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Abstract 
We report the design and implement of a land robot whose 

Tekkotsu/Create system is modified to support GPS-guided 
navigation and radio-sensing based navigation . The project 
is a moderate success with both GPS and radio-sensing nav-
igation algorithms achieve similar navigation performance. 

1. Introduction   
The advances of robotic technology in the past decades 
have results in significant increase of its usage throughout 
industry and manufacturing. In additional to specialized 

accomplish more complicated tasks are attracting more at-
tention. One particular example is land robot system such 
as unmanned ground vehicle. The usefulness of land robot 
in supporting military applications is obvious, as evident 
by the fast adoption of anti-IED robots in military forces. 
In civilian world, such robot also proves to be valuable to 
perform surveillance and other service.  
In this paper, we report the design and implement of a land 

 
Wireless Sensor Network. The project originated from the 
need to provide a quick fix to the High Tunnel greenhouse 
Wireless Sensor Network at VSU Randolph Farm. The 
network was deployed in 2009 to collect critical growth 
data in the greenhouse environment. From time to time, the 
network would not be accessible due to a failed relay node 
or poor signal quality. The robot discussed here would be 
used as a mobile service node that could fill the hole in the 
network.  
The main task is formulated as a guided-navigation prob-
lem: given the rough location of the network outage, navi-
gate the land robot to the problem area to re-connect the 
network. Due to the uncertainty of the problem location, 
the robot must explore the area to find a perfect relaying 
point.  
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The robot chassis is built upon a 6-wheel platform. Each 
wheel is driven by a gear motor and independently con-
trolled. The low level driver is implemented at a Cyclone II 
FPGA to provide a rich set of driving patterns allowing the 
robot to maneuver through rugged terrain. High level navi-
gation, as well as communication and task dispatch, is im-
plemented in the Tekkotsu framework.  
The rest of the paper is organized as following. Section 2 
presents the background and related works. Section 3 pre-
sents the design of the low level driver-chain. Section 4 
discusses the navigation algorithm and upper layer soft-
ware architecture. Section 5 presents our preliminary ex-
periment results. 
 

2. Background and Design Overview 

The Greenhouse Wireless Sensor Network consists of four 
EcoMote sensing nodes and one base station. The sensor 
nodes measure the ambient temperature, moisture level, 
and soil water content level at several locations inside the 
greenhouse. Each sensor node is equipped with a ZigBee 
wireless module which allows nodes to exchange data. The 
data collected is relayed to the EKO Pro Series gateway, 
located in an office about half mile away from the green-
house. Figure 1 shows the data accessed through the em-
bedded web-server at the gateway. 
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The fundamental architecture of the PatchBot is of the 
Tekkostu/Create design. The brain of the robot is based on 
Tekkotsu, an open source, event-based architecture. The 

Tekkotsu framework support several hardware platforms 
with different actuators configuration. The most widely 
seen hardware platform is ICreate by iRobot, which fea-
tures two wheels, a rotational disk, and various bumper 
sensors. In a pilot study, the Tekkotsu/Create system is 
modified to support GPS-guided navigation. The project is 
a moderate success with a working GPS navigation algo-
rithm. However it also showed that the iRobot platform is 
severely limited in an unpaved environment. Such is one of 
the motivations to port the Tekkotsu to a more powerful, 
all-terrain platform. The driving platform is more powerful 
than the CREATE robot with six gear motors and a high 
chassis designed for unpaved terrain. Figure 2 shows the 
overall architecture of the system. 
 
The FPGA device generate control signal that turn on/off 
motors. Verilog are two standard forms of 
hardware design language supported by FPGA. Verilog is 
easier to learn then VHDL because it looks like C pro-
gramming in syntax and is widely used in the industry.  
The main advantages that Verilog has over other modeling 
circuit systems is that is powerful enough to express com-
plex testing procedures without restoring to a different lan-
guage.  
 

3. Driver-Chain Design 
Driver chain is the subsystem that interfaces between high 
level driving command and the physical actuator (e.g., mo-

tors). This layer could be implemented in many different 
ways and there are many off-the-shelf solutions. Most de-
signs use a micro-controller to provide on/off PWM con-

trol signal and power-transistors to energize the motors. In-
stead of using existing micro-controller based design, we 
decide to create a new driver chain based on an FPGA de-
vice due to several reasons: 
 

-
 

 
 

 

-  
 

 

 

 

564



3.1 Functional modules 

The robot that is being used has 6 wheels instead of the 
standard 4 you might find on an everyday vehicle. This 
means that turning will require more precise programming 
going to each of the wheels so as not to over/under turn or 
get stuck in the process.  The following picture details the 
modules within the verilog code and shows how the differ-
ent components interact with each other. 
After power up, the driver waits for motion commands 
from outside world. The part that is illustrated as the USB 
driver will receive commands from the upper level control-
ler (Tekkostu). Other control is provided by monitoring 
toggle switchers and push buttons on the Cyclone II board. 
The supported USB commands use a simple format: 

Cmd 

code 

Cmd 

length 

Para 1  Para N 

 
For example, the left turn command could be accomplished 
by turning the right side wheels and left side wheels at the 
opposite direction. With three parameters this command 
could be expressed as {LT, 3, 10, 20, 5} where the first pa-
rameter of 10 indicate the speed of the positive turning 
wheel, the second parameter (20) indicate the speed of the 
negative turning wheel, and the last parameter denote the 
duration of this command.  
 
The corresponding driver in Tekkotsu has to initiate specif-
ic behaviors and calibration of the motion parameters. Fur-
ther discussion at the Tekkostu level is provided at section 
4. 
 
3.2 Motor Speed Controller 

 
A Pulse Width Modulated motor controller with a propor-
tional closed feedback is implemented. The duty cycle of 
the PWM control how much current is allowed to pass 
through the motor. However the correlation of the PWM 
duty and the motor speed is not fixed. There as well must 
be a speed monitor in a field programmable array.   
 
The proportional controller is used to adjust PWM output 
so the output speed that is displayed matches the input. 
The PWM was created entirely in Verilog, 8 bit switched 
were used as controller inputs.  Current sensor resistors 
were used to measure the actual current that passes through 
the motor driver (and motor). The voltage drop on the cur-
rent sensor is AD converted and input to the FPGA.   On 
the experiment the motor had a 1000 pulse/rotation encod-
er.   
 

4. Navigation Implementation 

We now shift our focus to modification in Tekkostu 
framework in order to support our mission. The first task is 
to port the Tekkotsu software to work with the FPGA-
based driver-chain. The second task discusses a high-level 
navigation algorithm that use GPS or network sensing as 
the navigation guide. The navigation algorithm guides the 
robot to the location of interest, which in our case is a loca-
tion near the failed node.  Two navigation algorithms will 
be discussed: the first one assumes the GPS ordinance of 
the target location is known, and the second algorithm does 
not assume any prior knowledge of such. The GPS ordi-
nance of the wireless sensor nodes are documented at net-
work planning stage. Hence the GPS based navigation is 
relatively simple as long as the node ID is provided. 
 
4.1 Determinate the Target  
A common task in all navigation algorithms is the identifi-
cation of the target node. In order to obtain the failure 

-first search must 
be carried out at the WSN base station. The search will 
start from the base station node, and check if its direct 
neighbor is alive or not. If one of the neighbor nodes is 
found dead, the search will terminate. Otherwise, all 
neighbors will be inserted to a FIFO queue to continue the 
search. To determine if a node is alive, one need to query 
the local data log maintained at the base station, which 
contain all data reported from the network. In normal oper-
ation at our network configuration, each node will report 
its sensed data every T=30 seconds. 
 
4.2 GPS based navigation 

Once the target GPS is obtained, the navigation algorithm 
could be implemented as a feedback algorithm which con-
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stantly compare the current trajectory of the robot and ad-
just the wheel speed. Let the target coordinate be o=(x,y), 

the previous local coordinate be p=(xp, yp), and the current 
local coordinate be c=(xc, yc), the navigation algorithm 
will estimate the errors of its current setting and adjust the 
wheel speed in next cycle of driving.  
 
Algorithm GPS-Nav: 

(a)  

 

(b)  
 

(c)  
 

(d) 
 

 
(e)  

 
(f) 

 
(g) 

-  
 

The result of the GPS-based navigation algorithm is given 
in Figure 4. The error is the locally measured error com-
pared to the provided GPS location. Each sampling point 
represents the measured error of one iteration of algorithm 
GPS-Nav. The field measurement indicates that an error 
margin of 20 meter is normal. The data suggested that GPS 
navigation is able to could accomplish acceptable naviga-
tion accuracy for our application. 

 

-  

4.3 Network sensing based navigation 

When the target node GPS coordinate is not available, 
which is likely the case when large number of nodes are 
deployed, robot navigation must rely on the network topol-
ogy and sensing the radio signal strength from node trans-
missions within the range of the PatchBot.  
Network sensing utilizes the received signal strength indi-
cator (RSSI) field in each received packet. RSSI measures 
the power of the signal at the receiver and based on the 
known transmit power, the effective propagation loss can 
be calculated. RSSI is inversely proportional to the dis-
tance power , where d is the distance to the signal source 
and n>2 is the power factor. If the transmitting wireless 
sensor node is within the communication range of the ro-

bot, the gradient of RSSI between the robot and the signal 
source (target wireless sensor) is calculated and used as the 
driving direction. If the signal source can be hear from 
multiple (neighboring) nodes, the location could be trian-
gulated in a similar manner as localizing mobile phone in 
cellular network (Ahmed 2005, Bachrach 2005). At high 
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errors (in kilo meters)  WSNtopo g; // global network topology  

Node b;        // base station  node 
Log   log;     //  accumulated data log  
Node FindFailedNode() 
{ 

Queue q; 
q.enqueue(b); 
while(!q.empty()) 
{ 
 Node x = q.dequeue(); 
 Bool alive = Log.checkalive(x, T);  // check if 

x reported 
     // data in the last T seconds 
 If (alive){ 
  for each node y neighboring with x, 
  q.enqueue( y); 
 ]else{ 
  return x; //   find our failed node 
 } 
} 
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level description, this could be done through the following 
three steps: 

(1) 
 

(2) 

 
(3) 

 
 

Here node  is a node that neighbors the failed node, 
is the RSSI measurement between the robot and j, 

and is the RSSI measurement between the failed 
node and j.  
Note that is history data from the base station log 
while  is the realtime measurement as the robot navi-
gating toward the target. The collaborative nodes enables 
sensor nodes to accurately estimate their locations by using 
known beacon locations that are several hops away. We are 
still conducting field test for this algorithm. However the 
simulation results based on actual field RSSI data are pre-
sented here. The worst case error is 17 meters from the ac-
tual location. 
 

 

 

 

5. Conclusion 

A field robot to reconnect a broken wireless sensor net-
work is implemented based on Tekkostu framework and a 
six wheel chassis. The low level driver chain is presented. 
Two navigation algorithms are implemented, with one al-
gorithm based on GPS coordinate and the other rely on 

network sensing. Both algorithms demonstrate satisfactory 
navigation accuracy for our task. 
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