

When Planning Should Be Easy:
On Solving Cumulative Planning Problems

Roman Barták, Filip Dvořák, Jakub Gemrot, Cyril Brom, Daniel Toropila
Charles University in Prague, Faculty of Mathematics and Physics, Malostranské nám. 25, 118 00 Praha 1, Czech Republic

name.surname@mff.cuni.cz

Abstract
This paper deals with planning domains that appear in
computer games, especially when modeling intelligent
virtual agents. Some of these domains contain only actions
with no negative effects and are thus treated as easy from
the planning perspective. We propose two new techniques
to solve the problems in these planning domains, a heuristic
search algorithm ANA* and a constraint based planner
RelaxPlan, and we compare them with the state of the art
planners, that were successful in IPC, using planning
domains motivated by computer games.

 Introduction
Though certain planning problems are assumed by the
planning community to be easy for solving, these problems
still appear in many practical applications. Hence it is
useful to have efficient solving approaches for such “easy”
problems. In this paper we will look at planning problems
that appear in some computer games. These problems can
be characterized as cumulative planning problems where
actions have no negative effects. Finding a plan solving
such a problem can indeed be done in polynomial time
(Blum and Furst 1997) but it is more complicated to find
the optimal plan (with the smallest sum of action costs).
 There has been a huge progress in developing automated
planners in recent years so the hope was that the best
planners should be able to solve the above mentioned
“easy” problems. However, our initial experimental
evaluation showed that this is not the case. Hence we
decided to develop specific planners for solving the
cumulative planning problems to demonstrate that the
planning technology is ready to solve such problems. The
first planner we have developed belongs to the category of
heuristic search planners, which is one of the most

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

successful approaches to automated planning in recent
years, at least, if we measure the success via the results of
International Planning Competition (IPC). The second
planner exploits constraint satisfaction technology, which
is not that successful in IPC. This planner was originally
designed just for comparison with the heuristic search
planner but as we will see later, it performs quite well.
 The paper is organized as follows. We will first give the
motivation for studying cumulative planning problems
originated in computer games. Then we will describe two
approaches for solving the planning problem till
optimality, namely a heuristic search algorithm ANA* and
a constraint-based planner RelaxPlan. Finally, we will
experimentally compare these two solving approaches with
three classical planners: LAMA 2011, SelMax, and Fast
Downward: Stone Soup 1 (FDSS1).

Motivation
It is known that planners can be useful for extending
capabilities of intelligent virtual agents (IVAs) and make
them more realistic. The classical example of successfully
used planning techniques is the videogame F.E.A.R.
(Orkin 2006) that uses an ad-hoc STRIPS-like planner to
plan actions for its IVAs. Another example is the video
game Iceblox that can be played by off-the-shelf PDDL-
based planners (Bartheye and Jacopin 2008).
 In this paper we focus on using planning techniques
during the off-line validation of planning scenarios.
Games played from the first or third person perspective,
e.g., Hitman, Metro 2033, are usually split into multiple
stand-alone scenarios that are played in a fixed sequence.
Each scenario can usually be finished in several ways, in
other words, there are multiple plans the player can adopt
to fulfill the scenario. As game environments are getting
increasingly more complex, designers may fail to realize
that the scenario can be finished with simple plans, which

405

Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference

is a thing to avoid in game design, as players may bypass
intended storyline, interesting content, or game events.
Therefore, it is preferable to model every scenario as a
problem domain that describes the environment as well as
available player actions and then ask for “all” possible
ways how to solve the scenario. The resulting plans can be
reviewed and if an unintended solution is discovered, the
designer can alter the environment to prevent adoption of
such a plan. The described approach was used for instance
in the context of Hitman (Pizzi et al. 2008). In this paper
we adopted the idea of finding the shortest plan that may
easily reveal if there are any unintended shortcuts.
 Some games are sequential in terms that the state of the
virtual environment does not reoccur or the reoccurrence
does not bring anything new for the player and therefore it
can be ignored. This means that the vast majority of player
actions can be treated as irreversible, which allows
modeling possible negative effects (and negative
preconditions) of actions as positive effects (and positive
preconditions) by creating new atoms prefixed with “not ”.
This observation greatly simplifies planning problems as it
brings the complexity of search for a satisficing solution
from (possibly) EXPSPACE to PTIME. Briefly speaking,
we can see the problem as a planning problem where
actions have only “add” effects and no “delete” effects. A
typical example is the game where the player collects keys
to open doors and the doors stay opened indefinitely and
the collected keys are never lost. Obviously it is enough to
apply the action of opening particular doors (or collecting a
particular key) at most once. This is the case of cumulative
planning where the main problem is to decide whether or
not a given action is part of the plan.

Solving Cumulative Planning Problems

As described in the previous section, we need to solve
cumulative planning problems where actions have only
positive effects. We use the classical propositional
representation of planning problems so it means that no
atom is ever deleted by executing the plan (atoms are only
added). These problems are known to be solvable in
polynomial time (Blum and Furst 1997). However, we
attempt to find the shortest possible plan which is a
problem that is NP-hard (the Set Cover Problem can be
converted to the cumulative planning problem).
 Though the assumed planning problems should be easier
to solve than most problems from IPC, the initial
experiments with the winning general planners from IPC
showed that these planners have some difficulty with
solving this type of problems. Hence we decided to
implement specific planners for solving the cumulative
planning problems to demonstrate that planning techniques
can indeed be used to solve even large-scale planning
problems in computer games.

Heuristic Search – ANA*
In classical planning, heuristic search is a common and
successful approach to planning. For example, the winners
of the latest IPC 2011, Fast Downward Stone Soup-1
(Helmert et al. 2011) and LAMA 2011 (Richter et al.
2011), are both heuristic search planners. The key
components of a heuristic planner are the search algorithm
and the heuristic estimators.
Heuristics. In our approach for solving the cumulative
planning problems we take an advantage of the significant
research effort invested in developing delete-relaxation
heuristics (Helmert and Domshlak 2009). For our purpose
we have chosen the current state-of-the-art heuristic among
them, hLM-cut (Bonet and Helmert 2010). Due to its
technical complexity, we do not describe the heuristic here,
but for the purpose of this paper we assume that we have
an admissible heuristic for the cumulative planning
problem that can be computed in polynomial time.
Search algorithm. A* is a well-known search algorithm
that always expands the most promising state. Given an
admissible heuristic, A* is optimal, although for practical
problems searching for the optimal solution tends to be
computationally expensive. Anytime Non-parametric A*
algorithm (van der Berg et al. 2011) is an A*-based
algorithm that performs the greediest possible search to
improve the current best solution. We have adapted ANA*
for the cumulative planning.

solveana(s0, Ac, Goal)
 if not goal reachable(s0, Ac, Goal) then return ∅
 landmark actions ← find(s0, Ac, Goal)
 plan ← ∅; G ← |Ac|
 op ← {s0} // open queue
 cl ← ∅ // closed list
 while op ≠ ∅ & not arbitrary break do
 s ← bestana(op); op ← op \ {s}
 h(s) ← hLM-cut(s)
 cl ← cl ∪ {s}
 G ← min(G, g(s) + |relevant actions(s, Actions)|)
 foreach a � applicable relevant actions(s) do
 next ← π(s,a,landmark actions)
 h(next) ← h(s) - cost(all applied actions)
 if is solution(next, Goal) then
 plan ← get plan(next)
 else if not (next ∈ op & g(next) ≥ g(op.next)) and
 not (next ∈ cl & g(next) ≥ g(cl.next)) then
� � � � op�← op ∪ {next}
 end if
 end for
 end while
 return plan

406

Solver. The input of the algorithm is the initial state, the
set of actions and the set of goal atoms. The output is the
shortest plan found in the given time, or an empty set, if
the algorithm did not find any plan. The algorithm is
anytime; it can be terminated arbitrarily by breaking the
main while-loop, in which case it returns the best complete
plan it discovered. The initial step is a goal reachability
check that decides reachability of the goal atoms in
polynomial time. The next step of the algorithm is finding
all landmark actions, which is easy in cumulative planning.
 We initialize the open queue with the initial state, leave
the closed list empty and set the value of the best known
solution to be the total number of actions; since the goal is
reachable, a plan that contains all the actions is a trivial
solution. The main while-loop operates until all the states
in the open queue have been explored or filtered out. Note
that our queue automatically removes the states that cannot
provably improve the best-known solution
(g(s) + h(s) ����. In the first step of the iteration we find
and remove the best state from the open queue according to
the ANA* evaluation of states. At this point we find the
heuristic value for the state according to hLM-cut, add it to
the closed list and improve the upper bound for the best
solution. The relevant action is an action that can be
further added into the plan; in other words, it is an action
whose effects were not yet achieved and at least one of its
effects is either an unachieved goal or a precondition of
another relevant action. Consequently, we can see that we
can construct a plan by adding all relevant actions into the
current plan, which gives us potentially a new reduction of
the upper bound for the cost of the best solution.
 The inner foreach loop expands the current state by the
application of all the actions that are both relevant and
applicable (their preconditions are satisfied in the current
state). The first step of the cycle applies the transition
function π, which is slightly different from the usual
transition function; we first apply the chosen action a, then
we try to apply the largest number of landmark actions we
can. This way we exploit the fact that since a landmark
action must be in every plan exactly once, it does not
matter when we apply it; hence we can apply it the first
time it is possible. Since computing hLM-cut is expensive, in
this step we calculate the heuristic value for the new state
from the value of the parent state by reducing the heuristic
value of the parent state by the costs of all the actions that
were applied in the previous step. Lucky we are, this does
not affect admissibility, since in cumulative planning the
application of an action cannot increase the heuristic value
as it can in classical planning (by the application of an
action we only increase the number of covered atoms, but
we do not lose any). The concept of using a heuristic value
of the parent state is known as deferred evaluation (Richter
and Helmert 2009). Finally, if we have reached the goal,
we record the plan, otherwise we add the state into the

open queue unless there exists either the same state in the
open queue with the same or better cost or the same state is
in the closed list with the same or better cost.
 Since we use an admissible heuristic, the algorithm is
complete; we never discard a state, unless we have either
the same state with a less costly partial plan or a complete
plan whose cost is lower than the admissible estimate of
the state. Further, all the actions applicable for each state
are systematically explored. Therefore, the algorithm
eventually finds one of the optimal solutions.
 The algorithm is sound, which again comes from the
admissibility of the used heuristic and the systematical
exploration of all states that are pruned only once their
lower bound exceeds the global upper bound.

Constraint-based Planner – RelaxPlan
Classical constraint-based planners are based on the idea of
translating the planning problem into a sequence of
constraint satisfaction problems (CSPs) where the i-th CSP
defines the problem of finding a plan of length i (Kautz
and Selman 1992). This incremental approach is not
necessary for cumulative planning problems where we are
deciding “only” whether a given action is or is not part of
the plan. Hence a single CSP can be used to describe the
planning problem. This is similar to the original constraint
model in the CPT planner (Vidal and Geffner 2004).
Constraint Model. In the planning problem we have two
types of objects: atoms and actions. We need to decide
which actions will be in the plan and what the positions
(levels) of actions will be in the plan. By selecting the
actions we are also deciding which atoms will become true
and where in the plan. Obviously, an action can be in the
plan only if all atoms from its precondition become true at
the levels before the level of the action. Similarly, an atom
will become true only if some action having this atom
among its effects is in the plan. Then the atom becomes
true at the level of the action. Hence the levels define the
partial ordering of actions in the plan.
 The above observations lead to the following constraint
model. For each action a we introduce a variable ActLevela
describing the position of the action in the plan. Similarly,
for each atom (predicate) p we introduce PredLevelp. If we
have m actions and n atoms in the problem then the domain
for the Level variables is {0,…, min(m,n)}. Obviously,
there must be at least one action at each level and at least
one atom must become true at each level (if no new atom
becomes true at certain level l then all actions from the
next level can be processed at level l too). Note that we
allow parallel plans so it is possible to have more than one
action at a given level. For atoms we also introduce
variables specifying the action that makes the particular
atom p true: PredActionp. The domain of this variable
contains identifications of actions that have atom p among
their effects. This is similar to the model from (Do and
Kambhampati 2000). For the atoms that are true in the
initial state we set PredLevelp = 0 and PredActionp = 0.

407

Basically, there are two types of constraints connecting the
actions with the atoms:

 PredLevelp = ActLevelPredActiona

 ActLevela > max{ PredLevelp | p ∈ precond(a)}

The first constraint says that the predicate becomes true at
the level where the action giving that predicate is applied.
The second constraint says that an action can be applied at
the level following the level where all atoms from the
action precondition are true. The action can also be applied
later if it is applied at all. To distinguish whether the action
is applied (it is a part of the plan) or not we introduce
auxiliary variable GoalLevel specifying the level where all
the goal predicates are true. Assume that G is a set of goal
atoms, then GoalLevel = max{ PredLevelp | p ∈ G }. Any
action applied before or at the GoalLevel is part of the plan
which is indicated by the Boolean variable Ba:

 Ba = 0 ⇔ GoalLevel < ActLevela.

These Boolean variables also define the objective function
to be minimized (action cost can also be added):

 Obj = Σa Ba.

Search Strategy. We applied the backward planning
approach so we start with the set G of goal atom(s) and for
each goal atom in this set we try to find an action having
this atom among its effects (this action determines the
atom). When this action is decided, its preconditions are
added to the set of goal atoms and the process is repeated
until the set of goal atoms becomes empty. To ensure that
the predicates are not repeatedly added to G we filter out
from G those predicates that have already been processed.

solve(Goals)
 Goals ← filterGoal(Goals)
 if Goals = ∅ then return true
 g ← selectGoal(Goals)
 Actions ← domain(PredActiong)
 while Actions ≠ ∅ do
 a ← selectAction(Actions)
 PredActiong ← a
 if solve(Goals \ {g} ∪ precond(a)) then return true
 un-assign PredActiong
 Actions ← Actions \ {a}
 PredLevelp < ActLevela // C1
 end while
 return fail {remove constraints C1}

The goal atom is selected from the set G of goal atoms
using the first-fail principle (variable selection in a CSP).
In particular, we prefer atoms with the smallest number of
possible determining actions (the domain of variable
PredAction is the smallest one). In case of tie, we prefer
atoms that appear later in the plan (the minimal value in
the domain of variable PredLevel is maximal among all the
atoms). Formally, we select the goal atom:

argmin{ (s,-k) | s = size(PredActioni), k = min(PredLeveli),
i ∈ Goals},

where size(X) is the size of the domain of X and min(X) is
the minimal value in the domain of X.
 When the goal atom p is selected we need to decide the
action determining this goal (value selection in a CSP). We
prefer actions, which are already in the plan, to actions that
have not been decided yet. In case of tie, we prefer actions
that may appear earlier in the plan, that is, actions with the
smallest minimal value in the domain of variable ActLevela.
Finally, in case of tie, we prefer actions with the smallest
number of preconditions. When action a is selected it is
assigned to the variable PredActionp and the atoms from
the precondition of a are added to the set of goal atoms. As
there may be more actions, which give atom p, this step
introduces a choice point. In case of backtracking and
before assigning another action to PredActionp we post a
constraint PredLevelp < ActLevela to ensure that action a
will not give atom p in the alternative search branch (the
option where a gives p has already been explored).
 The reader may notice that we instantiate only the
variables PredAction. This can be done thanks to
maintaining consistency of inequality constraints “<” that
discovers infeasibilities such as A < B < C < A, that is a
cycle of actions. Hence if we decide which actions are
giving which atoms we guarantee that there exists some
allocation of actions to levels that forms a parallel plan.
 Note finally that optimization is realized using the
standard branch-and-bound approach. In particular, when
procedure Solve finishes we set Obj ← min(Obj) which
moves (via constraint propagation) all non-used actions
after GoalLevel, that is, outside the plan. The value of Obj
is then used as a bound when continuing search and
looking for the solution with a smaller value of Obj.

Experimental Results

To compare the presented planning techniques we
generated random problems modeling the problems from
computer games as discussed in the introduction. The
problems can be characterized by parameters (n, m, i, j).
We generate a planning graph with n action layers where
each layer contains 1 to m actions (random distribution)
and each action has i positive preconditions (randomly
selected atoms from the previous state layers) and j
positive effects (randomly generated atoms including those
from the previous state layers). Only the actions in the first
layer contain a single precondition – a special atom start
that forms the initial state. The last action layer contains at
least one action that has a single effect goal. The task is to
select the smallest number of actions that form a plan
achieving the goal atom. Figure 1 shows the structure of
the used planning graph. Though this type of domains
seems very restricted; it suffices to model many planning
problems appearing in computer games.
 We generated 432 instances of random planning
problems with the number of action layers (n) ranging
from 1 to 204. For most problems we used 10 actions per

408

layer (m), with the exception of a few selected
configurations for which we generated instances with 1 to
20 actions per layer. For all generated actions we randomly
selected 1 to 3 atoms as preconditions and 2 to 3 atoms as
effects. All planning problems were generated using the
standard PDDL syntax.

Figure 1. Planning graph structure used in the experiments.

 The experiments ran on Intel Xeon CPU E5335 2.0 GHz
processor with 8GB RAM under Ubuntu Linux 8.04.2
(Hardy Heron). The ANA* planner was implemented in
Java 1.6, the RelaxPlan planner was implemented using the
clpfd library of SICStus Prolog 4.2.0. Because of the big
number of tested problem instances, the time limit for
solving a single planning problem was set to 5 minutes.
 In order to evaluate the performance of the introduced
new planners we decided to compare them to the three
state-of-the-art domain-independent planners that were
successful in IPC 2011. Namely, as we were interested in
finding optimal (shortest) plans, the obvious choice was
the winner of the sequential optimal track, Fast Downward:
Stone Soup 1 (FDSS1) (Helmert et al. 2011), which uses a
portfolio of selected successful planning techniques, such
as BJOLP (Big Joint Optimal Landmark Planner)
(Domshlak et al. 2011), LM-cut (A* with the landmark-cut
heuristics) (Helmert and Domshlak 2009), or M&S-bisim1
and M&S-bisim2 (A* with two different merge-and-shrink
heuristics) (Nissim et al. 2011). Each ingredient of the
portfolio is then assigned a given amount of time limit
based on its performance using the method described in
(Helmert et al. 2011). Both the selected techniques and
their assigned time are derived based on the experiments
with the planning domains used for the IPC. However,
since we were interested in solving the cumulative
planning problems, we felt the urge to compare the
performance also with a planner whose parameters were
not derived based on the IPC domains. Therefore we chose
the third best-performing planner from the IPC 2011 (the
second place was taken by yet another variation of the
FDSS planner), the SelMax planner, which combines two
state-of-the-art admissible heuristics using an online
learning approach (Domshlak et al. 2011). Finally, we used

LAMA 2011 planner (Richter et al. 2011), the winner of
the sequential satisficing track of IPC 2011.
 Table 1 summarizes the results of our experimental
evaluation. As it can be seen, out of the 432 tested
instances the existing state-of-the-art optimal planners,
FDSS1 and SelMax, managed to solve 233 and 235
planning problems, respectively, without providing any
sub-optimal solutions for the unsolved problems. This fact
was the reason to include also the LAMA 2011 planner to
our experiments, which managed to provide a
(sub-)optimal solution for all tested instances, however,
only 64 of them were solved optimally. Nevertheless as the
column Total Cost shows, LAMA 2011 found many
optimal plans, just the proof of optimality was missing. On
the other hand, the first of the newly proposed planners, the
ANA* planner, solved 241 planning problems, while
providing a sub-optimal solutions for all but one testing
instance. The clear winner of our experiments is the
RelaxPlan planner, which solved optimally 313 problems
and moreover it also provided sub-optimal solutions for all
of the instances. Also, it required the least amount of time
necessary to finish the computation. Though ANA*
reached the best total cost of found plans, the differences
between the three best planners are only tiny, which is
interesting especially for LAMA 2011 that provided the
guarantee of optimality only in 64 cases, as opposed to
RelaxPlan which solved optimally 313 instances.

Planner Solved Optimally
Solved

Total
Cost

Total
Time

FDSS1 233 233 - 30.58h
SelMax 235 235 - 17.66h
LAMA 2011 432 64 17768 30.88h
ANA* 431 241 17681 16.70h
RelaxPlan 432 313 17756 11.51h

Table 1. Planner performance comparison for solving 432
random cumulative planning problems.

 Figure 2 depicts the difference between the times needed
to optimally solve the planning problems. For clarity we
only include data for ANA*, RelaxPlan and SelMax
planners (the SelMax planner exhibited the best
performance out of the three existing planners).
 As it can be seen, the new planners not only provide the
combined advantages of modern satisficing and optimal
planners, but also greatly outperform them when solving
cumulative planning problems.

Conclusions

Computer games and digital entertainment provide many
challenges for artificial intelligence and in particular for
planning. Though some planning problems in these areas

409

seem easy, for example the cumulative planning problems,
the current state-of-the-art planners have some difficulties
to solve them. Hence we proposed two new planners for
solving the cumulative planning problems. These planners
are not fine-tuned regarding the implementation but they
are still beating the best planners from IPC when applied to
specific planning problems appearing in certain computer
games. So far we did a somehow restricted experimental
study but the results naturally raise a more general question
– whether the IPC domains examine the planners well in
relation to the problems appearing in practice. We left this
question un-answered, but the results from this paper
suggest that there is indeed a gap between academic
planning techniques and close to real-life problems.

Acknowledgement

Research is supported by the Czech Science Foundation
under the contract P103/10/1287, and by the Grant Agency
of Charles University as projects 306011 and 9710/2011.

References
Bartheye, O. and Jacopin, É. 2008. Connecting PDDL based off
the shelf planners to an arcade game. ECAI Ws on AI in Games.
Blum, A. and Furst, M. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90, 281 300.
Bonet, B. and Helmert, M. 2010. Strengthening Landmark
Heuristics via Hitting Sets. ECAI 2010, IOS Press, 329 334.
Do, M.B. and Kambhampati, S. 2000. Solving planning graph by
compiling it into CSP. AIPS 2000, AAAI Press, 82 91.

Domshlak, C.; Helmert, M.; Karpas, E.; Keyder, E.; Richter, S.;
Röger, G.; Seipp, J. and Westphal, M. 2011. BJOLP: The Big
Joint Optimal Landmarks Planner. IPC 2011, 91 95.
Domshlak, C.; Helmert, M.; Karpas, E. and Markovitch, S. 2011.
The SelMax Planner: Online Learning for Speeding up Optimal
Planning. IPC 2011, 108 112.
Helmert, M. and Domshlak, C. 2009. Landmarks, Critical Paths
and Abstractions: What's the Difference Anyway? ICAPS 2009,
AAAI Press, 162 169.
Helmert, H.; Röger, G.; Seipp, J.; Karpas, E.; Hoffmann, J.;
Keyder, E.; Nissim, R.; Richter, S. and Westphal, M. 2011. Fast
Downward Stone Soup, IPC 2011, 38 45.
Kautz, H. and Selman, B. 1992. Planning as satisfiability. ECAI
1992, 359 363.
Nissim, R.; Hoffmann, J. and Helmert, M. 2011. The Merge and
Shrink Planner: Bisimulation based Abstraction for Optimal
Planning. IPC 2011, 106 107.
Orkin, J. 2006. Three states and a plan: the AI of FEAR. Game
Developers Conference.
Pizzi, D.; Cavazza, M.; Whittaker, A. and Lugrin, J. L. 2008.
Automatic Generation of Game Level Solutions as Storyboards.
AIIDE 2008, AAAI Press, 96 101.
Richter, S. and Helmert, M. 2009. Preferred Operators and
Deferred Evaluation in Satisficing Planning. ICAPS 2009, AAAI
Press, 273 280.
Richter, S.; Westphal, M. and Helmert, M. 2011. LAMA 2008
and 2011, IPC 2011, 50 54.
van den Berg, J.; Shah, R.; Huang, A. and Goldberg, K. 2011.
ANA*: Anytime Nonparametric A*. AAAI 2011, AAAI Press,
105 111.
Vidal, V. and Geffner, H. 2004. Branching and Pruning: An
Optimal Temporal POCL Planner based on Constraint
Programming. AAAI 2004, AAAI Press, 570 577.

Figure 2. Comparison of runtimes (logarithmic scale) for generated cumulative planning problems. X axis represents 432 planning
problems sorted by ANA* solving time (RelaxPlan solving time is used for sorting when ANA* exceeded the time limit), Y axis represents
the runtime in milliseconds required to solve a given planning problem optimally. For the cases when time out (set to 5 minutes) occurred
we used the value of 1.000.000 to depict them, in order to visually separate such cases from the optimally solved instances more clearly.

���

����

������

�������

��������

����������

�� ��� ���� ���� ���� ���� ���� ���� ����

	
�������

�����

�
����

410

