

All-Terrain Network Service Robot Based on Tekkostu Framework

Derrick Jones, Ju Wang, John Lewis
Math and Computer Science Department

Virginia State University
1 Hayden Dr

Petersburg, VA 23806

Abstract
We report the design and implement of a land robot whose

Tekkotsu/Create system is modified to support GPS-guided
navigation and radio-sensing based navigation . The project
is a moderate success with both GPS and radio-sensing nav-
igation algorithms achieve similar navigation performance.

1. Introduction
The advances of robotic technology in the past decades
have results in significant increase of its usage throughout
industry and manufacturing. In additional to specialized

accomplish more complicated tasks are attracting more at-
tention. One particular example is land robot system such
as unmanned ground vehicle. The usefulness of land robot
in supporting military applications is obvious, as evident
by the fast adoption of anti-IED robots in military forces.
In civilian world, such robot also proves to be valuable to
perform surveillance and other service.
In this paper, we report the design and implement of a land

Wireless Sensor Network. The project originated from the
need to provide a quick fix to the High Tunnel greenhouse
Wireless Sensor Network at VSU Randolph Farm. The
network was deployed in 2009 to collect critical growth
data in the greenhouse environment. From time to time, the
network would not be accessible due to a failed relay node
or poor signal quality. The robot discussed here would be
used as a mobile service node that could fill the hole in the
network.
The main task is formulated as a guided-navigation prob-
lem: given the rough location of the network outage, navi-
gate the land robot to the problem area to re-connect the
network. Due to the uncertainty of the problem location,
the robot must explore the area to find a perfect relaying
point.

Copyright © 2013, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The robot chassis is built upon a 6-wheel platform. Each
wheel is driven by a gear motor and independently con-
trolled. The low level driver is implemented at a Cyclone II
FPGA to provide a rich set of driving patterns allowing the
robot to maneuver through rugged terrain. High level navi-
gation, as well as communication and task dispatch, is im-
plemented in the Tekkotsu framework.
The rest of the paper is organized as following. Section 2
presents the background and related works. Section 3 pre-
sents the design of the low level driver-chain. Section 4
discusses the navigation algorithm and upper layer soft-
ware architecture. Section 5 presents our preliminary ex-
periment results.

2. Background and Design Overview

The Greenhouse Wireless Sensor Network consists of four
EcoMote sensing nodes and one base station. The sensor
nodes measure the ambient temperature, moisture level,
and soil water content level at several locations inside the
greenhouse. Each sensor node is equipped with a ZigBee
wireless module which allows nodes to exchange data. The
data collected is relayed to the EKO Pro Series gateway,
located in an office about half mile away from the green-
house. Figure 1 shows the data accessed through the em-
bedded web-server at the gateway.

Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference

563

The fundamental architecture of the PatchBot is of the
Tekkostu/Create design. The brain of the robot is based on
Tekkotsu, an open source, event-based architecture. The

Tekkotsu framework support several hardware platforms
with different actuators configuration. The most widely
seen hardware platform is ICreate by iRobot, which fea-
tures two wheels, a rotational disk, and various bumper
sensors. In a pilot study, the Tekkotsu/Create system is
modified to support GPS-guided navigation. The project is
a moderate success with a working GPS navigation algo-
rithm. However it also showed that the iRobot platform is
severely limited in an unpaved environment. Such is one of
the motivations to port the Tekkotsu to a more powerful,
all-terrain platform. The driving platform is more powerful
than the CREATE robot with six gear motors and a high
chassis designed for unpaved terrain. Figure 2 shows the
overall architecture of the system.

The FPGA device generate control signal that turn on/off
motors. Verilog are two standard forms of
hardware design language supported by FPGA. Verilog is
easier to learn then VHDL because it looks like C pro-
gramming in syntax and is widely used in the industry.
The main advantages that Verilog has over other modeling
circuit systems is that is powerful enough to express com-
plex testing procedures without restoring to a different lan-
guage.

3. Driver-Chain Design
Driver chain is the subsystem that interfaces between high
level driving command and the physical actuator (e.g., mo-

tors). This layer could be implemented in many different
ways and there are many off-the-shelf solutions. Most de-
signs use a micro-controller to provide on/off PWM con-

trol signal and power-transistors to energize the motors. In-
stead of using existing micro-controller based design, we
decide to create a new driver chain based on an FPGA de-
vice due to several reasons:

-

-

564

3.1 Functional modules

The robot that is being used has 6 wheels instead of the
standard 4 you might find on an everyday vehicle. This
means that turning will require more precise programming
going to each of the wheels so as not to over/under turn or
get stuck in the process. The following picture details the
modules within the verilog code and shows how the differ-
ent components interact with each other.
After power up, the driver waits for motion commands
from outside world. The part that is illustrated as the USB
driver will receive commands from the upper level control-
ler (Tekkostu). Other control is provided by monitoring
toggle switchers and push buttons on the Cyclone II board.
The supported USB commands use a simple format:

Cmd

code

Cmd

length

Para 1 Para N

For example, the left turn command could be accomplished
by turning the right side wheels and left side wheels at the
opposite direction. With three parameters this command
could be expressed as {LT, 3, 10, 20, 5} where the first pa-
rameter of 10 indicate the speed of the positive turning
wheel, the second parameter (20) indicate the speed of the
negative turning wheel, and the last parameter denote the
duration of this command.

The corresponding driver in Tekkotsu has to initiate specif-
ic behaviors and calibration of the motion parameters. Fur-
ther discussion at the Tekkostu level is provided at section
4.

3.2 Motor Speed Controller

A Pulse Width Modulated motor controller with a propor-
tional closed feedback is implemented. The duty cycle of
the PWM control how much current is allowed to pass
through the motor. However the correlation of the PWM
duty and the motor speed is not fixed. There as well must
be a speed monitor in a field programmable array.

The proportional controller is used to adjust PWM output
so the output speed that is displayed matches the input.
The PWM was created entirely in Verilog, 8 bit switched
were used as controller inputs. Current sensor resistors
were used to measure the actual current that passes through
the motor driver (and motor). The voltage drop on the cur-
rent sensor is AD converted and input to the FPGA. On
the experiment the motor had a 1000 pulse/rotation encod-
er.

4. Navigation Implementation

We now shift our focus to modification in Tekkostu
framework in order to support our mission. The first task is
to port the Tekkotsu software to work with the FPGA-
based driver-chain. The second task discusses a high-level
navigation algorithm that use GPS or network sensing as
the navigation guide. The navigation algorithm guides the
robot to the location of interest, which in our case is a loca-
tion near the failed node. Two navigation algorithms will
be discussed: the first one assumes the GPS ordinance of
the target location is known, and the second algorithm does
not assume any prior knowledge of such. The GPS ordi-
nance of the wireless sensor nodes are documented at net-
work planning stage. Hence the GPS based navigation is
relatively simple as long as the node ID is provided.

4.1 Determinate the Target
A common task in all navigation algorithms is the identifi-
cation of the target node. In order to obtain the failure

-first search must
be carried out at the WSN base station. The search will
start from the base station node, and check if its direct
neighbor is alive or not. If one of the neighbor nodes is
found dead, the search will terminate. Otherwise, all
neighbors will be inserted to a FIFO queue to continue the
search. To determine if a node is alive, one need to query
the local data log maintained at the base station, which
contain all data reported from the network. In normal oper-
ation at our network configuration, each node will report
its sensed data every T=30 seconds.

4.2 GPS based navigation

Once the target GPS is obtained, the navigation algorithm
could be implemented as a feedback algorithm which con-

565

stantly compare the current trajectory of the robot and ad-
just the wheel speed. Let the target coordinate be o=(x,y),

the previous local coordinate be p=(xp, yp), and the current
local coordinate be c=(xc, yc), the navigation algorithm
will estimate the errors of its current setting and adjust the
wheel speed in next cycle of driving.

Algorithm GPS-Nav:

(a)

(b)

(c)

(d)

(e)

(f)

(g)

-

The result of the GPS-based navigation algorithm is given
in Figure 4. The error is the locally measured error com-
pared to the provided GPS location. Each sampling point
represents the measured error of one iteration of algorithm
GPS-Nav. The field measurement indicates that an error
margin of 20 meter is normal. The data suggested that GPS
navigation is able to could accomplish acceptable naviga-
tion accuracy for our application.

-

4.3 Network sensing based navigation

When the target node GPS coordinate is not available,
which is likely the case when large number of nodes are
deployed, robot navigation must rely on the network topol-
ogy and sensing the radio signal strength from node trans-
missions within the range of the PatchBot.
Network sensing utilizes the received signal strength indi-
cator (RSSI) field in each received packet. RSSI measures
the power of the signal at the receiver and based on the
known transmit power, the effective propagation loss can
be calculated. RSSI is inversely proportional to the dis-
tance power , where d is the distance to the signal source
and n>2 is the power factor. If the transmitting wireless
sensor node is within the communication range of the ro-

bot, the gradient of RSSI between the robot and the signal
source (target wireless sensor) is calculated and used as the
driving direction. If the signal source can be hear from
multiple (neighboring) nodes, the location could be trian-
gulated in a similar manner as localizing mobile phone in
cellular network (Ahmed 2005, Bachrach 2005). At high

0

0.003

0.006

0.009

0.012

0.015

0 15 30 45 60 75 90 105

Target Location 2
errors (in kilo meters) WSNtopo g; // global network topology

Node b; // base station node
Log log; // accumulated data log
Node FindFailedNode()
{

Queue q;
q.enqueue(b);
while(!q.empty())
{
 Node x = q.dequeue();
 Bool alive = Log.checkalive(x, T); // check if

x reported
 // data in the last T seconds
 If (alive){
 for each node y neighboring with x,
 q.enqueue(y);
]else{
 return x; // find our failed node
 }
}

566

level description, this could be done through the following
three steps:

(1)

(2)

(3)

Here node is a node that neighbors the failed node,
is the RSSI measurement between the robot and j,

and is the RSSI measurement between the failed
node and j.
Note that is history data from the base station log
while is the realtime measurement as the robot navi-
gating toward the target. The collaborative nodes enables
sensor nodes to accurately estimate their locations by using
known beacon locations that are several hops away. We are
still conducting field test for this algorithm. However the
simulation results based on actual field RSSI data are pre-
sented here. The worst case error is 17 meters from the ac-
tual location.

5. Conclusion

A field robot to reconnect a broken wireless sensor net-
work is implemented based on Tekkostu framework and a
six wheel chassis. The low level driver chain is presented.
Two navigation algorithms are implemented, with one al-
gorithm based on GPS coordinate and the other rely on

network sensing. Both algorithms demonstrate satisfactory
navigation accuracy for our task.

References
T. Oka, M. Inaba and H. Inoue, 1997, Describing a Modular Mo-
tion System based on a Real Time Process Network Model, in
Proceedings of the 1997 IEEE/RSJ International Conference on
Intelligent Robots and Systems.
Tekkotsu Wiki: Main Page,
http://wiki.tekkotsu.org/index.php/Main_Page.
Cyclone II FPGA Starter Development Board Reference,
http://www.altera.com/literature/lit-cyc2.jsp
Are Military Bots the Best Way to Clear Improvised Explosive
Devices?
http://www.scientificamerican.com/article.cfm?id=robot-ied-
clearance.
 Frederic G. Snider, R.P.G., GPS: Theory, Practice and Applica-
tions, Part I, http://www.PDHonline.org.
A. A. Ahmed, H. Shi, and Y. Shang, 2005, Sharp: A new ap-
proach to relative localization in wireless
Proceedings of IEEE ICDCS
J. Bachrach and C. Taylor, 2005, Localization in Sensor Net-
works, in Handbook of Sensor Networks: Algorithms and Archi-
tectures.
Sebastian Thrun, Dieter Fox, Wolfram Burgard, Frank Dellaert,
2001, Robust Monte Carlo localization for mobile robots, Artifi-
cial Intelligence: 128, 99 141.
Ndjeng, A.N. 2007, A Multiple Model Localization System for
Outdoor Vehicles, in Proceeding of Intelligent Vehicles Sympo-
sium.

0
0.003
0.006
0.009
0.012
0.015
0.018

0 15 30 45 60 75 90 105

Network Sensing based
Navigation

567

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5229
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5229
http://www.altera.com/literature/lit-cyc2.jsp
http://www.scientificamerican.com/artic
http://www.pdhonline.org/
http://www.sciencedirect.com/science/article/pii/S0004370201000698
http://www.sciencedirect.com/science/article/pii/S0004370201000698
http://www.sciencedirect.com/science/article/pii/S0004370201000698
http://www.sciencedirect.com/science/article/pii/S0004370201000698
http://www.sciencedirect.com/science/journal/00043702
http://www.sciencedirect.com/science/journal/00043702
http://www.sciencedirect.com/science/journal/00043702/128/1
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ndjeng,%20A.N..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4290054
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4290054

