

Evaluating ConceptGrid: An Authoring System

Stephen B. Blessing1, Shrenik Devasani2, Stephen B. Gilbert2
1 University of Tampa, 401 Kennedy Blvd., Tampa, FL 33606 USA

2 Virutal Reality Applications Center, Iowa State University, 1620 Howe Hall, Ames, IA 50011 USA
sblessing@ut.edu, shrenik@iastate.edu, gilbert@iastate.edu

Abstract
Using natural language as a way for students to interact with
an ITS has many advantages. However, creating the
intelligence with which the tutor evaluates a student’s
natural language input is challenging. We describe a system,
ConceptGrid, that allows non-programmers to create the
instruction for checking natural language input. Three tutor
authors used the system to develop answer templates for
conceptual-based questions in statistics. Results indicate
ConceptGrid is a viable system for non-programmers to use
to allow students to use natural language to interact with a
tutor.

 Introduction
Allowing a student to enter natural language for their
responses in an ITS moves the student experience closer to
one with a human tutor. Natural language is the main way
human tutors interact with students. It makes sense, then,
for researchers in ITSs to investigate ways to incorporate
responses to natural language in their repertory of student
input. Aleven and his colleagues (Aleven et al., 1999)
found that students who provided explanations for their
solution steps in the Geometry Tutor later showed greater
understanding of the concepts than those students who did
not, a finding reminiscent of the self-explanation effect
found in cognitive psychology (Chi et al., 1994).
 A number of intelligent tutors allow students to enter
responses in natural language. WHY2-Atlas (Jordan et al.,
2001) represents a physics tutor that facilitates dialogue
with students concerning conceptual-based physics
problems. Medical students have used CIRCSIM to
provide natural language input (Glass, 2001). AutoTutor
has been deployed in a number of domains to check

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

student’s natural language input (Graesser et al., 2004).
However, each of these ITSs required significant effort to
create the information used to check student responses for
their respective domains. This paper explores a domain-
independent response authoring system usable by non-
programmers.

The Authoring System Challenge
A current challenge in ITS systems is developing ways to
make the authoring process easier (Murray et al., 2003).
Much time and expertise are required to create these
systems, which add to the expense and the ability to deploy
them in a wide variety of contexts. The expertise required,
particularly the cognitive science and programming
knowledge, puts the ability to construct even a simple or
limited ITS out of the ability of even the most dedicated
instructors or subject matter experts.
 Researchers have begun to develop systems that allow
non-programmers, non-cognitive scientists to develop
ITSs. Aleven and his colleagues (2009) have developed the
Cognitive Tutor Authoring Tools (CTAT) that allow such
users to develop the instructional components of an ITS
(e.g., the hints and just-in-time messages) using a graphical
user interface. They have met with success in this
endeavor. In our own work we have worked on the xPST
system to allow non-programmers to quickly develop an
ITS in a more text-based format (Gilbert et al., 2009).
 Allowing students to enter natural language responses
represents an obstacle to these authoring systems. Systems
such as WHY2-Atlas and AutoTutor have demonstrated
their effectiveness, but allowing natural language input
often involves sophisticated techniques involving machine
learning. For example, AutoTutor makes use of latent
semantic analysis (LSA; Landauer et al., 1998) to assist in
checking student responses. WHY2-Atlas does have an
authoring tool component that’s usable by non-linguists

for Natural Language Responses

426

Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference

and reportedly non-programmers, but still has a bit of a
learning curve (one week of full-time use).
 Our challenge was to develop an addition to our xPST
authoring system that would allow instructor-level non-
programmers to create tutoring on natural language input.
The learning curve for the system needed to be minimal,
on the order of a couple of hours, while still maintaining a
strong ability to evaluate student responses. We refer to our
approach as ConceptGrid.

The ConceptGrid Approach
Our goal is to provide evaluation of short-answer style
questions that may ask the student a definitional style
question or a simple comparison, rather than evaluation of
longer (paragraph) answers like AutoTutor or of a
discursive dialog like WHY2-Atlas. Within our own work,
both research and teaching, we have developed a need to
have a tool to check such shorter responses. To achieve
this goal, ConceptGrid evaluates student input based on the
presence or absence of concepts in the answer. The tutor
author defines these concepts by using a browser-based
interface that allows them to define the textual pattern that
the concept should follow in the student’s answer. Multiple
templates for a concept can be defined, to represent the
multiple ways in which different students might phrase a
particular concept (see Figure 1). In addition to authoring
templates for expected correct concepts, tutor authors can

also develop templates for expected errors so that
appropriate feedback can be provided in those
circumstances as well. This template solution was
chosen to balance the ease of use for the tutor author—it
seems natural to think of student answers as coming in
these patterns—versus the power of the system. While
there are limitations in the expressiveness of these
templates, and for some inputs they may be cumbersome,
our belief is that they will prove powerful enough to allow

for a reasonable evaluation of short (1-2 sentences) student
answers. The templates are much more powerful than
simple word matching, but less powerful than techniques
employed by other tutors that do natural language
processing. This approach was chosen with the specific
intent to sacrifice some expressive power in a move
towards ease-of-use on the flexibility-usability tradeoff.

 A template contains one or more atomic checktypes. A
checktype tests for the presence of a particular set of
words. The current system contains the five checktypes
seen in Table 1.

Table 1. ConceptGrid checktypes.

Checktype Description
Almost(n,
wordList)

Returns true if the least
Levenshtein distance between a
word in wordList and matched
word is <= n

Any(m,n) Allows a match of an arbitrary
sequence of words between m
and n characters within a
template, when the words
themselves are not important

Exact (wordList) Returns true if a literal word
match with any of the words in
wordList is found

Not(wordList,
direction)

Checks to make sure a word in
wordList does not appear in the
sequence in the given direction;
allows for a check of negation

Synonym(wordList) Uses the WordNet corpus to
match synonyms, with an implied
Levenshtein distance of 2

 ConceptGrid allows for the easy creation of these
concept templates through a web-based GUI (see Figure
2). Tutor authors can either type a sample student response
or provide the dimensions of the template to define the
initial template size. Once defined, rows and columns can
be added or deleted from the template by clicking the
appropriate “+” (to add a row or column) or “X” (to delete
a row or a column). The checktype for a column (i.e., a
word position in the template) is chosen from the drop-
down menu. The arguments for the chosen concept, if
needed, is entered to the drop-down’s right, and the
relevant words are listed beneath the checktype, one per
row, if there are multiple words that might appear in that
position.
 The template that appears in Figure 2 would match such
student inputs as “True experiments allow for causal
statements” or “After a true experiment one can make
statements of causality.” It would not match, “True
experiments means no causality,” because the “Not”

Figure 1: The natural language approach of ConceptGrid.
Expected answers are divided into concepts that may occur in
any order. The author creates a series of templates to identify
each concept.

427

checktype checks for negation. Note that these templates
can match any subpart of the total student input, and do not
have to match just the whole of the student input. As long
as the pattern contained within the template matches any
part of the student input, then that concept is considered to
have matched.
 Tutor authors can define as many concept templates as
needed to adequately check a student response. Once all
concepts and templates have been defined, the tutor author
fills out the Feedback Table, a ternary truth table
specifying feedback to give the students based on their
input, given the presence or absence of the relevant
concepts in their answer. For example, consider an answer
that might be needed as part of a statistics problem, one
where the student needed to say if the null hypothesis is
rejected or not, and then provide a related statement of
significance (e.g., “We should fail to reject the null
hypothesis. There is not a significant difference in these
data.”). There are two concepts, one is the rejection of the
null hypothesis, and one regarding significance. Figure 3
shows a Feedback Table for this example based on these
two concepts.
 Each row in the Feedback Table corresponds to a
possible state a student answer might be in, given the
presence of absence of concepts. The green checks in the

table correspond to when the student input contains that
concept (present), and the red X’s to when the student
input does not contain that concept (absent). Clicking on
these icons cycles between them. There is also a yellow
hyphen icon to indicate that it does not matter if the
concept is present or absent for the system to consider if
the student input matches that state (ignore, or "don't
care"). For each student answer that uses ConceptGrid, the
student answer is run through the concepts, and then the
matching line or lines are found in the Feedback Table to
provide feedback to the student (perhaps a statement of
correctness, or maybe a statement indicating that a concept
is missing or a concept is there but should not be). At this
point we provide no training or instruction to tutor authors
concerning what feedback to provide students, but to rely
on their own pedagogical knowledge.
 While using ConceptGrid, with its templates,
checktypes, and ternary logic Feedback Table likely
requires computational thinking (Wing, 2006) it was
designed with a GUI in the spirit of visual programming
tools such as Scratch (Maloney et al., 2008) and Alice
(Pausch et al., 1995) so that non-programmers might be
able to use it.
 We used ConceptGrid to evaluate student responses to a
conceptual-based statistics question (Devasani et al.,

Figure 2. An example template for the concept "Causality."

Figure 3. An example Feedback Table.

428

2011). The second author of this paper used ConceptGrid
to create the templates, and checked the work against a
corpus of 554 responses provided by 41 students on 6
different problems (some students had multiple attempts
per problem). All questions had a similar form, which was
to provide a conclusion statement to a multiple-step
hypothesis test problem (e.g., “We fail to reject the null
hypothesis. There is not a significant difference in empathy
between males and females.”). The overall accuracy rate
was 97% (Devasani et al., 2011).
 We want to further examine the effectiveness of
ConceptGrid to see if a high accuracy rate was possible
with non-programming authors and a variety of problems.
The present study is our first attempt at that endeavor.

Methods

Participants
Two current instructors of a college-level statistics course
participated as tutor authors for this study. Both have
taught statistics multiple times in the past. While both have
Ph.D.’s within psychology, neither had cognitive
psychology or computer science as their specialty, nor use
a symbolic processing language like R or command line
SPSS to perform statistics. Neither received compensation
for their participation. In addition, the first author of this
paper provided responses to the questions, serving as an
intermediate user reference point, as he had never used
ConceptGrid to score actual student answers.

Materials and Procedures
We had the tutor authors create tutoring using ConceptGrid
around statistics-based content. We constructed a set of 6
questions that a student halfway through their first
semester in a statistics course should know. After initial
construction of the question set, the final set of 6 questions
was finalized in consultation with the participants to
confirm that these were questions that most students should
know. We wanted a set of somewhat easy questions to
ensure a good pool of answers to check the tutor authors’
work against. The final list of 6 questions is shown in
Table 2.
 In addition we had the tutor authors create a
ConceptGrid for a seventh question, one used in the
previous experiment, where the answer is to write a
conclusion statement for a hypothesis test (like the
example given above concerning rejecting the null
hypothesis). As can be seen, the questions are in roughly
increasing order of complexity, from one where there is a
single correct answer, to ones where there are multiple
parts (i.e., concepts) but limited answers, and ones with
multiple parts and open-ended phrasings.

Table 2. Questions used for the study.

Questions
1. What statistic is the square root of variance?
2. What are the 3 main measures of central tendency?
3. What is at least one aspect that differentiates a true
experiment from a descriptive experiment?
4. What two things must be true for mean to be
preferred over mode or median?
5. What is the difference between nominal and ordinal
style data?
6. What does parsimony mean?
7. What do you conclude based on these results? [this
came after a hypothesis test had been conducted]

 The college instructors learned about ConceptGrid in
one 45-min face-to-face training session conducted by the
first author of this paper. A four-page document was given
to the instructors that contained an overview of
ConceptGrid, login procedures for the ConceptGrid
website, interface instructions on creating concepts and
using the FeedbackTable, and the list of 7 questions to be
tutored. The 4-page instruction contained one simple
ConceptGrid example (one that involved two concepts),
and during the short training session another example was
developed. Neither example involved statistical content.
 In order to test the ConceptGrids created by the tutor
authors, we needed a corpus of responses to these
questions. For Question 7 we had the 112 responses
generated by real students for the previous study. To
generate responses to the other six questions we had 87
current students in a first semester college statistics course
answer all questions using an online form. These students
were from 5 different classes. The responses from one of
the classes were given to each participant as they were
creating their initial ConceptGrids.
 The participants had 2 weeks to complete their initial
ConceptGrids after the training session. They were told to
plan on it taking about 2 hours and were encouraged to
email or ask any questions they might have as they went
along. We spent about 10 min with both instructors
answering questions of both a technical nature (e.g., what
exactly the argument for Almost means) but also of a more
conceptual nature (e.g., the best approach for making a
template, rather to make it more broad or more specific).
 After completion of their initial set of ConceptGrids, the
participants’ solutions were tested against the entire corpus
of student responses. They were provided feedback
concerning their accuracy rate, and given the text of half
the student responses their ConceptGrids miscategorized.
We gave them only half so that they would not be tempted
to overfit the data. We then gave them two days to modify
their ConceptGrids to see how much they might improve
upon their accuracy rate, at which time their ConceptGrids

429

were again tested against the entire corpus. We expected to
see an overall high accuracy rate, over 90%, but decreasing
with the increasing level of question complexity.

Results
The website kept track of how long participants worked on
each of their ConceptGrids. The two beginning authors
spent an average of 1.11 hours editing their first set of
ConceptGrids. The intermediate author spent 0.39 hours.
This is the time spent actually editing. The website also
logged the total amount of time logged in, which would
account for planning time. Unfortunately, one beginner
user kept logged in while doing off task behavior, so an
accurate measure cannot be obtained. For the other two
users, there is a 2:1 ratio of total time to editing time.
Precise timing data is not available for the second iteration
due to a technical issue. Anecdotal evidence indicates users
spent 45 min on average for this phase.

Table 3. Average accuracy results (percentages).

Question

First
Iteration

Second
Iteration

Q1 Overall 97.70 99.62
Q2 Overall 100.0 100.0
 Concept 1 (“mean”) 100.0 100.0
 Concept 2 (“median”) 100.0 100.0
 Concept 3 (“mode”) 100.0 100.0
Q3 Overall 70.50 77.78
 Concept 1 (“manipulation”) 71.26 74.33
 Concept 2 (“control”) 88.12 85.44
 Concept 3 (“causality”) 98.47 97.70
Q4 Overall 96.17 96.93
 Concept 1 (“normality”) 78.16 89.66
 Concept 2 (“data type”) 96.17 96.17
Q5 Overall 65.90 67.82
 Concept 1 (“nominal”) 62.07 70.50
 Concept 2 (“ordinal”) 65.13 73.18
Q6 Overall 99.23 98.47
Q7 Overall 67.86 71.13
 Concept 1 (“rejection”) 56.85 96.13
 Concept 2 (“significance”) 63.10 63.99
Overall 82.98 87.31

 A research assistant scored all the student responses for
correctness. The first author of this paper also scored all
the responses. The 7 total discrepancies (1.3% of the
corpus) were resolved by verbal agreement. After each
participant indicated he or she was done working on the
initial ConceptGrid for each question, the ConceptsGrids
were checked against the student responses. In such a way
we obtained an accuracy score for each participant,
indicating the percentage of time his or her ConceptGrids

correctly rejected and correctly accepted the student
responses. Table 3 displays the mean accuracy. The
Concepts for the overall questions were derived from
discussions with the participants concerning what a correct
answer for these questions should contain.
 Examining individual accuracy results, the two
beginners scored an overall average of 77.29% and 86.14%
on the first iteration, and then increased to 84.07% and
86.61% on the second iteration, respectively. The
intermediate user went from 85.52% to 91.24%. Questions
5 and 7 proved most difficult, due to the wide variability of
student responses. Considering the improvement across all
of the patterns that the participants authored, where the
average went from 82.98% to 87.31%, a significant
difference was observed (t(56) = 2.76, p < .05, d = 0.37).
 Investigating the actual ConceptGrids themselves, all
users tended towards short templates. This indicates their
strategy across questions was to zero in on a particular
phrase that indicates student understanding and create a
concept template for that phrase. This makes logical sense
for some questions where the concept is a single word
(e.g., all three concepts for Q2), but the participants
adopted a minimalist approach, to largely successful effect,
for the other questions as well. The average number of
atomic checktypes used per concept in the first iteration
was 2.90, and that decreased slightly to 2.85 in the second
iteration, though the two beginning users increased their
average number of checktypes, while the intermediate user
decreased his. All the different atomic checktypes were
used at least once, but the Almost and Any checktypes
were used the most often. The Any checktype is useful
when two crucial words appear in a concept, but they may
be separated by an unknown number of words.
 In informal discussions after the experience, both
beginning authors indicated that they felt ConceptGrid was
easy to use, with a short learning curve. The first two
questions were easy for them, as the data suggest, with the
others being more challenging. However, once they hit
upon the proper level of specificity for creating their
concept templates, the task became much easier. Both saw
value in the tool, and saw how it could be applied more
generally. Both also admitted frustration with doing the
second iteration task, for three different reasons. Due to the
technical issue and the timing within the semester, the
amount of time available to perform the edits was short,
just two days, making it challenging to perform the task.
Perhaps more importantly though, the feedback given the
participants was hard to decipher. The feedback took the
form of a spreadsheet that contained half of their incorrect
responses. A false positive was indicated by a “1” and a
false negative was indicated by a “-1.” It was a lot of data,
and there was no way to get immediate feedback based on
an existing student corpus as to how good their edits were

430

within the website (they had to wait until the second author
of this paper could generate the statistics).

Discussion
Overall, we were pleased with the result. The final
accuracy was not above our hoped-for 90% for the
beginning authors, but the issues we had with the second
iteration did not help. With the results here and our
observations from Devasani et al. (2011), experience with
the concepts and interface results in improved templates.
Bettering the authoring environment to allow for more
immediate and easier to interpret feedback as the tutor
author made edits would assist greatly, for both beginning
and more advanced authors. We did observe a slight
decrease in accuracy with increasing complexity, though
some of the more complex questions enjoyed a high
accuracy. Also, some concepts enjoyed a nice
improvement between iterations. In considering these
differences, and in discussions with the participants, we
considered these observations and what we could do to
ensure high success rates in the future.
 One issue that arose as the participants went from their
first iteration to their second was that answers that
previously matched correctly either became false positives
or false negatives in the second iteration. Part of this was
beyond the participant’s control. For example, in defining a
concept for Q6, the one about parsimony, one participant
used the Synonym atomic checktype with “simplicity” in
the wordlist. A WordNet synonym for “simplicity” is
“ease,” and with a Levenshtein distance of 2, several false
acceptances occurred. One solution here is to make the
Levenshtein distance a function of the length of the word.
This suggestion may also be appropriate for the Almost
atomic checktype, getting rid of one of its numerical
arguments. The tutor author would then not need to worry
with it. One of the participants in her initial iteration had
the argument set high for some of her concepts.
 Based on our observations and conversations, we are
now considering two design improvements in addition to
further usability testing. First is an automatic way to score
the correctness of ConceptGrids. One could imagine the
online tool being able to accept a scored set of student
responses. Once loaded, a ConceptGrid could then be
scored against it by a simple click of a button, allowing for
an immediate check to see how a change affected the
accuracy. Second, once the ConceptGrid has been scored
against the student input, a better way to present the results
(the percentages and matches of correct and incorrect
acceptances and rejections).
 We plan on using ConceptGrid with a wider set of users
and domains. We feel it offers a good, domain general,

solution to checking short natural language answers in an
ITS environment.

References
Aleven, V., Koedinger, K., Cross, K. (1999). Tutoring answer
explanations fosters learning with understanding. Proceedings of
Artificial Intelligence in Education, AIED 1999, 199-206.
Aleven, V., McLaren, B.M., Sewall, J., Koedinger, K.R. (2009).
A new paradigm for intelligent tutoring systems: Example-tracing
tutors. International Journal of Artificial Intelligence in
Education, 19, 105-154.
Chi, M.T.H, de Leeuw, N., Chiu, M.H., LaVancher, C.: (1994).
Eliciting self-explanations improves understanding. Cognitive
Scienc,. 18, 439—477.
Devasani, S., Aist, G., Blessing, S. B., & Gilbert, S. (2011).
Lattice-based approach to building templates for natural language
understanding in intelligent tutoring systems. In G. Biswas, S.
Bull & J. Kay (Eds.), Proceedings of the Fifteenth International
Artificial Intelligence in Education Conference (pp. 47-54),
Auckland, NZ. Berlin, Germany: Springer.
Gilbert, S., Blessing, S. B., & Kodavali, S. (2009). The Extensible
Problem-specific tutor (xpst): Evaluation of an api for tutoring on
existing interfaces. In V. Dimitrova et al. (Eds.), Proceedings of
the 14th International Conference on Artificial Intelligence in
Education (pp. 707-709), Brighton, UK. Amsterdam,
Netherlands: IOS Press.
Glass, M. (2001). Processing language input in the CIRCSIM-
tutor intelligent tutoring system. In: Moore, J.D. et al. (eds.),
Artificial Intelligence in Education. pp. 210—221.
Graesser, A.C., Lu, S., Jackson, G.T., Mitchell, H., Ventura, M.,
Olney, A., & Louwerse, M.M. (2004). AutoTutor: A tutor with
dialogue in natural language. Behavioral Research Methods,
Instruments, and Computers, 36, 180-193.
Jordan, P., Rosé, C., & VanLehn, K. (2001) Tools for authoring
tutorial dialogue knowledge. In J. D. Moore, C. L. Redfield, &
W. L. Johnson (Eds.). AI in Education : AI-ED in the Wired and
Wireless Future (pp. 222-233). Amsterdam: IOS Press.
Landauer, T.K., Foltz, P.W., Laham, D. (1998). Introduction to
latent semantic analysis. Discourse Processes. 25, 259-284.
Maloney, J.H., Peppler, K., Kafai, Y., Resnick, M. & Rusk, N.
(2008). Programming by choice: Urban youth learning
programming with scratch. In Proceedings of the 39th SIGCSE
technical symposium on Computer science education.
Murray, T., Blessing, S., & Ainsworth, S. (2003). Authoring
Tools for Advanced Technology Educational Software. Kluwer
Academic Publishers, Dordrecht, The Netherlands.
Pausch, R., Burnette, T., Capeheart, A.C., Conway, M.,
Cosgrove, D., DeLine, R., Durbin, J., Gossweiler, R., Koga, S., &
White, J. (1995). Alice: Rapid prototyping system for virtual
reality. IEEE Computer Graphics and Applications, 15, 8-11.
Wing, J.M. (2006). Computational thinking. Communications of
the ACM, 49, 33-35.

431

