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Abstract  
Intelligent tutoring systems research aims to produce 
systems that meet or exceed the effectiveness of one on one 
expert human tutoring. Theory and empirical study suggest 
that affective states of the learner must be addressed to 
achieve this goal. While many affective measures can be 
utilized, posture offers the advantages of non intrusiveness 
and ease of interpretation. This paper presents an accurate 
posture estimation algorithm applied to a computer
mediated tutoring corpus of depth recordings. Analyses of 
posture and session level student reports of engagement and 
cognitive load identified significant patterns. The results 
indicate that disengagement and frustration may coincide 
with closer postural positions and more movement, while 
focused attention and less frustration occur with more 
distant, stable postural positions. It is hoped that this work 
will lead to intelligent tutoring systems that recognize a 
greater breadth of affective expression through channels of 
posture and gesture. 

Introduction 
One-on-one tutoring provided by an expert human tutor 
has long been recognized as a highly effective scenario for 
learning (Bloom, 1984). Present day research in intelligent 
tutoring systems (ITSs) seeks to produce learning 
experiences approaching or exceeding the effectiveness of 
expert human tutors (D’Mello and Calvo, 2011). In order 
to accomplish this goal, both theory (D. Wood and H. 
Wood, 1996; du Boulay, 2011) and empirical studies 
(Bloom, 1984; Cooper, Arroyo, and Woolf, 2011; D’Mello 
and Graesser, 2010; Lester, McQuiggan, and Sabourin, 
2011; Rodrigo and Baker, 2011) suggest that affective 
states of the learner should be addressed. 

Learners’ affective experience has been fruitfully 
explored by analyzing numerous components of emotional 
expression including facial expression, prosody, 
physiology, and posture (Calvo and D’Mello, 2010; Zeng 
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et al., 2009). Posture offers a significant advantage for 
analysis, as it can be captured non-intrusively, unlike many 
physiological measures. Additionally, compared with 
channels such as facial expressions and prosody, posture 
can be analyzed at a relatively coarse level, offering 
substantial benefits in simplicity and interpretation.  

Posture has been investigated in conjunction with 
various intelligent tutoring environments (Cooper et al., 
2011; D’Mello and Graesser, 2010; Gonzalez-Sanchez et 
al., 2011). These investigations have revealed that posture 
is associated with many learning-centered emotions, such 
as boredom, confidence, confusion, delight, engagement, 
excitement, flow, and frustration. This relationship with 
learning-centered emotions highlights the importance of 
posture in explaining phenomena related to tutoring. 

Prior studies of posture during learning have focused on 
pressure-sensitive seats (Cooper et al., 2011; D’Mello and 
Graesser, 2010; Gonzalez-Sanchez et al., 2011). While 
these devices are non-intrusive, they require the student to 
press physically onto the seat or back of the chair. Video-
based posture analysis has been used to measure 
engagement (Sanghvi et al., 2011). However, the advent of 
low-cost depth sensors, such as the Microsoft Kinect, has 
made it possible to measure posture with far less 
computational effort. While sophisticated techniques exist 
to measure posture and movement in depth video 
(Glowinski et al., 2011; Shotton et al., 2011), these 
techniques require significant development time and model 
training. 

In contrast, this paper presents a simple, highly accurate 
posture estimation technique that can be applied across 
single depth images recorded using a Kinect depth sensor. 
By leveraging regularities in the data, this algorithmic 
posture estimation approach requires no model training and 
little development time. The technique is applied to a depth 
video corpus of computer-mediated human-human tutoring 
in order to automatically identify postural shifts during 
learning. The automatically detected points describe 
learners’ posture as an ordered triple, creating a data set 
that is subsequently compared with post-session surveys 
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for engagement (O’Brien and Toms, 2010) and cognitive 
load (Hart and Staveland, 1988). Analyses reveal that 
patterns of postural movement identified by the algorithm 
are associated with self-reported frustration, focused 
attention, decreased involvement, and disengagement. 
These findings provide new insight into the relevance of 
posture in the affective experience of learners during 
computer-mediated tutoring, and show the potential of 
posture estimation from depth images as a novel tool for 
intelligent tutoring system research.  

Related Work 
Prior investigations of the role of posture in learning have 
provided insight into the relationship between posture and 
affect. Studies of posture using pressure-sensitive chairs 
during interactions with the AutoTutor intelligent tutoring 
system have identified meaningful patterns with learner 
emotions such as boredom, confusion, delight, flow and 
frustration (D’Mello and Graesser, 2010). In boredom, 
students tended to lean backward. With delight and flow, 
the students leaned forward. Similarly, when experiencing 
confusion and frustration, students leaned forward, but at a 
lesser inclination than with delight and flow. In all of these 
affective instances, students were found to have higher 
arousal as expressed through greater pressure exerted on 
the seat. 

In experiments with Wayang Outpost, a mathematics 
intelligent tutoring system for standardized tests, the 
effectiveness of posture as an indicator of affective states 
was explored using pressure-sensitive chairs along with 
facial expression, interface actions, and a pressure-
sensitive mouse. In these studies, posture was found to be 
especially indicative of confidence and excitement (Cooper 
et al., 2011). Also, students in positive states were likely to 
be sitting in the middle of their chairs (Woolf et al., 2009). 

Outside of educational contexts, there have been many 
efforts to understand posture and body movement. Video-
based methods have been explored, such as analyzing 
children’s posture while interacting with a game 
companion robot (Sanghvi et al., 2011). Notably, these 
techniques go beyond detecting where most of the 
subject’s weight is being placed; they may also examine 
angle and curvature of a sitter’s posture (Sanghvi et al., 
2011), as well as movements (Glowinski et al., 2011; 
Sanghvi et al., 2011). 

Low-cost depth sensors have enabled a new set of 
postural analysis techniques (Glowinski et al., 2011; 
Shotton et al., 2011). While techniques developed for non-
depth video may also be adapted to depth recordings 
(Glowinski et al., 2011), approaches based on depth 
representations have emerged with renewed relevance 
(Shotton et al., 2011). In particular, a Kinect-based 

approach to machine learning postural configurations 
across millions of examples has yielded fine-grained, 
robust full or cropped body segmentation (Shotton et al., 
2011). However, a great investment of time and effort 
would be required to replicate such a model. 

This paper reports on a simple posture estimation 
algorithm applied across Kinect depth sensor recordings 
collected during computer-mediated human-human 
tutoring. The algorithmic approach holds significant 
advantages in that it does not require model training, and it 
is highly accurate in the structured scenario of a learner 
interacting at a computer workstation.  

Data 
A computer-mediated human-human tutoring study (N=42) 
was conducted to teach computational thinking through 
introductory Java programming. Students and tutors 
interacted through a web browser interface that provided 
task content, basic programming functionality with the 
capability to compile and run programs interactively, and a 
textual dialogue interface. Each student was assigned one 
of four tutors for a series of six lessons across the semester. 
The lessons were structured around programming tasks 
that mapped to learning objectives covering a set of 
fundamental computational concepts. Tutors guided the 
task progression, and by design, previous tasks could not 
be revisited. Tutoring sessions were limited to a maximum 
length of forty minutes.  

Tutorial interactions were logged to a database, with all 
dialogue messages, programming progress, and interface 
actions recorded. The Kinect depth sensors recorded depth 
and color images at 640x480 pixel resolution. While the 
Kinect sensor is capable of 30 frames per second output, 
we reduced our memory consumption by discarding frames 
for at least 100 milliseconds between each recorded frame 
(effectively 7-8 frames per second). Additional recordings 
were made for skin conductance response and facial 
expression, though those data are not analyzed in this 
paper. Figure 1 shows the research study setup at one of 
four student workstations. An example depth image is 
shown in Figure 2. The depth recordings were started and 
stopped manually. Due to human error, there were depth 
recordings for 33 of 42 subjects in Lesson 1, which 
constitute the data analyzed in this paper. 

Study participants were selected from undergraduate 
students enrolled in an introduction to computing 
environments course for engineering students. They 
received partial course credit for their participation. Prior 
to the first tutoring interaction, students completed a pre-
survey. Before each session, students completed a lesson 
content-based pretest. After each session, the participants 
answered a post-survey and posttest (identical to the 
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pretest). A study post-survey was also given after all 
tutoring sessions were completed. The focus of this paper 
is on the Lesson 1 tutorial interactions and their 
corresponding post-surveys and pre- and posttests.  

 
Figure 1. Workstation with Kinect depth sensor, built-in 

webcam, skin conductance bracelet, and tutoring interface. 

The post-survey items were composed of a modified User 
Engagement Survey (O’Brien and Toms, 2010) with the 
Focused Attention, Endurability, and Involvement 
subscales, and the NASA-TLX scale for cognitive load 
(Hart and Staveland, 1988) which consisted of response 
items for Mental Demand, Physical Demand, Temporal 
Demand, Performance, Effort, and Frustration Level. The 
Perceived Usability, Aesthetics, and Novelty subscales of 
the UES were omitted as they primarily related to 
experience with the interface rather than the task. The UES 
instrument was previously validated for use with a 
cognitively-demanding computerized task (London et al., 
2012). 

 
Figure 2. Depth image from the Kinect depth sensor. 

Posture Estimation Algorithm
A posture estimation algorithm was developed to compute 
posture for a given frame as a triple, (headDepth, 
midTorsoDepth, lowerTorsoDepth). An overview of the 
posture estimation algorithm is shown in Algorithm 1 
below. The measure for headDepth differs from the others 
in that the depth value of the closest pixel in the head 
region is selected. This was done to account for the 
difference between the head, which protrudes forward, and 
the torso, which is often behind the desk and limbs of the 
student. Example output of applying the algorithm to the 
depth image corpus is shown in Figure 3.  

 
Algorithm 1: POSTUREESTIMATION(I) 

 

   input    : a depth image I  
   output  : a triple of posture estimation points  
1   width  width of depth image I; 
2   height  height of depth image I; 
3   bottomRow  height  1; 
4   center  width / 2; 
5   headRow  row of first depth pixel in center column; 
6   midRow  (bottomRow + headRow) / 2; 
7   lowRow  midRow + (bottomRow  headRow) / 2; 
8   sideBound  columns at ± (5% of width) from center; 
9   headBound  rows at ± (5% of height) from headRow; 
10 midBound  rows at ± (5% of height) from midRow;
11 lowBottom  lowRow + (bottomRow  headRow) / 4; 
12 lowTop  lowRow  (5% of height); 
13 headDepth  closest pixel in [sideBound, headBound]; 
14 midTorsoDepth  farthest pixel in [sideBound, midBound]; 
15 lowerTorsoDepth  farthest pixel in [sideBound, lowTop and  

   lowBottom]; 
16 return (headDepth, midTorsoDepth, lowerTorsoDepth); 

 

 
Figure 3. Output of posture estimation algorithm. Circles 
label detected points: (H) headDepth, (M) midTorsoDepth,  

(L) lowerTorsoDepth. 

The output of the posture estimation algorithm was 
examined to determine how often the detected points 
(headDepth, midTorsoDepth, lowerTorsoDepth) coincided 

H 

M 

L 
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with the head, mid torso, and lower torso/waist. Each 
output image was manually inspected and evaluated as 
correct if the points aligned to the targets. The output 
image was classified as erroneous if any of the points did 
not coincide with their target region. The accuracy was 
95.1% over 1,109 depth image snapshots taken at one-
minute intervals across all 33 recorded sessions for 
Lesson 1. The high accuracy of the algorithm is largely due 
to the placement of desk, computer, seat, and Kinect depth 
sensor. By design, the students sat in the middle of the 
depth recording view. Variation of the distance from the 
depth sensor to the student was reduced by similar 
positioning of chairs from the depth camera, with non-
rolling chairs selected to reduce movement. Extraneous 
background pixels were discarded using a distance 
threshold. Despite these efforts, error conditions did occur 
when students shifted their head or torso out of frame or 
covered their torso or waist with their arms and hands. 

Results 
Once the algorithm had identified posture points, the next 
step was to explore whether the postural shifts correlate 
with students’ reports of engagement and cognitive load. 
One frame every one minute during tutoring was labeled 
with its posture triple (headDepth, midTorsoDepth, 
lowerTorsoDepth). These vectors of triples were used to 
compute posture features for each session (Table 1). Three 
significant postural feature categories were identified: 
median distance, minimum distance, and variance of 
distance. The postural features of median distances indicate 
prevailing individual positions across each session. The 
postural features reflecting minimum distances are 
measures of how close the student moved toward the 
tutoring interface. The postural features of variance of 
distances throughout each session indicate the degree of 
postural movement during tutoring. Students self-reported 
engagement and cognitive load in post-session surveys. 

Pearson correlation coefficients were computed between 
the postural features and self-report variables (Table 2). 
Median distances of lowerTorsoDepth (MedLow) and the 
median of all three points averaged at each one-minute 
interval (MedAll) were both negatively correlated with the 
frustration item from the NASA-TLX survey. That is, 
higher MedLow or MedAll occurs with a farther median 
position taken across the session. In this corpus, median 
and average distances were nearly identical. Thus, the 
farther the learners were from the tutoring interface during 
a majority of the session, the less the reported frustration. 

The minimum of headDepth (MinHead) and the 
minimum of all three points averaged at each one-minute 
interval (MinAll) were both negatively correlated with the 
frustration item from the NASA-TLX survey. Higher 

MinHead or MinAll indicates that a learner was farther 
from the sensor in the nearest position they presented 
across the entire session. Thus, a higher MinHead or 
MinAll would occur when a student leaned in less at the 
most extreme forward position during the session, 
corresponding to less reported frustration.  

Table 1. Postural features produced from posture estimation 
algorithm points: headDepth, midTorsoDepth, and 

lowerTorsoDepth. 

Postural 
Feature Description 

MedLow Median value of lowerTorsoDepth 
throughout each session. 

MedAll Median value of the average of 
headDepth, midTorsoDepth, and 
lowerTorsoDepth at each snapshot 
throughout each session. 

MinHead Closest distance of headDepth 
throughout each session. 

MinLow Closest distance of 
lowerTorsoDepth throughout each 
session. 

MinAll Closest distance of the average of 
headDepth, midTorsoDepth, and 
lowerTorsoDepth at each snapshot 
throughout each session. 

VarHead Variance of headDepth distances 
throughout each session. 

VarLow Variance of lowerTorsoDepth 
distances throughout each session. 

VarAll Variance of the average of 
headDepth, midTorsoDepth, and 
lowerTorsoDepth at each snapshot 
throughout each session. 

Table 2. Pearson correlation coefficients (r) between postural 
features and self-report variables. Only significant 

correlations (p<0.05) are shown.  
Postural 
Feature Variable r p 

MedLow Frustration Level -0.536 0.0013 
MedAll Frustration Level -0.409 0.0181 

MinHead Frustration Level -0.497 0.0032 
MinLow Focused Attention 0.362 0.0386 
MinAll Frustration Level -0.444 0.0097 

VarHead Involvement -0.380 0.0294 
VarHead Endurability -0.350 0.0456 
VarHead Overall Engagement -0.354 0.0435 
VarLow Frustration Level 0.527 0.0016 
VarAll Frustration Level 0.556 0.0008 
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The minimum of lowerTorsoDepth (MinLow) was 
positively correlated with the Focused Attention subscale 
of the User Engagement Survey. MinLow quantifies the 
closest that the learner’s lower torso/waist approached the 
tutoring interface. As MinLow increases, the learner was 
farther from the interface in the closest extreme position of 
the lower torso/waist. The farther the student was at 
MinLow, the higher his or her reported focused attention. 

The final results concern variance of the posture 
estimation points. This variance is similar to an aggregate 
quantity of motion (Glowinski et al., 2011) measurement. 
The results indicate that more head movement occurs with 
reports of less involvement, reduced appreciation for the 
tutoring session (lower score on the Endurability scale 
(O’Brien and Toms, 2010)), and reduced engagement 
overall. Greater movement of the lower torso/waist and the 
average of all three posture estimation points also coincide 
with higher reported frustration. Taken as a whole, it 
appears that the more the learners shifted position, the less 
engaged and more frustrated they were. 

Discussion 
The results of the correlation analyses indicate that 
significant relationships hold between posture and reported 
engagement and cognitive load factors. The median and 
minimum results reveal a pattern of less reported 
frustration as learners were farther from the tutoring 
interface. However, there were no significant correlations 
with maximum positions, so the trend does not carry to the 
other extreme. The results related to extremes and median 
of postural position are not readily comparable to past 
findings. For instance, in (Woolf et al., 2009) and 
(D’Mello and Graesser, 2010) the comparisons between 
students’ affective states and posture were carried out at 
time points throughout the tutorial interaction. The results 
described here identify correlations between retrospective 
self-report measures and aggregate posture. However, the 
posture estimation algorithm presented here may be easily 
applied at fine timescale. Thus, future work will allow 
better comparison of the posture estimation algorithm to 
prior results. 

Despite the difficulty of comparison discussed above, it 
is possible to compare postural features based on variance. 
Variance provides insight into postural movement 
throughout the session, unlike extremes or median 
positions. The results of the variance analyses indicated 
that learners who shifted position more reported less 
engagement and more frustration. Within the engagement 
subscales, students reported less involvement and reduced 
appreciation for the tutoring session corresponding to 
greater movement. Previous findings showed that learners 
experiencing affective states produced more movement on 

their pressure-sensitive chairs (D’Mello and Graesser, 
2010; Woolf et al., 2009).  D’Mello and Graesser (2010) 
report that all affective states corresponded with an 
increase in movement compared to neutral. Woolf et al. 
(2009) report that students experiencing the least desirable 
cognitive-affective states of boredom or tiredness produced 
the greatest movement, while frustrated or angry 
experiences produced lesser amounts of chair movement. 
The present study does not include a direct measure of 
boredom, but the relationship between greater postural 
movement and experience of emotion (e.g., frustration) 
appears to hold in this corpus.  
 As shown through these correlation analyses, the posture 
estimation algorithm is a useful tool for investigating 
posture in learning. Additionally, its simplicity affords 
many possibilities for extension to other environments. A 
limitation of the posture estimation algorithm is that it does 
not utilize all of the information that the Kinect depth 
sensor produces. Additional streams of information are 
provided by skeletal tracking, color video, and body 
tracking. Skeletal tracking would be especially useful for 
posture estimation, as a skeletal depth model inherently 
calculates the angles involved in postural configurations. 
The Beta2 version of the Kinect SDK (Microsoft, 2011) 
does allow for skeletal tracking for sitting individuals, but 
it is not robust to occlusion. In our computer-mediated 
tutoring scenario, the desk covers the students’ lower body, 
which prevents initial calibration and degrades the skeletal 
tracking accuracy. In testing, the skeletal tracking was not 
reliable for fine body movements, such as those from a 
seated individual. Given the algorithmic nature of the 
approach described here and its high accuracy within the 
tutoring scenario, it shows promise for use in tutoring.   

Conclusion 
Intelligent tutoring systems research aims to create systems 
that meet or exceed the effectiveness of one-on-one expert 
human tutoring. In order to meet this challenge, it has 
become apparent that both cognitive and affective factors 
need to be addressed. Posture provides a non-intrusive 
view into a learner’s affective state, and has been 
associated with salient emotions such as boredom, 
confidence, confusion, delight, engagement, excitement, 
flow, and frustration. The introduction of low-cost depth 
sensors also enables posture estimation methods that are 
easily developed. This paper reports on a posture 
estimation algorithm and new evidence associating 
postural features with engagement and learners’ affective 
experience. These results show that disengagement and 
frustration coincide with closer postural positions and more 
movement, while focused attention and less frustration 
occur with more distant, stable postural positions. 
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In future work, it will be important to combine the current 
algorithm’s output with additional Kinect data streams of 
color images, skeletal tracking and body tracking. 
Additionally, more sophisticated representations of posture 
may be developed using the current approach as a starting 
point. Improvements may allow differentiation between 
nuanced postural configurations, such as hunched 
shoulders or slouching. Another direction involves 
recognizing finer-grained gestures from naturalistic depth 
video (Mahmoud et al., 2011; Mahmoud and Robinson, 
2011). Algorithms may also be developed to identify 
gestures relevant to learning, which may have their own 
implications for individuals’ cognitive-affective states. 
These lines of investigation can lead to intelligent tutoring 
systems that recognize a greater breadth of affective 
expression through channels of posture and gesture. 
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