

Effect of Latency on Pursuit Problems

William Birmingham
Shane Rose

Gregory Miller
Matthew Mahan

Grove City College
Computer Science Department

Grove City, PA 16127
wpbirmingham@gcc.edu

Abstract

We model the pursuit problem as a set of distributed agents
communicating over a network subject to latency. Latency
has serious deleterious effects on solving the pursuit prob
lem. In this paper, we present a simple, yet effective way of
dealing with latency that yields very good performance. Our
method disperses predators within a region in which the
prey may move that accounts for network latency.

 Introduction
We are interested in developing distributed AI systems
(DAI) for networked, mobile gaming. In these games, the
computation is distributed among the devices participating
in the game. Each device has its own agent that maintains
its local state, and there is no shared memory. When an
agent needs to communicate state to another agent, such as
updating its position, it sends a message over the Internet.

Because the messages are sent over a real network, there
will be message latency. Consequently, the state that each
device maintains is necessarily out-of-date with respect to
all other devices, since it is receiving a message that is
stale from the perspective of the sender. (Lamport 1978)

In the games that we design, agents must coordinate their
behavior to achieve the game’s objective. Many of the be-
haviors we design into our agents can be modeled, at least
at a simple level, by the pursuit problem, as has been done
by other game AI researchers. (Wittkamp, Barone and
Hingston 2008) (Yannakakis and Hallam 2004) We must
account for latency in the communication among agents.
As we show in this paper, latency has a significantly nega-
tive effect on the performance many algorithms used to
solve the pursuit problem.

Our approach treats all information we receive as stale.
Using the simple ideas of movement radius and dispersion

Copyright © 2012, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

strategy, we direct pursing agents to an area where the prey
must reside, rather than to a specific location. We show our
algorithm is robust under even substantial network latency.

The Pursuit Problem and Solutions
There are many forms of the pursuit problem. Here, we
give a general form for the problem and overview a few
methods of solving it.

We define the pursuit problem as follows: set of prey pi
� P; and, a set of predators rj � R. The objective of the
problem is for one or more predators to capture the prey in
a world while communicating over a network. Capture has
different formulations: either the prey must be surrounded
by predators, or a predator(s) must occupy the same space
as the prey.

The predators and prey are characterized as follows: ve-
locity, location, sight distance, kill distance, size of the
agent, movement algorithm and, frame time (f).

The movement algorithm determines how the predators
and prey determine their next move. There many algo-
rithms for movement that range from pure chase and eva-
sion (Korf 1992), to learning (Denzinger and Fuchs 1995),
to those emphasizing “teamwork” in the context of a game
(Heckel and Youngblood 2010) (Brown, et al. 2005)
(Isaza, et al. 2008). These approaches, however, do not
generally consider delays.

Some researchers have considered the use of particle fil-
ters for estimating positions of characters for a variety of
different game types. (Bererton 2004) (Southey, Loh and
Wilkinson 2007) (Klaas, Southey and Cheung 2005)
(Weber, Mateas and Jhala 2011) (Hladsky and Bulitko
2008) These approaches do not explicitly consider latency
in determining movement.

Frame time is an important parameter that describes how
much real time is allowed for the predator or prey to de-
termine its next move. This time includes all the time for
computation as well as reading and writing the network.

411

Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society Conference

When considered at all in a game, network latency is treat-
ed outside the movement algorithm, where “smoothing” is
used to hide latency.

Generally, f is a lower bound on frame time. Most con-
sole games, for example, try to maintain a sixty frame per
second frame rate, or 16.7 ms per frame. Thus, all compu-
tation and network communication must be done in under
16.7 ms to sustain frame rates. While this is not a hard
bound—slower frame rates are acceptable for brief peri-
ods—maintaining frame rate is a significant concern when
designing an algorithm.

Some algorithms assume that agents “know” something
about the game state that other agents do not, such as the
position of the prey. In these cases, the agent “sends” the
position of the prey to the other agents. However, these da-
ta are not sent via a network connection with its concomi-
tant latency but assume that once data are communicated,
they are instantly and perfectly known to all other agents.
(Korf 1992)

The network is characterized as follows: bandwidth al-
lowed per agent; packet loss; packet latency, clock skew as
seen by an individual agent; and,quality of service. The
bandwidth allowed per agent is typically defined by the
network SDK. In Microsoft’s XNA, data is limited to 8K
bytes per second.

Packet latency, a property of the network, can range into
the 100s of milliseconds. (Claypool and Claypool 2006) At
that delay, nearly six frames have passed (assuming f =
16.7 ms) by the time the network has simply transmitted a
frame. In this paper, we do not study the effects of packet
loss or clock skew, except to lump it into latency (e.g., re-
liable protocols, such as TCP, retransmitted lost packets).

The deadline implied by f together with latency makes it
impossible for agents to fully describe their world models
to all other agents. Since f is fixed, latency must be a pri-
mary consideration in designing algorithms.

The “world” can be characterized as follows: grid or
non-grid, shape of the grid element (e.g., square, hex), size
of the world, shape of the world (e.g., rectangle, octagon),
presence of obstacles, and wrapped or non-wrapped. A
wrapped world means that there are no boundaries at the

end of the world; rather, one “edge” wraps to the corre-
sponding edge on the other side of the world.

The Effect of Latency
For this paper, we cast the pursuit problem as follows. All
agents play using a common world (“map”), which is non-
gridded, obstacle-free, and wrapped. The predators are all
of the same type, and there is a single prey. All agents op-
erate on their own computer and communicate with each
other only via network connections. The game ends when
at least one predator is within the kill radius of the prey.
The network quality of service is similar to UDP.

We allow the predators to coordinate by “announcing,”
i.e., sending a message over the network, the prey position
to each other when the prey is seen. This positional infor-
mation guides other predators to the prey for capture.

A condition of our setup is the presence of latency: every
agent’s model of the world—the locations of other preda-
tors and the prey—is stale. This is significant, since algo-
rithms generally assume that the predators instantly know
the prey’s correct position once it is broadcast. (Korf 1992)
However, stale data gives the prey a significant advantage:
predators move to the position of where the prey was, not
to the prey’s current position.

In Figure 1, we show the experimental effects of laten-
cy on capture. In experiment that produced the data for the
graph, there are three predators and a single prey. The y-
axis shows the number of iterations it takes for a predator
to capture the prey from random initial positions of both
the predators and prey. The x-axis shows the latency in the
network in milliseconds; there is no packet loss in this ex-
periment. Each data point in the graph represents 100 runs
of the pursuit game with the same initial conditions. The
world is a grid of 10x10 units, where a unit is the size of a
predator or prey. When a predator or prey gets to the
“edge” of the world, it wraps. The prey moves at twice the
predator’s speed. Both predators and prey are able to see
three “units” ahead, and the predators announce the posi-
tion of the prey. An iteration consists of all the predators
sensing, then moving followed by the prey sensing and

Figure 1: Effect of latency on capture rate.

412

Figure 3: Effects of latency using target area "doughnut" strategy

0

500

1000

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168

nu
m

be
r o

f i
te

ra
tio

ns

to
 c

ap
tu

re
 p

re
y

Network latency (milliseconds)

Average Iterations Median Iterations

then moving. The prey will move diametrically away from
the closet predator, if the predator is within its sight dis-
tance of three units. Each iteration has f = 16.7 ms.

The data in the graph show that the number of iterations
needed to capture the prey increases as latency increases.
The data show that the increase is nearly an order of mag-
nitude in iterations, both average and median, as latency
increases.

Accounting for Latency
The typical predator “announcement” algorithm has

predators searching some space, through a variety of meth-
ods ranging from random movement to predetermined pat-
terns. Once a predator has “seen” a prey, it announces the
location for the other predators to converge upon. The an-
nouncement is a message with the observed location of the
prey. However, both the location and the convergence
methods have trouble in a network with latency.

The convergence methods, which vary among different
approaches, generally direct the predators to the prey, usu-
ally with a provision to perform additional “looking’ along
the way as the prey will move to avoid the predator. In the
presence of latency, this causes the predators to move to
the least likely prey location. Moreover, if a prey were to
know about network delays, it could use that information
strategically to plot its own moves.

We propose a straightforward extension to the typical
pursuit movement algorithm to account for latency. We
add a movement radius to the algorithm; which is the re-
gion that must contain the prey. If we know the velocity of
the prey—or at least its speed—and the network latency,
we can compute a target area that must contain the prey.

The movement radius is given by: movRadius = (vprey * platen-

cy), where vprey is the prey speed or velocity and platency is the
network latency.

The prey must be contained within this target region, as
the maximum distance that it can move is given by the
magnitude of its velocity times the latency. Thus, given a
predator announcing a position, each predator will compute
a target area and move toward that area. Further, we add a
coordination strategy to the predators, in which they move
to different positions within the target radius. This disper-
sion strategy is critical to ensuring that the predators do not
move to the same position in the target area.

We implemented two dispersion strategies: the Random
Strategy--each predator moves to a random radius (less
than movement radius) and angle displacement within the
region, thus ensuring that the predators randomly cover the
target area. The Doughnut Strategy--each predator moves
to a random location; however, we concentrate the preda-
tors in the outer region of the target area where the radius
varies from the movRadius/2 to the movRadius. Since the
prey will have likely moved away from the announced lo-
cation by the time that the predators arrive.

Figure 2 shows the performance of our algorithm using
the random strategy. The experiments were run under the
same conditions as those in Figure 1, except with the ran-
dom dispersion strategy. The x- axis is latency in ms and
the y-axis is number of iterations necessary to capture the
prey (again with f approximately equal to 16.7 ms). Com-
paring these data to those in Figure 1, this algorithm per-
forms much better than the classic algorithm as latency in-
creases: in general, the number of iterations necessary for
capture decreased by about a factor of five.

Figure 2: Effects of latency using target area “random” strategy.

413

The data for the doughnut strategy are show in Figure 3.
Once again, the x-axis is latency in ms and the y-axis is the
number of iterations necessary to capture the prey (f ap-
proximately equal to 16.7 ms). These experiments were run
under the same conditions as those described in Figure 1,
except that the doughnut strategy was used as the disper-
sion strategy. As observed with the random strategy, the
doughnut strategy reduces the number of iterations neces-
sary to capture the prey at a given network latency.

Conclusion
The coordination of predators in the classic pursuit prob-
lem is strongly dependent on communication among preda-
tors. Any latency in the messages among predators will
cause degradation to coordination strategy performance,
increasing the time it takes to capture a prey.

Rather than converge on the announced location of the
prey, dispersing predators in a circular region around the
prey gives superior performance under even large latency
conditions. Two dispersion methods—random and dough-
nut—give roughly equivalent performance.

The strategies presented in this paper are just a start. We
examined the effects of only two simple dispersion strate-
gies. We have not explored packet loss, nor have we
looked at latency that can vary widely over a short period.
Perhaps most importantly, we need to investigate how ob-
stacles affect the strategies.

Acknowledgments
We thank Stacy Birmingham for many useful comments on
this paper. We acknowledge Grove City College’s Swezey
Fund for Scientific Research and Instrumentation for sup-
porting this research.

References

Bererton, Curt. State estimation for game AI using particle filters.
AAAI Workshop, 2004, 36 40.

Brown, Chris, George Ferguson, Peter Barnum, Bo Hu, and
David Costello. "Quagents: A game platform for intelligent
agents." First Artificial Intelligence and Interactive Digital
Entertainment Conference. American Association for Artificial
Intelligence, 2005. 9 14.

Claypool, Mark, and Kajal Claypool. "Latency and player actions
in online games." Communications of the ACM, November
2006: 40 45.

Denzinger, Jorg, and Matthias Fuchs. "Experiments in learning
prototypical situations for variants of the pursuit game."
PRoceedings of the Second Interantional Conference on
Multiagent Systems. AAAI, 1995. 48 55.

Heckel, Frederick W.P., and G. Michael Youngblood. "Multi
agent coordination using dynamic behavior based subsumption."
Proceedings of the Sixth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment. American
Association of Artificial Intelligence, 2010. 132 137.

Hladsky, Stephen, and Vadim Bulitko. "An evaluation of models
for predicting opponent positions in first person shooter video
game." Proceedings of the IEEE Symposium on Computation
Intelligence and Games. Perth, Australia: IEEE, 2008. 39 46.

Isaza, Alejandro, Jieshan Lu, Vadim Bulitko, and Russel Greiner.
"A cover based approach to multi agent moving target pursuit."
Fourth Artificial Intelligence and Interactive Digital
Entertainment Conference. American Association for Artificial
Intelligence, 2008. 54 59.

Klaas, Mike, Tristram Southey, and Warren Cheung. "Particle
based communication among game agents." First Artificial
Intelligence and Interactive Digital Entertainment Conference.
American Association for Artificial Intelligence, 2005. 75 80.

Korf, Richard E. "A simple solution to pursuit games."
Proceedings of the 11th International Workshop on Distributed
Artificial Intelligence. Ann Arbor, MI, 1992. 183 195.

Lamport, Leslie. "Time, clocks, and the ordering of events in
distributed systems." Communications of the ACM 21, no. 7
(July 1978): 558 565.

Southey, Finnegan, Wesley Loh, and Dana Wilkinson. "Inferring
complex agent motions from partiail trajectory observation."
IJCAI '07: Proceedings of the 20th Internation Joint Conference
on Artificial Intelligence. San Francisco, CA, USA: Morgan
Kaufman, 2007. 2631 2637.

Weber, Ben G., Michael Mateas, and Arnav Jhala. "A particle
model for state estimation in real time strategy games."
Proceedings of the Seven Artificial Intelligence and Interactive
Digital Entertainment Conference (AIIDE 2011). Palo Alto, CA,
USA: AAAI Press, 2011. 103 108.

Wittkamp, Mark, Luigi Barone, and Philip Hingston. "Using
NEAT for continuous adaptation and teamwork formation in
Pacman." IEEE Symposium on Computational Intelligence and
Games (CIG '08). IEEE, 2008. 234 242.

Yannakakis, Georgios N., and John Hallam. "Evolving opponents
for interesting interactive computer games." Edited by S. Schaal,
A Ijspeert, A. Billard, S. Vijayakumar, J. Hallam and J.A.
Meyer. From animals to animates 8: Proceedings of the 8th
International Conferen on Simulation of Adaptive Behavior
(SAB 04). Santa Monica,CA: MIT Press, 2004. 499 508.

414

