unreliable and untrust-
worthy and can result in user dissatisfaction. Previous re-
search has shown that collaborative filtering (CF) recom-
mender systems (RS) under attack behave differently; typ-
ically, item-based CF has been shown to be more resistant
to attack than user-based CF (Lam and Riedl 2004). Attacks
are typed to either promote (“push”) a target item by set-
ting the rating to the maximum value or demote (“nuke”)
a target item by setting the rating to the minimum value;
furthermore, attackers will submit one or more user profiles
containing item ratings (called attack profiles) that push or
nuke a specific item. In order to correlate with other le-
gitimate users in the system, the attack profiles will con-
tain ratings for non-target items; these ratings can be se-
lected randomly or more intelligently if the attacker has
prior knowledge of the ratings in the CF system. Research
results also indicate that the type and size of attack can
affect the recommendations produced by both item-based
and user-based CF systems (Mobasher et al. 2007; Burke,
O’Mahony, and Hurley 2011). Recently, researchers have
started to investigate the temporal aspects of recommender
systems showing how rating data changes over time and
how these systems are evaluated temporally (Koren 2009;
Lathia, Hailes, and Capra 2009; Burke 2010).

Our research investigates the accuracy and robustness of
collaborative filtering recommender systems, particularly in
the context of how system characteristics may change over
time and usage. This paper builds on the work of researchers
cited above and has as its main objective to investigate the
tradeoffs that recommender system operators may encounter
when balancing a system’s accuracy and its robustness. In
particular, we show how CF system recommendations are
impacted under normal and attack conditions using accuracy
and robustness metrics, as follows:

• How user-based and item-based prediction algorithms dif-
fer under normal and attack conditions using accuracy and
robustness metrics,

• How the accuracy and robustness results change as the
dataset evolves over time, using item-based prediction al-
gorithms under normal and attack conditions.
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Background

A comprehensive set of guidelines for evaluating recom-
mender systems was provided by (Herlocker et al. 2004)
and more recently in (Shani and Gunawardana 2011); these
guidelines include a description of evaluation metrics such
as Mean Absolute Error that is used to measure the predic-
tion accuracy of a recommender system. Mean Absolute Er-
ror is calculated as follows.

MAE =

∑n
i=1 | ActualRatingi − PredictedRatingi |

n
(1)

where n is the total number of ratings predicted in the test
run.

Robustness metrics such as Hit Ratio and Prediction Shift
have been discussed in detail in (Mobasher et al. 2007;
Burke, O’Mahony, and Hurley 2011). These were used to
measure the success of the attack (from the attacker’s stand-
point) such that a high Hit Ratio or a high Prediction Shift
meant that the attack succeeded in changing the recommen-
dations produced by the CF system. The Prediction Shift
metric is defined as follows: Let UT and IT be the sets of
users and items, respectively, in the test data. For each user-
item pair (u, i), the Prediction Shift denoted by ∆u,i can be
measured as ∆u,i = p′u,i − pu,i where p and p′ are the pre-
and post-attack predictions, respectively. A positive value
means that the attack has succeeded in making the pushed
target item more positively rated. The Average Prediction
Shift for a target item i over all users can be computed as

∆i =

∑
uεUT

∆u,i

|UT | and the Average Prediction Shift for all

items tested can be computed as ∆ =

∑
iεIT

∆i

|IT | .

Although prediction shift is a good indicator that an at-
tack has successfully (from the attacker’s standpoint) made
a pushed item more desirable, or a nuked item less desir-
able, the item may still not make it into the top-N list of
recommendations presented to the user and where the top-N
list of recommendations are ranked by predicted ratings. So,
another metric, Hit Ratio, was developed to indicate the per-
centage of users that have the target item in their top-N list
of recommendations.

Let Ru be the set of top-N recommendations for user
u. If the target item appears in Ru for user u, the scoring
function Hui has value 1; otherwise it is zero. Hit Ratio

for a target item i is given by HitRatioi =

∑
uεUT

Hu,i

|UT | .
The Average Hit Ratio can be calculated as HitRatio =∑

iεIT
HitRatioi

|IT | .

Temporal aspects of recommender systems showing how
rating data changes over time and how these systems are
evaluated have been covered in (Koren 2009; Lathia, Hailes,
and Capra 2009; Burke 2010). Evaluation of attacks on tem-
poral datasets is relatively new, so this study is extending
the use of static robustness metrics, such as Hit Ratio and
Prediction Shift, for dynamic analysis.

Recommender System Algorithms
In order to generate predictions, user-based and item-based
CF recommender systems follow a consistent process: first,
establish similarity between users (for user-based CF sys-
tems) or items (for item-based CF systems), then weight the
similarities to emphasize users (or items) that are most influ-
ential in establishing similarity, and, finally, compute a pre-
diction that takes into account the users’ (or items’) ratings
as well as their similarities.

User-Based Algorithms
For user-based CF systems, similarities between users are
typically determined using the Pearson Correlation tech-
nique as described in (Resnick et al. 1994; Herlocker et al.
1999). Used in conjunction with Pearson Correlation, sim-
ilarity weighting is used to rank similarities according to
the number of co-rated items between two users; similarities
calculated from user pairs with a large number of co-rated
items will be ranked higher (i.e., given a higher weight) than
similarities calculated from user pairs with a smaller number
of co-rated items.

Two popular methods are used for prediction calcula-
tion: weighted prediction and mean-centered prediction.The
weighted prediction method used is described in (Desrosiers
and Karypis 2011) and ensures that the predicted ratings are
within the allowable range, e.g., between 1.0 and 5.0. After
similarities are calculated, the k most similar users that have
rated the target item are selected as the neighborhood. After
identifying a neighborhood, a prediction is computed for a
target item i and target user u as follows:

pu,i =

∑
vεV simu,v ∗ rv,i∑
vεV | simu,v |

(2)

where V is the set of k similar users and rv,i is the rat-
ing of those users who have rated item i, and simu,v is
the mean-adjusted Pearson correlation coefficient described
above. Rating predictions calculated based on zero or one
co-rated items are discarded as one co-rated item is insuffi-
cient to provide a reliable prediction.

The mean-centered prediction method, as documented in
(Resnick et al. 1994; Herlocker et al. 1999; Desrosiers and
Karypis 2011), is computed for a target item i and target user
u as follows:

pu,i = ru +

∑
vεV simu,v(rv,i − rv)∑

vεV | simu,v |
(3)

where V is the set of k similar users who have rated item
i, rv,i is the rating of those users who have rated item i, ru is
the average rating for the target user u over all rated items,
rv is the average rating for user v over all co-rated items, and
simu,v is the mean-adjusted Pearson correlation coefficient
described above. This technique is used to compensate for
the fact that different users may use different rating values to
quantify the same level of satisfaction for an item. Similarity
threshold and kNN neighborhoods functionality were used
in conjunction with this prediction method.
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Item-Based Algorithms
For item-based CF systems, similarities between items are
typically determined using the Adjusted Cosine Similarity
technique as described in (Sarwar et al. 2001). Similar to
Pearson Correlation, this method subtracts the correspond-
ing user average from each co-rated pair to take into account
the differences in rating scale between different users. Sim-
ilarity weighting is also used to rank similarities.

Two popular methods are used for prediction calcula-
tion: weighted prediction and mean-centered prediction. The
weighted prediction method used implements the classic ap-
proach described in (Sarwar et al. 2001) and ensures that
the predicted ratings are within the allowable range, e.g., be-
tween 1.0 and 5.0. The prediction of item i for user u is made
by computing the sum of the ratings given by user u on the
items similar to item i. Each rating is then weighted by the
corresponding similarity s(i, j) between items i and j.

pu,i =

∑
jεallsimilaritems(si,j ∗ ru,j)∑
jεallsimilaritems(| simi,j |)

(4)

This method computes the prediction on an item i for a
user u by computing the sum of the ratings given by the
user on the items similar to i. Each rating is weighted by the
corresponding similarity si,j between items i and j. This ap-
proach captures how the active user rates the similar items.
Also, rating predictions calculated based on zero or one co-
rated items are discarded as one co-rated item is insufficient
to provide a reliable prediction.

The mean-centered prediction method , as documented in
(Desrosiers and Karypis 2011), is computed for a target item
i and target user u as follows:

pu,i = ri +

∑
jεNu(i) simi,j(ru,j − rj)∑

jεNu(i) | simi,j |
(5)

where Nu(i) is the set of items rated by user u most sim-
ilar to item i, ru,j is u’s rating of item j, rj is the average
rating for item j over all users who rated item j, ri is the av-
erage rating for target item i, and simi,j is the mean-adjusted
Pearson correlation coefficient described above.

Experimental Setup
We conducted two experiments to investigate tradeoffs in
robustness and accuracy. The first, called the Static Analy-
sis, considers the context of the entire dataset without regard
for how the dataset of user profiles evolves over time; user-
based and item-based CF algorithms are compared. The sec-
ond, called the Dynamic Analysis, considers how the dataset
evolves over time, i.e., we split the entire dataset temporally
and analyze results at each of three time steps using an item-
based CF algorithm. Both experiments employ the following
common experimental setup.

Algorithms
The following recommender algorithms were used:
• User-based: Pearson Correlation similarity with similarity

weighting, neighborhood formation with number of near-
est neighbors ((kNN) set to 50 and similarity thresholding

set to 0.0, significance weighting set to 50, mean-centered
prediction, and weighted prediction.

• Item-based: Adjusted Cosine similarity with similar-
ity weighting, neighborhood formation using similarity
thresholding set to 0.0, significance weighting set to 50,
mean-centered prediction, and weighted prediction.

Prediction Accuracy Metric For purposes of this study,
the Mean Absolute Error (MAE) metric was used to measure
the accuracy of the rating predictions. We employ the MAE
accuracy evaluation mechanism provided by the underlying
test harness, Mahout1. The training set was 70% of the data,
the test set was 30% of the data, and 100% of the users were
used.

Robustness Metrics For purposes of this study, Hit Ratio
and Prediction Shift metrics (Burke, O’Mahony, and Hurley
2011) were used to measure the success of the attack (from
the attacker’s standpoint) such that a high Hit Ratio or a high
Prediction Shift meant that the attack succeeded in changing
the recommendations produced by the CF system.

Attack Profiles
Attack profiles were created and added to the non-attack
datasets to simulate attacks on the recommender system.
The attack profiles are similar to the non-attack user pro-
files. In this paper, the static and dynamic analyses deter-
mine whether a given CF algorithm is robust to attack given
a best-case scenario from the attacker’s standpoint, i.e., the
emphasis was on creating an attack with target items that are
easy to manipulate and an attack type that requires very lit-
tle information about the underlying dataset. The character-
istics of the attack profiles used in this study are as follows:

• Attack intent: Push, i.e., a single target item is selected
and set to the maximum rating of 5.

• Attack type: Random, i.e, the non-target items in the at-
tacker’s profile are rated randomly from a normal distri-
bution with mean 3.6 and standard deviation 1.1; these
values correspond to the mean and standard deviation
of the MovieLens 100K dataset used in this study. Al-
though previous studies have shown that random attacks
are not very effective compared to other attack types
such as Average and Bandwagon (Lam and Riedl 2004;
Mobasher et al. 2007), these attack types require near per-
fect information about the dataset, are not considered as
realistic, and are difficult, if not impossible to obtain in
the real world (Chirita, Nejdl, and Zamfir 2005). On the
other hand, random attacks require very little information
about the dataset and they can be made more effective
with large filler sizes (number of randomly rated items in
the attack profile) and/or large attack size (number of at-
tack profiles).

• Attack Size: 5%, i.e., the number of attack profiles (at-
tackers) added to the non-attack dataset and is a percent-
age of the total number of non-attack users. The 6-week
dataset had 10 attack profiles added, the 18-week dataset

1http://www.mahout.apache.org
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had 30 attack profiles added, and the 30-week dataset
(ML100K) had 50 attack profiles added.

• Filler Size: 100%, i.e., the percentage of all non-target
items that were rated according to the attack type. The
6-week dataset had 1,230 non-target items rated, the 18-
week dataset had 1,548 non-target items rated, and the
30-week dataset (ML100K) had 1,663 non-target items
rated.

• Target items: Four target items of differing genres were
selected randomly from the 6-week dataset created in the
dynamic analysis. These target items had low number of
ratings and low ratings; these properties made the target
items particularly susceptible to attack (Lam and Riedl
2004). Each set of attack profiles had one target item set
to the maximum rating of 5 for a Push attack. The Average
Hit Ratio and Average Prediction Shift metrics were com-
puted over all target items. The same set of target items
were used for all the attacks in this study.

Static Analysis of Robustness Tradeoffs
Our first experiment examined tradeoffs in accuracy and ro-
bustness in the context of the entire dataset, without regard
for system usage over time, for both user-based and item-
based CF algorithms.

Datasets
The data used in this study consisted of the MovieLens
dataset downloaded from GroupLens2 Research. Specifi-
cally, the 100K dataset with 99,693 unique ratings for 1,664
movies and 943 users (referred to as ML100K in this study).
Ratings consist of integer values between 1 (did not like) to
5 (liked very much). User profiles consist of userid, itemid,
rating, and timestamp. Four attack datasets were built using
ML100K, one for each target item. Each attack dataset in-
cluded non-attack user-profiles as well as attack profiles.

Testing
Accuracy (MAE) evaluation testing was done for each varia-
tion of prediction method (x2) and CF algorithm, user-based
and item-based. Robustness calculations were executed once
per target item (x4) per prediction method (x2) and CF algo-
rithm, user-based and item-based.

Results and Discussion
Figure 1 shows the results of varying the prediction al-
gorithm for user-based and item-based CF recommenda-
tions prior to any attack activity. User-based and item-based
mean-centered predictions are both significantly better than
weighted predictions, with item-based showing the more
dramatic improvement.

Figures 2 and 3, however, show a different story. Robust-
ness metrics for user-based CF recommendations are insen-
sitive to prediction algorithm used while item-based CF rec-
ommendations using weighted prediction are significantly
different than the recommendations provided by the mean-
centered algorithm.

2http://www.grouplens.org

Figure 1: Mean Absolute Error for User-based and Item-
based Recommendations – Before Attack

Figure 2: Average Hit Ratio for User-based and Item-based
Recommendations – After Attack

The following observations can be made from these
charts:

1. Based on just the MAE results, mean-centered prediction
yields better prediction accuracy than weighted prediction
for user-based and item-based CF recommendations.

2. Based on just the Hit Ratio and Prediction Shift results,
weighted prediction yields the best protection, as com-
pared to mean-centered predictions, against random at-
tacks on item-based CF recommendation systems. Fur-
thermore, using mean-centered prediction in an item-
based CF recommendation system results in a recom-
mender system that is susceptible to random attacks, even
more so than user-based systems according to the Hit Ra-
tio metric.

3. It appears that system operators implementing user-based
CF recommenders should consider using mean-centered
prediction in order to optimize accuracy (MAE) and
robustness (Hit Ratio and Prediction Shift) rather than
weighted prediction. Conversely, system operators imple-
menting item-based CF recommenders need to consider
the trade-off between a more accurate system that uses
mean-centered prediction and a more robust system that
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Figure 3: Average Prediction Shift for User-based and Item-
based Recommendations – After Attack

uses weighted prediction.

Dynamic Analysis of Robustness Tradeoffs
Our second experiment examined tradeoffs in accuracy and
robustness taking into account system usage over time, for
the item-based CF algorithm.

Datasets
Three temporal non-attack datasets were derived from the
full ML100K dataset and indicate that data were collected
over a period of 30 weeks. The 6-week dataset has 17,081
ratings for 1,231 movies and 190 users, the 18-week dataset
has 63,534 ratings for 1,549 movies and 621 users, and the
30-week dataset is the full ML100K dataset. Twelve attack
datasets were built, one for each combination of target item
(x4) and temporal dataset (x3). Each attack dataset included
non-attack user-profiles as well as attack profiles. The 6-
week attack datasets had 29,391 ratings for 1,231 movies
and 200 users, the 18-week dataset had 110,004 ratings for
1,549 movies and 651 users, and the 30-week dataset had
182, 893 ratings for 1,664 movies and 943 users.

Testing
Test iterations (3 temporal non-attack datasets and 12 at-
tack datasets): Accuracy (MAE) evaluation testing was done
once per prediction method (x2) per dataset (x3) for the
item-based CF algorithm. Robustness calculations were ex-
ecuted once per target item (x4) per prediction method (x2)
per dataset (x3) for the item-based CF algorithm.

Results and Discussion
Figure 4 shows that mean-centered prediction outperforms
weighted prediction in each time period. Also, mean-
centered prediction improved as the dataset grew while the
opposite was true for weighted prediction. Figures 5 and
6 show that Hit Ratio and Prediction Shift results using
weighted prediction were dramatically different than the re-
sults produced using mean-centered prediction.

The following observations can be made from these re-
sults:

Figure 4: Mean Absolute Error for Temporal Item-based
Recommendations – Before Attack

Figure 5: Average Hit Ratio for Temporal Item-based Rec-
ommendations – After Attack

1. Based on just the MAE results, mean-centered prediction
yields better prediction accuracy over time than weighted
prediction for item-based CF recommendations.

2. Based on just the Hit Ratio and Prediction Shift results,
weighted prediction yields the best protection, as com-
pared to mean-centered predictions, against random at-
tacks on item-based CF recommendation systems. Fur-
thermore, using mean-centered prediction in an item-
based CF recommendation system results in a recom-
mender system that is susceptible to random attacks as
the dataset grows.

3. System operators implementing item-based CF recom-
menders need to consider the trade-off between a more
accurate system that uses mean-centered prediction and a
more robust system that uses weighted prediction.

Conclusion and Future Work
Recommender system operators need to continue to weigh
the costs and benefits of the underlying recommender sys-
tem algorithms. In this study, we have shown that using
mean-centered prediction, and holding other parts of the rec-
ommendation process constant, user-based CF recommen-
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Figure 6: Average Prediction Shift for Temporal Item-based
Recommendations – After Attack

dations achieves relatively good marks for both accuracy and
robustness. We also show that item-based CF recommenda-
tion systems are (1) more robust to attack using weighted
prediction albeit less accurate, and (2) less robust to attack
using mean-centered prediction albeit more accurate. Fur-
thermore, it was shown that, under certain conditions, item-
based CF recommendations were more accurate and more
robust to attack than user-based recommendations.

In the future, the temporal analysis will be extended to en-
compass user-based CF systems. Furthermore, in order to in-
vestigate the scalability of the results obtained in this study,
we intend to perform similar analyses with larger datasets,
such as MovieLens 1M, MovieLens 10M, or Netflix, com-
paring user-based and item-based CF systems as well as
other algorithms including SVD and SlopeOne.
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