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Abstract 
Using natural language as a way for students to interact with 
an ITS has many advantages. However, creating the 
intelligence with which the tutor evaluates a student’s 
natural language input is challenging. We describe a system, 
ConceptGrid, that allows non-programmers to create the 
instruction for checking natural language input. Three tutor 
authors used the system to develop answer templates for 
conceptual-based questions in statistics. Results indicate 
ConceptGrid is a viable system for non-programmers to use 
to allow students to use natural language to interact with a 
tutor. 

 Introduction   
Allowing a student to enter natural language for their 
responses in an ITS moves the student experience closer to 
one with a human tutor. Natural language is the main way 
human tutors interact with students. It makes sense, then, 
for researchers in ITSs to investigate ways to incorporate 
responses to natural language in their repertory of student 
input. Aleven and his colleagues (Aleven et al., 1999) 
found that students who provided explanations for their 
solution steps in the Geometry Tutor later showed greater 
understanding of the concepts than those students who did 
not, a finding reminiscent of the self-explanation effect 
found in cognitive psychology (Chi et al., 1994). 
 A number of intelligent tutors allow students to enter 
responses in natural language. WHY2-Atlas (Jordan et al., 
2001) represents a physics tutor that facilitates dialogue 
with students concerning conceptual-based physics 
problems. Medical students have used CIRCSIM to 
provide natural language input (Glass, 2001). AutoTutor 
has been deployed in a number of domains to check 
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student’s natural language input (Graesser et al., 2004). 
However, each of these ITSs required significant effort to 
create the information used to check student responses for 
their respective domains. This paper explores a domain-
independent response authoring system usable by non-
programmers.   

The Authoring System Challenge 
A current challenge in ITS systems is developing ways to 
make the authoring process easier (Murray et al., 2003). 
Much time and expertise are required to create these 
systems, which add to the expense and the ability to deploy 
them in a wide variety of contexts. The expertise required, 
particularly the cognitive science and programming 
knowledge, puts the ability to construct even a simple or 
limited ITS out of the ability of even the most dedicated 
instructors or subject matter experts.  
 Researchers have begun to develop systems that allow 
non-programmers, non-cognitive scientists to develop 
ITSs. Aleven and his colleagues (2009) have developed the 
Cognitive Tutor Authoring Tools (CTAT) that allow such 
users to develop the instructional components of an ITS 
(e.g., the hints and just-in-time messages) using a graphical 
user interface. They have met with success in this 
endeavor. In our own work we have worked on the xPST 
system to allow non-programmers to quickly develop an 
ITS in a more text-based format (Gilbert et al., 2009).  
 Allowing students to enter natural language responses 
represents an obstacle to these authoring systems. Systems 
such as WHY2-Atlas and AutoTutor have demonstrated 
their effectiveness, but allowing natural language input 
often involves sophisticated techniques involving machine 
learning. For example, AutoTutor makes use of latent 
semantic analysis (LSA; Landauer et al., 1998) to assist in 
checking student responses. WHY2-Atlas does have an 
authoring tool component that’s usable by non-linguists 
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and reportedly non-programmers, but still has a bit of a 
learning curve (one week of full-time use).  
 Our challenge was to develop an addition to our xPST 
authoring system that would allow instructor-level non-
programmers to create tutoring on natural language input. 
The learning curve for the system needed to be minimal, 
on the order of a couple of hours, while still maintaining a 
strong ability to evaluate student responses. We refer to our 
approach as ConceptGrid. 

The ConceptGrid Approach 
Our goal is to provide evaluation of short-answer style 
questions that may ask the student a definitional style 
question or a simple comparison, rather than evaluation of 
longer (paragraph) answers like AutoTutor or of a 
discursive dialog like WHY2-Atlas. Within our own work, 
both research and teaching, we have developed a need to 
have a tool to check such shorter responses. To achieve 
this goal, ConceptGrid evaluates student input based on the 
presence or absence of concepts in the answer. The tutor 
author defines these concepts by using a browser-based 
interface that allows them to define the textual pattern that 
the concept should follow in the student’s answer. Multiple 
templates for a concept can be defined, to represent the 
multiple ways in which different students might phrase a 
particular concept (see Figure 1). In addition to authoring 
templates for expected correct concepts, tutor authors can 

also develop templates for expected errors so that 
appropriate feedback can be provided in those 
circumstances as well. This template solution was 
chosen to balance the ease of use for the tutor author—it 
seems natural to think of student answers as coming in 
these patterns—versus the power of the system. While 
there are limitations in the expressiveness of these 
templates, and for some inputs they may be cumbersome, 
our belief is that they will prove powerful enough to allow 

for a reasonable evaluation of short (1-2 sentences) student 
answers. The templates are much more powerful than 
simple word matching, but less powerful than techniques 
employed by other tutors that do natural language 
processing. This approach was chosen with the specific 
intent to sacrifice some expressive power in a move 
towards ease-of-use on the flexibility-usability tradeoff.  

 A template contains one or more atomic checktypes. A 
checktype tests for the presence of a particular set of 
words. The current system contains the five checktypes 
seen in Table 1. 

 
Table 1. ConceptGrid checktypes. 
 

Checktype Description 
Almost(n, 
wordList) 

Returns true if the least 
Levenshtein distance between a 
word in wordList and matched 
word is <= n 

Any(m,n) Allows a match of an arbitrary 
sequence of words between m 
and n characters within a 
template, when the words 
themselves are not important  

Exact (wordList) Returns true if a literal word 
match with any of the words in 
wordList is found 

Not(wordList, 
direction) 

Checks to make sure a word in 
wordList does not appear in the 
sequence in the given direction; 
allows for a check of negation 

Synonym(wordList) Uses the WordNet corpus to 
match synonyms, with an implied 
Levenshtein distance of 2 

 
 ConceptGrid allows for the easy creation of these 
concept templates through a web-based GUI (see Figure 
2). Tutor authors can either type a sample student response 
or provide the dimensions of the template to define the 
initial template size. Once defined, rows and columns can 
be added or deleted from the template by clicking the 
appropriate “+” (to add a row or column) or “X” (to delete 
a row or a column). The checktype for a column (i.e., a 
word position in the template) is chosen from the drop-
down menu. The arguments for the chosen concept, if 
needed, is entered to the drop-down’s right, and the 
relevant words are listed beneath the checktype, one per 
row, if there are multiple words that might appear in that 
position. 
 The template that appears in Figure 2 would match such 
student inputs as “True experiments allow for causal 
statements” or “After a true experiment one can make 
statements of causality.” It would not match, “True 
experiments means no causality,” because the “Not” 

Figure 1: The natural language approach of ConceptGrid. 
Expected answers are divided into concepts that may occur in 
any order. The author creates a series of templates to identify 
each concept.  
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checktype checks for negation. Note that these templates 
can match any subpart of the total student input, and do not 
have to match just the whole of the student input. As long 
as the pattern contained within the template matches any 
part of the student input, then that concept is considered to 
have matched. 
 Tutor authors can define as many concept templates as 
needed to adequately check a student response. Once all 
concepts and templates have been defined, the tutor author 
fills out the Feedback Table, a ternary truth table 
specifying feedback to give the students based on their 
input, given the presence or absence of the relevant 
concepts in their answer. For example, consider an answer 
that might be needed as part of a statistics problem, one 
where the student needed to say if the null hypothesis is 
rejected or not, and then provide a related statement of 
significance (e.g., “We should fail to reject the null 
hypothesis. There is not a significant difference in these 
data.”). There are two concepts, one is the rejection of the 
null hypothesis, and one regarding significance. Figure 3 
shows a Feedback Table for this example based on these 
two concepts. 
 Each row in the Feedback Table corresponds to a 
possible state a student answer might be in, given the 
presence of absence of concepts. The green checks in the 

table correspond to when the student input contains that 
concept (present), and the red X’s to when the student 
input does not contain that concept (absent). Clicking on 
these icons cycles between them. There is also a yellow 
hyphen icon to indicate that it does not matter if the 
concept is present or absent for the system to consider if 
the student input matches that state (ignore, or "don't 
care"). For each student answer that uses ConceptGrid, the 
student answer is run through the concepts, and then the 
matching line or lines are found in the Feedback Table to 
provide feedback to the student (perhaps a statement of 
correctness, or maybe a statement indicating that a concept 
is missing or a concept is there but should not be). At this 
point we provide no training or instruction to tutor authors 
concerning what feedback to provide students, but to rely 
on their own pedagogical knowledge. 
 While using ConceptGrid, with its templates, 
checktypes, and ternary logic Feedback Table likely 
requires computational thinking (Wing, 2006) it was 
designed with a GUI in the spirit of visual programming 
tools such as Scratch (Maloney et al., 2008) and Alice 
(Pausch et al., 1995) so that non-programmers might be 
able to use it.  
 We used ConceptGrid to evaluate student responses to a 
conceptual-based statistics question (Devasani et al., 

Figure 2. An example template for the concept "Causality." 

Figure 3. An example Feedback Table. 
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2011). The second author of this paper used ConceptGrid 
to create the templates, and checked the work against a 
corpus of 554 responses provided by 41 students on 6 
different problems (some students had multiple attempts 
per problem). All questions had a similar form, which was 
to provide a conclusion statement to a multiple-step 
hypothesis test problem (e.g., “We fail to reject the null 
hypothesis. There is not a significant difference in empathy 
between males and females.”). The overall accuracy rate 
was 97% (Devasani et al., 2011).  
 We want to further examine the effectiveness of 
ConceptGrid to see if a high accuracy rate was possible 
with non-programming authors and a variety of problems. 
The present study is our first attempt at that endeavor. 

Methods 

Participants 
Two current instructors of a college-level statistics course 
participated as tutor authors for this study. Both have 
taught statistics multiple times in the past. While both have 
Ph.D.’s within psychology, neither had cognitive 
psychology or computer science as their specialty, nor use 
a symbolic processing language like R or command line 
SPSS to perform statistics. Neither received compensation 
for their participation. In addition, the first author of this 
paper provided responses to the questions, serving as an 
intermediate user reference point, as he had never used 
ConceptGrid to score actual student answers. 

Materials and Procedures 
We had the tutor authors create tutoring using ConceptGrid 
around statistics-based content. We constructed a set of 6 
questions that a student halfway through their first 
semester in a statistics course should know. After initial 
construction of the question set, the final set of 6 questions 
was finalized in consultation with the participants to 
confirm that these were questions that most students should 
know. We wanted a set of somewhat easy questions to 
ensure a good pool of answers to check the tutor authors’ 
work against. The final list of 6 questions is shown in 
Table 2. 
 In addition we had the tutor authors create a 
ConceptGrid for a seventh question, one used in the 
previous experiment, where the answer is to write a 
conclusion statement for a hypothesis test (like the 
example given above concerning rejecting the null 
hypothesis). As can be seen, the questions are in roughly 
increasing order of complexity, from one where there is a 
single correct answer, to ones where there are multiple 
parts (i.e., concepts) but limited answers, and ones with 
multiple parts and open-ended phrasings.  

Table 2. Questions used for the study. 
 

Questions 
1. What statistic is the square root of variance? 
2. What are the 3 main measures of central tendency?  
3. What is at least one aspect that differentiates a true 
experiment from a descriptive experiment?  
4. What two things must be true for mean to be 
preferred over mode or median?  
5. What is the difference between nominal and ordinal 
style data?  
6. What does parsimony mean?  
7. What do you conclude based on these results? [this 
came after a hypothesis test had been conducted] 

 
 The college instructors learned about ConceptGrid in 
one 45-min face-to-face training session conducted by the 
first author of this paper. A four-page document was given 
to the instructors that contained an overview of 
ConceptGrid, login procedures for the ConceptGrid 
website, interface instructions on creating concepts and 
using the FeedbackTable, and the list of 7 questions to be 
tutored. The 4-page instruction contained one simple 
ConceptGrid example (one that involved two concepts), 
and during the short training session another example was 
developed. Neither example involved statistical content. 
 In order to test the ConceptGrids created by the tutor 
authors, we needed a corpus of responses to these 
questions. For Question 7 we had the 112 responses 
generated by real students for the previous study. To 
generate responses to the other six questions we had 87 
current students in a first semester college statistics course 
answer all questions using an online form. These students 
were from 5 different classes. The responses from one of 
the classes were given to each participant as they were 
creating their initial ConceptGrids. 
 The participants had 2 weeks to complete their initial 
ConceptGrids after the training session. They were told to 
plan on it taking about 2 hours and were encouraged to 
email or ask any questions they might have as they went 
along. We spent about 10 min with both instructors 
answering questions of both a technical nature (e.g., what 
exactly the argument for Almost means) but also of a more 
conceptual nature (e.g., the best approach for making a 
template, rather to make it more broad or more specific). 
 After completion of their initial set of ConceptGrids, the 
participants’ solutions were tested against the entire corpus 
of student responses. They were provided feedback 
concerning their accuracy rate, and given the text of half 
the student responses their ConceptGrids miscategorized. 
We gave them only half so that they would not be tempted 
to overfit the data. We then gave them two days to modify 
their ConceptGrids to see how much they might improve 
upon their accuracy rate, at which time their ConceptGrids 
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were again tested against the entire corpus. We expected to 
see an overall high accuracy rate, over 90%, but decreasing 
with the increasing level of question complexity. 

Results 
The website kept track of how long participants worked on 
each of their ConceptGrids. The two beginning authors 
spent an average of 1.11 hours editing their first set of 
ConceptGrids. The intermediate author spent 0.39 hours. 
This is the time spent actually editing. The website also 
logged the total amount of time logged in, which would 
account for planning time. Unfortunately, one beginner 
user kept logged in while doing off task behavior, so an 
accurate measure cannot be obtained. For the other two 
users, there is a 2:1 ratio of total time to editing time. 
Precise timing data is not available for the second iteration 
due to a technical issue. Anecdotal evidence indicates users 
spent 45 min on average for this phase. 
 
Table 3. Average accuracy results (percentages). 
 

 
Question 

First 
Iteration 

Second 
Iteration 

Q1 Overall 97.70 99.62 
Q2 Overall 100.0 100.0 
 Concept 1 (“mean”) 100.0 100.0 
 Concept 2 (“median”) 100.0 100.0 
 Concept 3 (“mode”) 100.0 100.0 
Q3 Overall 70.50 77.78 
 Concept 1 (“manipulation”) 71.26 74.33 
 Concept 2 (“control”) 88.12 85.44 
 Concept 3 (“causality”) 98.47 97.70 
Q4 Overall 96.17 96.93 
 Concept 1 (“normality”) 78.16 89.66 
 Concept 2 (“data type”) 96.17 96.17 
Q5 Overall 65.90 67.82 
 Concept 1 (“nominal”) 62.07 70.50 
 Concept 2 (“ordinal”) 65.13 73.18 
Q6 Overall 99.23 98.47 
Q7 Overall 67.86 71.13 
 Concept 1 (“rejection”) 56.85 96.13 
 Concept 2 (“significance”) 63.10 63.99 
Overall 82.98 87.31 

 
 A research assistant scored all the student responses for 
correctness. The first author of this paper also scored all 
the responses. The 7 total discrepancies (1.3% of the 
corpus) were resolved by verbal agreement. After each 
participant indicated he or she was done working on the 
initial ConceptGrid for each question, the ConceptsGrids 
were checked against the student responses. In such a way 
we obtained an accuracy score for each participant, 
indicating the percentage of time his or her ConceptGrids 

correctly rejected and correctly accepted the student 
responses.  Table 3 displays the mean accuracy. The 
Concepts for the overall questions were derived from 
discussions with the participants concerning what a correct 
answer for these questions should contain. 
 Examining individual accuracy results, the two 
beginners scored an overall average of 77.29% and 86.14% 
on the first iteration, and then increased to 84.07% and 
86.61% on the second iteration, respectively. The 
intermediate user went from 85.52% to 91.24%. Questions 
5 and 7 proved most difficult, due to the wide variability of 
student responses. Considering the improvement across all 
of the patterns that the participants authored, where the 
average went from 82.98% to 87.31%, a significant 
difference was observed (t(56) = 2.76, p < .05, d = 0.37). 
 Investigating the actual ConceptGrids themselves, all 
users tended towards short templates. This indicates their 
strategy across questions was to zero in on a particular 
phrase that indicates student understanding and create a 
concept template for that phrase. This makes logical sense 
for some questions where the concept is a single word 
(e.g., all three concepts for Q2), but the participants 
adopted a minimalist approach, to largely successful effect, 
for the other questions as well. The average number of 
atomic checktypes used per concept in the first iteration 
was 2.90, and that decreased slightly to 2.85 in the second 
iteration, though the two beginning users increased their 
average number of checktypes, while the intermediate user 
decreased his. All the different atomic checktypes were 
used at least once, but the Almost and Any checktypes 
were used the most often. The Any checktype is useful 
when two crucial words appear in a concept, but they may 
be separated by an unknown number of words.  
 In informal discussions after the experience, both 
beginning authors indicated that they felt ConceptGrid was 
easy to use, with a short learning curve. The first two 
questions were easy for them, as the data suggest, with the 
others being more challenging. However, once they hit 
upon the proper level of specificity for creating their 
concept templates, the task became much easier. Both saw 
value in the tool, and saw how it could be applied more 
generally. Both also admitted frustration with doing the 
second iteration task, for three different reasons. Due to the 
technical issue and the timing within the semester, the 
amount of time available to perform the edits was short, 
just two days, making it challenging to perform the task. 
Perhaps more importantly though, the feedback given the 
participants was hard to decipher. The feedback took the 
form of a spreadsheet that contained half of their incorrect 
responses. A false positive was indicated by a “1” and a 
false negative was indicated by a “-1.” It was a lot of data, 
and there was no way to get immediate feedback based on 
an existing student corpus as to how good their edits were 
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within the website (they had to wait until the second author 
of this paper could generate the statistics).  

Discussion 
Overall, we were pleased with the result. The final 
accuracy was not above our hoped-for 90% for the 
beginning authors, but the issues we had with the second 
iteration did not help. With the results here and our 
observations from Devasani et al. (2011), experience with 
the concepts and interface results in improved templates. 
Bettering the authoring environment to allow for more 
immediate and easier to interpret feedback as the tutor 
author made edits would assist greatly, for both beginning 
and more advanced authors. We did observe a slight 
decrease in accuracy with increasing complexity, though 
some of the more complex questions enjoyed a high 
accuracy. Also, some concepts enjoyed a nice 
improvement between iterations. In considering these 
differences, and in discussions with the participants, we 
considered these observations and what we could do to 
ensure high success rates in the future. 
 One issue that arose as the participants went from their 
first iteration to their second was that answers that 
previously matched correctly either became false positives 
or false negatives in the second iteration. Part of this was 
beyond the participant’s control. For example, in defining a 
concept for Q6, the one about parsimony, one participant 
used the Synonym atomic checktype with “simplicity” in 
the wordlist. A WordNet synonym for “simplicity” is 
“ease,” and with a Levenshtein distance of 2, several false 
acceptances occurred. One solution here is to make the 
Levenshtein distance a function of the length of the word. 
This suggestion may also be appropriate for the Almost 
atomic checktype, getting rid of one of its numerical 
arguments. The tutor author would then not need to worry 
with it. One of the participants in her initial iteration had 
the argument set high for some of her concepts. 
 Based on our observations and conversations, we are 
now considering two design improvements in addition to 
further usability testing. First is an automatic way to score 
the correctness of ConceptGrids. One could imagine the 
online tool being able to accept a scored set of student 
responses. Once loaded, a ConceptGrid could then be 
scored against it by a simple click of a button, allowing for 
an immediate check to see how a change affected the 
accuracy. Second, once the ConceptGrid has been scored 
against the student input, a better way to present the results 
(the percentages and matches of correct and incorrect 
acceptances and rejections). 
 We plan on using ConceptGrid with a wider set of users 
and domains. We feel it offers a good, domain general, 

solution to checking short natural language answers in an 
ITS environment. 
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