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Abstract 
Animal behavior analysis has, in the past, taken a very low 
tech approach, with direct observer surveillance and 
automated video surveillance as the norm.  These methods 
are insufficient when one wants to study interactions 
between large numbers of animals in their housing 
environment.  In this paper we use a housing environment 
that has been equipped with a system of RFID sensors.  
RFID transponders were implanted into the study animal, 
the naked mole rat.  The resulting data was analyzed using 
principal component analysis and frequent pattern mining.  
Results showed that these methods can identify time periods 
of high behavioral activity from that of low activity, along 
with which groups of animals interacted with one another. 

 Introduction   
The study of animal social interactions is of interest to 
social psychologists so that we can better understand the 
various social disorders that affect humans  Studies range 
from understanding the role of social behavior in mate 
selection and species fitness, to measuring brain correlates 
of social behavior.  
 Often, observing social interactions among animals 
requires removing animals from the larger group and 
observing them in pairs (Clarke and Faulkes 1999).  This 
becomes tedious and time consuming when large groups of 
animals need to be observed and results may be influenced 
by the artificial nature of this type of observation. 
 Alternately one can observe animals in their home 
environment.  This can be done using direct observation or 
by automated video surveillance systems.   Observing large 
colonies of animals, such as those seen in the naked mole 
rat (NMR), can require the observation of 75 plus animals 
at any given time.  Automated video systems fail because 
they are incapable of distinguishing among multiple 
laboratory animals over long periods of time in a complex 
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housing environment. The problem then becomes, how can 
one observe social interactions between many animals 
simultaneously without removing them from their housing 
environment?  Our solution was to use an RFID (radio 
frequency identification) system, consisting of transponders 
and readers.  RFID provides automatic identification of 
physical objects using radio waves.    
 Transponders were embedded into each subject animal.  
Readers were judiciously placed in the housing 
environment.  Each RFID transponder has a unique ID, 
enabling the ability to track individual animals through the 
readers.   The organization of our system was based on the 
methods reported by Kritzler and colleagues to track mouse 
behavior (Kritzler, Lewejohann, and Krüger 2007) (Kritzler 
et. al. 2008) (Lewejohann  et. al. 2009).  
 In previous work we demonstrated how social 
interactions can be measured by tracking dozens of NMRs 
simultaneously (McCloskey et al. 2011). A major problem 
encountered with this method was that our RFID system 
generated massive amounts of data which was not easily 
analyzed using the traditional methods employed by 
behavioral scientists.   To remedy this, computational 
techniques such as those used in data mining, specifically 
principal components analysis (PCA) and frequent pattern 
mining, were used to identify behavioral patterns.  This 
paper extends the previous work by attempting to 
characterize the social behavior patterns of NMRs with 
specific attention to how social behaviors are determined 
by the activity patterns of the larger colony. We asked 
whether social bonds between animals remain constant for 
the entire day, or whether different time points and 
behavior patterns cause animals to change the animals they 
socialize with.  Understanding these types of social 
behaviors can inform us about areas and processes that may 
lead to better understanding, treatment, and prevention of 
social disorders such as schizophrenia and autism. 
  This paper is organized as follows.  First we give 
background information on our study animal, the naked 
mole rat, and our computational methods.  We then discuss 
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our data set and how we applied PCA and frequent pattern 
analysis to this data.  We end with our conclusions, 
summary and future directions. 

Background 

Naked mole rats represent a unique model system for the 
study of group social dynamics because they are the only 
mammalian species that use cooperative breeding (like 
honeybees or termites).   Therefore they allow for the 
cohabitation of large groups of animals which can grow to 
upwards of 300 animals (Brett 1991) and live as long as 30 
years (Buffenstein, 2008 ). Because all animals in a colony, 
except for the breeding pair, are siblings, we can study how 
the brain changes wrt social behavior without the 
confounds of stark genetic differences, or aggressive or 
breeding behaviors. Non-breeding animals cooperate in 
caring for young (retrieval, licking, grooming, and 
provision of food), and protecting and maintaining the 
colony (O'Riain  2000).  NMRs are exclusively 
subterranean and maintain an extensive burrow system, 
with upwards of 3-4 km of tunnels, which are used to find 
tuber food sources.  Within the lab housing environment 
animals maintain communal nest and toilet chambers which 
are areas of high social interaction.  
 Principal Component Analysis (PCA) is commonly used 
to find patterns in highly dimensional data.  It does this by 
projecting the original data onto a lower dimensional space 
as defined by the eigenvalues and eigenvectors of the 
covariance matrix (Martinez, Martinez 2002).  Each 
animal's social behavior defines a single dimension in the 
data space.  Given the large numbers of animals, applying 
PCA to this highly dimensional space allowed us to project 
these behaviors onto a lower dimensional space, making it 
easier to see high and low time periods of social 
interaction.  Thus we can find patterns defined by a small 
number of principle components which represent most of 
the observed data.   
 Frequent pattern mining has been used in the data mining 
community to find relationships between sets of items.  
Most notably this technique has been used by retailers to 
find groups of items purchased together by retail 
customers.  Various implementations of frequent pattern 
mining have been developed over the years, the most 
notable of which is the Apriori algorithm (Agrawal and 
Srikant  1994) (Agrawal et. al. 1996).  Although primarily 
used for market basket data, frequent pattern mining, at its 
simplest, can show us which variables or items co-exist 
with a minimum frequency.  When applied to the RFID 
data generated by our system, frequent pattern mining was 
able to give insights into which NMR socialized together. 

  Data Methods and Results 
In our laboratory setup, 33 NMRs were housed in standard 
mouse tub cages connected by over 7 meters of clear 
polycarbonate tubing (50.8 mm inner diameter).  Each 

NMR was implanted subcutaneously with a Trovan Unique 
radio frequency identification transponder (transponder size 
11.5 x 2.2mm; MicrochipID Lake Zurich, IL) in March 
2010.  Stationary circular RFID antennae (Trovan LID 650 
readers (MicrochipID, Lake Zurich, 100 mm inner 
diameter) was placed around the polycarbonate tubing at 
multiple locations, and connected to a backend computer 
for data collection.   Each time a tagged NMR passed 
through a sensor, a text file was updated with the animal ID 
(unique 10 digit alphanumeric code), time of entry, and 
reader number (1-14). Text files containing 24 hours of 
data entries were parsed using Matlab and a state matrix 
identifying the last known location for each animal was 
processed for each event.  The process is event driven, with 
data generated only when the NMR moves through a sensor 
region.  Figure 1 is a picture of the housing environment.   
  

 
Figure 1: NMR housing environment showing mouse 
tubs and placement of RFID sensors. 

   
 The amount of data produced was large, with 
approximately 15,000 events recorded each hour, resulting 
in 3.1 million observations recorded over a 9 day period.  
The raw data was transformed into a state matrix as 
described above.  Each row in the state matrix 
corresponded to an observation in the raw dataset.  
Columns were labeled with each NMR's ID.  Each cell 
contained the data value of the current sensor location of 
the NMR at the time of the observation.  In creating this 
matrix, we made the assumption, that NMRs that have not 
triggered a sensor reading, remained at their previous 
location.  The state matrix formed the basis for the analyses 
using PCA and Apriori.  Data was taken over a 24 hour 
period and was partitioned into 24 separate one hour time 
windows. 
   We calculated the covariance of the state matrix and 
analyzed this using PCA based on a singular value 
decomposition,  resulting in the variance for each time 
window.  The percent cumulative variance was  then used 
to identify windows with different characteristic patterns.  
This analysis provided an understanding of hourly behavior 
patterns.  Since each individual animal represented a single 
dimension in the data space, and the number of animals, 
hence dimensions started at 33, the hope was that PCA 
would be able to compress this highly dimensional set of 
behaviors into fewer behaviors in a lower dimensional 
space.  In this case PCA could find data patterns of animal 
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behavior (values/reader locations of variables/animals) by 
projecting the data into a new dimensionally lower space.  
The thought is that the cumulative relative variance will 
approach 1 quickly, using just a few of the  largest principle 
components, i.e. the principle components which represent 
the patterns which show up most frequently in the data.   
 We found that most of the behavior can be projected 
onto three principal components. Given this, PCA results 
were able to identify two windows where behavior was 
markedly different: window 3 (2-3 AM) and window 14 (1-
2 PM). We used these two windows to focus frequent 
pattern analysis on.  Our goal was to show that NMR 
interactions were dependent upon the percent cumulative 
variance in the PCA analysis.  We consulted with a domain 
expert to verify that the data patterns observed from PCA 
were also observable in the laboratory.  Our results were 
confirmed by observational data, and that indeed these 
were observed times of high and low activity. 
 Results for PCA can be seen in Figures 2 and Figure 3.  
Figure 2 shows a three dimensional vector representation of 
the locations of each animal for window 3.  The axes are 
labeled with the three principal components that were 
found to be significant.  The dots show the location of the 
window data points in the PCA projected space.  Each line 
indicates specific animals of interest, such as the breeding 
male (B), animal 17, 3, 12, etc.   The center collection of 
vectors shows those animals that share similar behavior 
patterns in all three components.  The same three 
dimensional graph for window 14, figure 3, shows much 
more activity. This showed that animal behavior in 
windows 3 and 14 were different.  Whereas behavior 
patterns in window 3 could be explained by fewer 
behaviors (e.g. sleeping, moving about, and going to the 
toilet cage), behavior patterns in window 14 were much 
more complex and included other behaviors (perhaps 
digging, and searching for food).   
 Typically, behaviorists use central graph analysis to 
show interactions between pairs of animals.  The central 
graph is a representative graph based on a set of graphs in 
which an edge is created if it is present in 50% or more of 
the graph set.  (Banks and Carley 1994)  In the face of this 
huge body of data, central graph analysis was not tractable 
using the entire data set.  Thus in order to do central graph 
analysis it was necessary to sample the dataset.  In previous 
work we were able to show that frequent pattern mining 
yielded similar results to central graph. Efficiencies due to 
the pruning done by frequent pattern algorithms enabled 
data analysis using the entire dataset.  (McCloskey et. al. 
2011).  It was shown that frequent pattern mining was 
useful in showing social interactions between not only pairs 
of NMRs, but larger groups as well by creating sociograms 
based on the results of frequent pattern analysis.  
 Association rule mining has been used in market basket 
analysis for finding groups of items that are purchased 
together.  If we think of our sensors as corresponding to the 
cash registers in a supermarket, it is easy to map the 

association rule market basket problem to the problem of  
finding socializing groups of NMRs.   Each store  
  

 
Figure 2 Three dimensional graph of data projected onto PCA 
components for window 3 
 
 
 

 
Figure 3 Three dimensional graph of data projected onto PCA 
components for window 14 
 
   
transaction corresponds to groups of items in a customer's 
market basket.  If we look at many market baskets, we find 
that certain sets of items tend to be frequently purchased 
together.  From these we can find rules to the effect, 
"customers that buy shampoo are likely to buy soap".  
These rules hold with minimum statistical significance and 
confidence.  Our goal for this study was to find mole rats 
that group together, given the sensor location data.  For this 
analysis we were interested in the composition of groups, 
not group location. To transform the data for use by the 
Apriori algorithm, we partitioned each observation in the 
state matrix by sensor locations.  Each individual partition 
can be viewed as a "transaction" that occurred at a sensor.  
If we look at many of these transactions we can find 
frequent groups of mole rats that socialize together, along 
with rules to the effect of, "when animals 5 and 6 are 
together we are likely to see animal 8 as well". More 
formally, given a set I = { i1, i2, i3, … in} of items, a 
transaction is a subset X of I.  A subset of the items in a 
transaction is also a subset of I and is called an itemset.  If 
an itemset satisfies some minimum percentage of 
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transactions it is called a frequent itemset.    The percentage 
value is known as the support of the itemset.  The absolute 
support of an itemset is the actual number of transactions 
satisfied by that itemset in the dataset.  Support is an 
indication of the itemset's statistical significance (Agrawal, 
Imielinski, and Swami 1993) (Agrawal and Srikant  1994) 
(Agrawal et. al. 1996). 
 

obs# NMR1 NMR2 NMR3 NMR4 NMR5 
1 1 2 1 2 3 
2 1 2 1 3 3 

Table 1  Sample state matrix for 5NMR, 2 
observations, and 3 sensors 
 

obs# NMR1 NMR2 NMR3 NMR4 NMR5 
1 1 0 1 0 0 
1 0 1 0 1 0 
1 0 0 0 0 1 
2 1 0 1 0 0 
2 0 1 0 0 0 
2 0 0 0 1 1 

Table 2  Transformed state matrix for frequent 
pattern mining. 

 
 Since our "transaction"  data represented a partitioning of 
each row in the state matrix, any one NMR could be seen in 
one out of fourteen transactions, given a fourteen sensor 
configuration.  Given an observational dataset, and a set of 
items I, where each observation records a value for each 
item in I, the values for each observation partitions the set 
of items, I, such that for each observation we have subsets  
X1, X2, X3, ... , Xn where n is the number of subsets, and X1 
�    X2  �  X3  � ...  �  Xn = �, and X1 �    X2  �   X3  �...  �   
Xn = I.  Define absolute partitioned support as the number 
of times the itemset satisfies a transaction divided by n, the 
number of partitioned subsets.  Define partitioned support 
as percent defined by the absolute support divided by the 
number of observations in the original state matrix.  
Partitioned support is the statistical significance of an 
itemset relative to the original state matrix.  Table 1 shows 
a sample state matrix for five NMR.  Table 2 shows how 
the data was transformed to be used with the Apriori 
algorithm. 
 Recently there has been a focus on mining sets of 
itemsets that are representative of the set of frequent 
itemsets.  Mining frequent itemsets can become cost 
prohibitive in dense datasets with long patterns of 20 items 
or more.  For these types of datasets research has focused 
on mining closed frequent itemsets (Pasquier, N. et. al. 
1999),  (Wang,  Han,  and Pei, 2003)  and maximal itemsets 
(Gouda, K., and  Zaki,, M.J.  2001).  Given a frequent 
itemset X, X is a closed frequent itemset if there exists no 
Y � X such that the support of Y equals the support of X.  
A frequent set X is a maximal frequent itemset if for all 
supersets Y of set X, set Y is infrequent. (Gouda, K., and  
Zaki,, M.J.  2001)  The frequent itemsets are a superset of 

the closed frequent itemsets, which in turn are a superset of 
the maximal frequent itemsets.   
 Since we were looking to find sets of animals that 
socialize, it made sense to look at the maximal frequent 
itemsets rather than the rules these itemsets defined.  For 
instance,  NMR5 � NMR24 has no different confidence 
measure than NMR24 � NMR5 since both NMR24, and 
NMR5 would trigger the same reader at the same time if 
they collocated.  We chose to find the maximal frequent 
itemsets since these coded for a less redundant set of items. 
(Zaki 2000)   One of the advantages of frequent pattern 
analysis over central graph is the ability to look at varying 
levels of support, or statistical significance.  Central graph 
uses a 50% cutoff for its consensus matrix.  In analyzing 
data from window 3 and window 14, we were able to find 
itemsets of frequent social groupings, at different support 
levels.  We ran our analysis at partitioned support levels of 
20%, 50%, and 80%.   This approach effectively allows us 
to determine what proportion of time any dyad of animals 
spends together during a time window, and ultimately 
determines the strength of every relationship. 
 Social psychologists use a graphical model called a 
sociogram to show interactions between agents in a given 
population.  This form of analysis is powerful since it 
allows for secondary measures of the strength of connected 
nodes. (Butts, 2008), (Freeman, 1979)  (Wasserman, and  
Faust, 1994).  Klemettinen et. al. describe a method of 
visualizing association rules using a graphical 
representation.  Each attribute is represented by a node, and 
directed arcs between these nodes represent rules.  Building 
on this, we can create similar graphs using maximal 
itemsets.  Since the maximal itemsets capture groups of 
NMRs that socialize, we can thus use an undirected graph 
to visualize these itemsets.  We represent each animal as a 
node in the graph and edges connect NMRs that are in the 
same maximal frequent itemset.  Itemsets can be 
graphically connected to each other via common items.  For 
example, given maximal itemset {6, 25, 29} and maximal 
itemset {6, 31} we can see that animal 6 associates with 
animals 25, 29, and 31.   
  

Conclusions 
 
Figures 5-7 show sociograms derived from frequent pattern 
analysis with 20%, 50%, and 80% support in window 3  
while figures 8-10 show the social interactions at different 
levels of support in window 14.  The sociograms were 
created using the graphical software package, Gephi  
(http://gephi.org).   The sociograms confirm the results 
obtained from PCA.  Windows 3 and 14 show markedly 
different numbers of interactions between animals.  
  Overall, there are more social interactions during 
window 3, than during window 14, when the animal 
behavior patterns were more variable. Additionally, 
although fewer interactions occur in window 3, as one 
increases support, over all, the number of dyad interactions
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Figure 5 Sociogram of Window 3 with 20% support  Figure 6  Sociogram of Window 3 with 50% support 

 

 

 

Figure7  Sociogram of Window 3 with 80% support  Figure 8 Sociogram of Window 14 with 20% support 
 

 

  

 
 

Figure 9 Sociogram of Window 14 with 50% support  Figure 10 Sociogram of Window 14 with 80% support 
   
does not decrease significantly from the 20% support level 
to the 80% support level.  One interesting observation is 
that animals that socialize infrequently at 20% tend to have 
no interactions at higher support levels.  This might 
indicate that the number of social interactions may be 
correlated with the frequency of social interaction.  Thus 
non social NMR not only interact with fewer NMR, they 
interact less frequently than more interactive NMR. In 
addition, comparison of the associations in window 3 and 
window 14 provide evidence that supports our hypothesis 
that social relationships are determined by the type of 
activity pattern. For example, animal 28 does not show any 
social interactions at any level of support during window 3, 
but does exhibit social behavior when support is set to 20% 
during window 14.  In fact, animal 28 provides the link 
between animals 30 and 26 to the rest of the group during 
this time, exhibiting a quality known as betweeness 
centrality (Wasserman and Faust, 1994). Conversely, 

animals 20 and 7 show the only dyad at the 50% support 
level in window 14, but do not associate at any level of 
support during window 3.  These variations in social 
behavior may provide clues to the roles of individuals in 
colony maintenance and protection.  These results show, 
for the first time that social behavior is dynamic and 
dependent upon the activity of the larger group..   
  

Summary 
 
In this paper, we have shown that a combination of PCA 
and frequent pattern mining can be used to demonstrate 
both the variability of behavior in large groups and the 
interactions among members of that group simultaneously. 
An important advance of this paper is that this method 
allowed for the depiction of frequent itemsets as a 
sociogram that depicted dyad relationships with varying 
levels of statistical significance, or support.  Our data is the 
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result of using RFID technology to observe animals in their 
housing environment.  This technology generated huge 
amounts of data that could not be analyzed using the 
traditional methods employed by social psychologists.  Our 
results indicate that frequent pattern mining offers social 
psychologists a new way of analyzing animal behavior 
data.    
 For the future, we intend to analyze data over multiple 
days to identify groups of animals that socialize on a daily 
basis.  We continue to record data from the colony and 
intend to analyze this data looking for weekly, monthly, 
and seasonal patterns.  We intend to use techniques 
employed in social network analysis to look more closely 
at the sociograms.  By tagging other items in the 
environment such as food and pups, we can get insights 
into the hierarchical behavior, such as the specific roles for 
soldiers and workers.  In short the techniques described 
here have opened up a way to observe laboratory animals 
with a precision that has not yet been done before. 
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