
 
Effect of Latency on Pursuit Problems  

William Birmingham 
Shane Rose 

Gregory Miller 
Matthew Mahan 

Grove City College 
Computer Science Department 

Grove City, PA 16127 
wpbirmingham@gcc.edu 

 
Abstract 

We model the pursuit problem as a set of distributed agents 
communicating over a network subject to latency. Latency 
has serious deleterious effects on solving the pursuit prob
lem. In this paper, we present a simple, yet effective way of 
dealing with latency that yields very good performance. Our 
method disperses predators within a region in which the 
prey may move that accounts for network latency.  

 Introduction   
We are interested in developing distributed AI systems 
(DAI) for networked, mobile gaming. In these games, the 
computation is distributed among the devices participating 
in the game. Each device has its own agent that maintains 
its local state, and there is no shared memory. When an 
agent needs to communicate state to another agent, such as 
updating its position, it sends a message over the Internet.  

Because the messages are sent over a real network, there 
will be message latency. Consequently, the state that each 
device maintains is necessarily out-of-date with respect to 
all other devices, since it is receiving a message that is 
stale from the perspective of the sender. (Lamport 1978) 

In the games that we design, agents must coordinate their 
behavior to achieve the game’s objective. Many of the be-
haviors we design into our agents can be modeled, at least 
at a simple level, by the pursuit problem, as has been done 
by other game AI researchers. (Wittkamp, Barone and 
Hingston 2008) (Yannakakis and Hallam 2004) We must 
account for latency in the communication among agents. 
As we show in this paper, latency has a significantly nega-
tive effect on the performance many algorithms used to 
solve the pursuit problem. 

Our approach treats all information we receive as stale. 
Using the simple ideas of movement radius and dispersion 
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strategy, we direct pursing agents to an area where the prey 
must reside, rather than to a specific location. We show our 
algorithm is robust under even substantial network latency. 

The Pursuit Problem and Solutions 
There are many forms of the pursuit problem. Here, we 
give a general form for the problem and overview a few 
methods of solving it. 

We define the pursuit problem as follows:  set of prey pi 
� P; and, a set of predators rj � R. The objective of the 
problem is for one or more predators to capture the prey in 
a world while communicating over a network. Capture has 
different formulations: either the prey must be surrounded 
by predators, or a predator(s) must occupy the same space 
as the prey. 

The predators and prey are characterized as follows: ve-
locity, location, sight distance, kill distance, size of the 
agent, movement algorithm and, frame time (f). 

The movement algorithm determines how the predators 
and prey determine their next move. There many algo-
rithms for movement that range from pure chase and eva-
sion (Korf 1992), to learning (Denzinger and Fuchs 1995), 
to those emphasizing “teamwork” in the context of a game 
(Heckel and Youngblood 2010) (Brown, et al. 2005) 
(Isaza, et al. 2008). These approaches, however, do not 
generally consider delays.  

Some researchers have considered the use of particle fil-
ters for estimating positions of characters for a variety of 
different game types. (Bererton 2004) (Southey, Loh and 
Wilkinson 2007) (Klaas, Southey and Cheung 2005) 
(Weber, Mateas and Jhala 2011) (Hladsky and Bulitko 
2008) These approaches do not explicitly consider latency 
in determining movement. 

Frame time is an important parameter that describes how 
much real time is allowed for the predator or prey to de-
termine its next move. This time includes all the time for 
computation as well as reading and writing the network. 
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When considered at all in a game, network latency is treat-
ed outside the movement algorithm, where “smoothing” is 
used to hide latency. 

Generally, f is a lower bound on frame time. Most con-
sole games, for example, try to maintain a sixty frame per 
second frame rate, or 16.7 ms per frame. Thus, all compu-
tation and network communication must be done in under 
16.7 ms to sustain frame rates. While this is not a hard 
bound—slower frame rates are acceptable for brief peri-
ods—maintaining frame rate is a significant concern when 
designing an algorithm.  

Some algorithms assume that agents “know” something 
about the game state that other agents do not, such as the 
position of the prey. In these cases, the agent “sends” the 
position of the prey to the other agents. However, these da-
ta are not sent via a network connection with its concomi-
tant latency but assume that once data are communicated, 
they are instantly and perfectly known to all other agents. 
(Korf 1992) 

The network is characterized as follows: bandwidth al-
lowed per agent; packet loss; packet latency, clock skew as 
seen by an individual agent; and,quality of service. The 
bandwidth allowed per agent is typically defined by the 
network SDK. In Microsoft’s XNA, data is limited to 8K 
bytes per second. 

Packet latency, a property of the network, can range into 
the 100s of milliseconds. (Claypool and Claypool 2006) At 
that delay, nearly six frames have passed (assuming f = 
16.7 ms) by the time the network has simply transmitted a 
frame. In this paper, we do not study the effects of packet 
loss or clock skew, except to lump it into latency (e.g., re-
liable protocols, such as TCP, retransmitted lost packets). 

The deadline implied by f together with latency makes it 
impossible for agents to fully describe their world models 
to all other agents. Since f is fixed, latency must be a pri-
mary consideration in designing algorithms. 

The “world” can be characterized as follows: grid or 
non-grid, shape of the grid element (e.g., square, hex), size 
of the world, shape of the world (e.g., rectangle, octagon), 
presence of obstacles, and wrapped or non-wrapped. A 
wrapped world means that there are no boundaries at the 

end of the world; rather, one “edge” wraps to the corre-
sponding edge on the other side of the world.  

The Effect of Latency
For this paper, we cast the pursuit problem as follows. All 
agents play using a common world (“map”), which is non-
gridded, obstacle-free, and wrapped. The predators are all 
of the same type, and there is a single prey. All agents op-
erate on their own computer and communicate with each 
other only via network connections. The game ends when 
at least one predator is within the kill radius of the prey. 
The network quality of service is similar to UDP.  

We allow the predators to coordinate by “announcing,” 
i.e., sending a message over the network, the prey position 
to each other when the prey is seen. This positional infor-
mation guides other predators to the prey for capture.  

A condition of our setup is the presence of latency: every 
agent’s model of the world—the locations of other preda-
tors and the prey—is stale. This is significant, since algo-
rithms generally assume that the predators instantly know 
the prey’s correct position once it is broadcast. (Korf 1992) 
However, stale data gives the prey a significant advantage: 
predators move to the position of where the prey was, not 
to the prey’s current position. 

In Figure 1, we show the experimental effects of laten-
cy on capture. In experiment that produced the data for the 
graph, there are three predators and a single prey. The y-
axis shows the number of iterations it takes for a predator 
to capture the prey from random initial positions of both 
the predators and prey. The x-axis shows the latency in the 
network in milliseconds; there is no packet loss in this ex-
periment. Each data point in the graph represents 100 runs 
of the pursuit game with the same initial conditions. The 
world is a grid of 10x10 units, where a unit is the size of a 
predator or prey. When a predator or prey gets to the 
“edge” of the world, it wraps. The prey moves at twice the 
predator’s speed. Both predators and prey are able to see 
three “units” ahead, and the predators announce the posi-
tion of the prey. An iteration consists of all the predators 
sensing, then moving followed by the prey sensing and 

Figure 1: Effect of latency on capture rate. 
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Figure 3: Effects of latency using target area "doughnut" strategy 
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then moving. The prey will move diametrically away from 
the closet predator, if the predator is within its sight dis-
tance of three units. Each iteration has f = 16.7 ms. 

The data in the graph show that the number of iterations 
needed to capture the prey increases as latency increases. 
The data show that the increase is nearly an order of mag-
nitude in iterations, both average and median, as latency 
increases.  

Accounting for Latency 
The typical predator “announcement” algorithm has 

predators searching some space, through a variety of meth-
ods ranging from random movement to predetermined pat-
terns. Once a predator has “seen” a prey, it announces the 
location for the other predators to converge upon. The an-
nouncement is a message with the observed location of the 
prey. However, both the location and the convergence 
methods have trouble in a network with latency. 

The convergence methods, which vary among different 
approaches, generally direct the predators to the prey, usu-
ally with a provision to perform additional “looking’ along 
the way as the prey will move to avoid the predator. In the 
presence of latency, this causes the predators to move to 
the least likely prey location. Moreover, if a prey were to 
know about network delays, it could use that information 
strategically to plot its own moves. 

We propose a straightforward extension to the typical 
pursuit movement algorithm to account for latency. We 
add a movement radius to the algorithm; which is the re-
gion that must contain the prey. If we know the velocity of 
the prey—or at least its speed—and the network latency, 
we can compute a target area that must contain the prey. 

The movement radius is given by: movRadius = (vprey * platen-

cy), where vprey is the prey speed or velocity and platency is the 
network latency. 

The prey must be contained within this target region, as 
the maximum distance that it can move is given by the 
magnitude of its velocity times the latency. Thus, given a 
predator announcing a position, each predator will compute 
a target area and move toward that area. Further, we add a 
coordination strategy to the predators, in which they move 
to different positions within the target radius. This disper-
sion strategy is critical to ensuring that the predators do not 
move to the same position in the target area.  

We implemented two dispersion strategies: the Random 
Strategy--each predator moves to a random radius (less 
than movement radius) and angle displacement within the 
region, thus ensuring that the predators randomly cover the 
target area. The Doughnut Strategy--each predator moves 
to a random location; however, we concentrate the preda-
tors in the outer region of the target area where the radius 
varies from the movRadius/2 to the movRadius.  Since the 
prey will have likely moved away from the announced lo-
cation by the time that the predators arrive. 

Figure 2 shows the performance of our algorithm using 
the random strategy. The experiments were run under the 
same conditions as those in Figure 1, except with the ran-
dom dispersion strategy. The x- axis is latency in ms and 
the y-axis is number of iterations necessary to capture the 
prey (again with f approximately equal to 16.7 ms). Com-
paring these data to those in Figure 1, this algorithm per-
forms much better than the classic algorithm as latency in-
creases: in general, the number of iterations necessary for 
capture decreased by about a factor of five.  

Figure 2: Effects of latency using target area “random” strategy. 
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The data for the doughnut strategy are show in Figure 3. 
Once again, the x-axis is latency in ms and the y-axis is the 
number of iterations necessary to capture the prey (f ap-
proximately equal to 16.7 ms). These experiments were run 
under the same conditions as those described in Figure 1, 
except that the doughnut strategy was used as the disper-
sion strategy. As observed with the random strategy, the 
doughnut strategy reduces the number of iterations neces-
sary to capture the prey at a given network latency.  

Conclusion 
The coordination of predators in the classic pursuit prob-
lem is strongly dependent on communication among preda-
tors. Any latency in the messages among predators will 
cause degradation to coordination strategy performance, 
increasing the time it takes to capture a prey. 

Rather than converge on the announced location of the 
prey, dispersing predators in a circular region around the 
prey gives superior performance under even large latency 
conditions. Two dispersion methods—random and dough-
nut—give roughly equivalent performance.  

The strategies presented in this paper are just a start. We 
examined the effects of only two simple dispersion strate-
gies. We have not explored packet loss, nor have we 
looked at latency that can vary widely over a short period. 
Perhaps most importantly, we need to investigate how ob-
stacles affect the strategies. 
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