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Abstract

Spatial and temporal reasoning is a crucial task for cer-
tain Artificial Intelligence applications. In this context,
and since two decades, various formalisms representing
the information through qualitative constraint networks
(QCN) have been proposed. Given a QCN, the main
two problems that are facing researchers are: deciding
whether this QCN is consistent or not, and, the minimal
labeling problem. In this paper, we propose an efficient
algorithm aiming at solving the minimal labeling prob-
lem. This algorithm is based on subclasses of relations
for which the property of �-consistency implies the min-
imality of the QCN.

Introduction
In past, numerous qualitative calculi (Ligozat and Renz
2004) have been proposed to reason about temporal or spa-
tial information. A qualitative calculus uses particular ele-
ments for representing the spatial or temporal entities and
considers relations between these elements to constrain the
relative positions of these elements. Particular kind of con-
straint satisfaction problems called qualitative constraint
networks (QCN in short) can be used to represent all the
temporal/spatial information of a system. A QCN allows to
represent the possible configurations of temporal or spatial
entities by specifying for each couple of entities (for the bi-
nary case) a set of possible relations among the base rela-
tions provided by the qualitative formalism in consideration.
Each base relation corresponds to a particular relative posi-
tion between two elements. Allen’s calculus (Allen 1981)
and RCC (Region Connection Calculus) (Randell, Cui, and
Cohn 1992) are certainly the best known of the qualitative
calculi respectively for temporal reasoning and spatial rea-
soning.

Given a QCN, two main problems may arise: the consis-
tency problem and the minimal labeling problem. In the first
problem, the main objective is to find if a solution of the
QCN does exist or not. The second problem consists of de-
termining all the feasible base relations (i.e. the base rela-
tions participating at least to one solution) for each of these
constraints. For most of the qualitative formalisms, these
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two problems are in general NP-hard (Liu and Li 2012). For
these formalisms, some studies have led to the characteri-
zation of tractable fragments, particularly, of subclasses for
which these problems are polynomial problems.

In this paper, we are concerned by solving the minimal la-
beling problem (MLP in short) in a pratical way. This prob-
lem can be found for example in natural language processing
applications, where certain spatial or temporal knowledge
are acquired by manual annotation where other knowledge
are inferred through an automatic reasoning mechanism.

A naive method to solve MLP consists of testing in an it-
erative way the feasibility of every base relation composing
the constraints of the QCN through the use of a method that
solves the consistency problem. For this, in a first step, the
constraint containing the base relation to be tested is sub-
stituted by the singleton relation singleton composed of this
base relation. In a second stage, the consistency test of the
obtained QCN is realized. The detection of the consistency
(resp. inconsistency) of the QCN allows to affirm that the
base relation is feasible (resp. unfeasible). It is clear that in-
versely, the consistency problem can be solved through the
resolution of the minimal labeling problem.

In the literature, we can note that the consistency prob-
lem has got much more attention than the minimal label-
ing problem. It is certainly in part explained by the fact
that, as we have just seen it, these problems are equiva-
lent under polynomial Turing reductions. Among the most
efficient approaches aiming to solve the consistency prob-
lem of a QCN, one approach (Nebel 1996) consists of a
backtrack search combining a splitting of the constraints
into sub-relations of a tractable subclass and a filtering of
the constraints realized by the weak composition method.
The splitting of the selected constraint into sub-relations be-
longing to a tractable subclass in each step of the search
allows to minimize the width of the search tree. The cal-
culation of the closure by weak composition, also called
path-consistency method, removes some unfeasible base re-
lations through the operation of weak composition to ob-
tain an equivalent �-consistent sub-QCN and consequently,
allows to reduce the search space similarly. Provided that
every non trivially inconsistent and �-consistent QCNs de-
fined by relations of the used tractable subclass are consis-
tent QCNs, this method is complete. This global approach
can be enhanced under certain conditions, by using tree
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decompositions for example (Chmeiss and Condotta 2011;
Sioutis and Koubarakis 2012), or also, by using concepts
such as the eligible constraints (Condotta, Ligozat, and
Saade 2007).

By checking the methods based on the above mentioned
approach, we can observe that the detection of the consis-
tency of a QCN is done by the characterization of one of its
�-consistent sub-QCN (i.e. one of its �-consistent sub-QCN
closed by weak composition) defined by some relations of
the used tractable subclass. Furthermore, if for this tractable
subclass every �-consistent QCN is minimal, we can con-
clude that this sub-QCN is uniquely formed by feasible base
relations. Starting from this, we define and study in this pa-
per an efficient algorithm, called MinimizeSDCM, to solve
the minimal labeling problem of a QCN.

The next section is devoted to reminders concerning
QCNs. In the third section we present and study the algo-
rithm MinimizeSDCM. After considering a running example
of this algorithm, we report some experimental results. Fi-
nally, we conclude and give some perspectives of this work.

Preliminaries
A (binary) temporal or spatial qualitative calculus is based
on a finite set B of base relations on a domain D. The el-
ements of D represent temporal or spatial entities, and the
elements of B represent all possible configurations between
two entities. B forms a partition of D × D, and it contains
the identity relation Id on D, and is closed under the con-
verse operation (−1). A (complex) relation is the union of
some base relations and is represented by the set contain-
ing them. Hence, the set 2B will represent the set of re-
lations. 2B is equipped with the usual set-theoretic opera-
tions (union and intersection), the converse operation and
the weak composition operation. The converse of a relation
r ∈ 2B, denoted by r−1, is the union of the converses of
the base relations contained in r. The weak composition op-
eration denoted by � is defined by: ∀a, b ∈ B, a � b =
{c ∈ B : ∃x, y, z ∈ D | x a z ∧ z b y ∧ x c y};
∀r, s ∈ 2B, r � s =

⋃
a∈r,b∈s{a � b}. Note that for some

calculi, r � s is identical to the usual relational composition
r ◦ s = {(x, y) ∈ D× D : ∃z ∈ D | x r z ∧ z s y}.

As illustration, the Interval Algebra (IA) (Allen 1981)
is a temporal qualitative calculus whose domain is the set
DIA = {(x−, x+) ∈ Q×Q : x− < x+} since tem-
poral entities are represented by intervals of the rational
line. The set of base relations of this calculus is the set
BIA = {eq, p, pi,m,mi, o, oi, s, si, d, di, f, fi}. These thir-
teen binary relations represent all the orderings of the four
endpoints of two intervals (see Figure 1(a)).

In what follows, we consider B as a set of base relations
of a qualitative calculus. A Qualitative Constraint Network
(QCN) is a pair composed of a set of variables and a set of
constraints. Each variable represents an entity and each con-
straint represents a set of possible qualitative configurations
between two variables. Formally, a QCN is defined as fol-
lows:

Definition 1 A QCN is a pair N = (V,C) where: V is a
non empty finite set of variables; C is a mapping that as-
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Figure 1: (a) The base relations of IA, (b) the interval lattice.

sociates a relation C(v, v′) ∈ 2B with each pair (v, v′) of
V × V . C is such that C(v, v) ⊆ {Id} and C(v, v′) =
(C(v′, v))−1 for every v, v′ ∈ V .

In the sequel, given a QCN N = (V,C) and v, v′ ∈ V ,
N [v, v′] will also denote the relation C(v, v′). Given a set of
variables V , ⊥V will denote the particular QCN where each
constraint between each pair of variables (v, v′) ∈ V × V is
defined by the empty relation ∅. Given a QCN N = (V,C)
we have the following definitions: A partial solution of N
on V ′ ⊆ V is a mapping σ defined from V ′ to D such that
for every pair (v, v′) of variables in V ′, (σ(v), σ(v′)) satis-
fies C(v, v′), i.e. there exists a base relation b ∈ C(v, v′)
such that (σ(v), σ(v′)) ∈ b. A solution of N is a partial
solution of N on V . N is consistent iff it admits a solu-
tion. Two QCNs are equivalent iff they admit the same set
of solutions. A sub-QCN N ′ of N , denoted by N ′ ⊆ N ,
is a QCN (V,C ′) such that C ′(v, v′) ⊆ C(v, v′) for ev-
ery pair (v, v′) ∈ V × V . Given a QCN N ′ = (V,C ′),
N ′ ∪ N denotes the QCN (V,C ′′) defined by C ′′(v, v′) =
C ′(v, v′) ∪ C(v, v′) for all v, v′ ∈ V . An atomic QCN is
a QCN such that each constraint is defined by a base rela-
tion. A scenario S of N is an atomic consistent sub-QCN
of N . A base relation b ∈ C(v, v′) with v, v′ ∈ V is feasi-
ble (resp. (unfeasible) iff there exists (resp. there does not
exist) any scenario S of N such that S[v, v′] = {b}. A
QCN N = (V,C) is minimal iff for all v, v′ ∈ V and
b ∈ C(v, v′), b is a feasible base relation. The unique equiv-
alent minimal sub-QCN of a QCN N is denoted by Nmin. It
is called the minimal QCN of N .

A QCNN = (V,C) is �-consistent or closed under weak
composition iff ∀v, v′, v′′ ∈ V , C(v, v′) ⊆ C(v, v′′) �
C(v′′, v′). The closure under weak composition of N , de-
noted by �(N ), is the largest �-consistent sub-QCN of N
equivalent to N . This sub-QCN can be obtained by iter-
ating the triangulation operation C(v, v′) ← C(v, v′) ∩
(C(v, v′′)�C(v′′, v′)) for all v, v′, v′′ ∈ V until a fix point is
reached. This method can be implemented by an algorithm
running in O(n3) time where n = |V |. Note that for some
qualitative calculi as IA, path-consistency and �-consistency
are equivalent properties.

Given a set of base relations B and a set A ⊆ 2B, we
will denote by A the closure of A under converse, inter-
section and weak composition. In the case where A = A
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we will say that A is a subclass of 2B. Given a relation r
of 2B and a subclass A ⊆ 2B containing the total relation
(the relation containing all base relations), A(r) denotes the
smallest relation of A including r. Moreover, given a QCN
N = (V,C), A(N ) is the QCN N ′ = (V,C ′) defined by
C ′(v, v′) = A(C(v, v′)) for all v, v′ ∈ V . In the sequel,
all the considered subclasses will contain the singleton rela-
tions of 2B. This is why from now on, we assume that given
a subclass A, A contains the singleton relations.
C will denote the subclass of convex relations of IA. C con-

tains 83 relations. Ligozat (Ligozat 1996) introduces a lattice
arranging the base relations of BIA, see Figure 1(b). The con-
vex relations of IA correspond to the intervals of this lattice.
The ORD-Horn relations of IA (Nebel 1996), also called the
preconvex relations, form a subclass denoted by H in the
sequel. H is the maximal (for ⊆) subclass of IA for which
the consistency problem is polynomial. The subclass of the
strict relations (Amaneddine and Condotta 2012), denoted
by S, is another subclass that we will consider in the sequel.
S contains 82 relations and corresponds to those relations of
IA wa can express by constraints of the Point Algebra (Vi-
lain and Kautz 1986) whithout using inequations. Note that
C and S are two distinct subsets of H. For these subclasses,
�-consistency of a QCN (non trivially inconsistent) implies
the consistency of this QCN. Moreover, for the subclasses
C and S, �-consistency of a QCN implies the minimality of
this QCN.

The Algorithm MinimizeSDCM
In this section, we propose and study an algorithm, called
MinimizeSDCM (Minimize with a Subclass for which �-
consistency implies Minimality) to calculate the minimal
QCN of a QCN N through a subclass A for which �-
consistency of a QCN implies its minimality. Before we
describe this method, we describe a set of auxiliary func-
tions. The function MinSubQCN takes as parameters two
QCNs: Ninit and N (with N ⊆ Ninit), and possibly, a pair
of variables e belonging to V × V . This function is sim-
ilar to the one proposed in (Condotta, Ligozat, and Saade
2007) for solving the consistency problem of QCNs. A non-
trivially consistent QCN N ′ such that N ′ ⊆ N , N ′ is �-
consistent, and A(N ′) ⊆ Ninit is obtained in case where
such a QCN exists. In the contrary case, it returns the QCN
⊥V . A backtrack search is realized by using the weak com-
position method for propagating constraints. The parameter
e is null for the first call of the function, then, not null for the
other recursive calls. It allows to realize an incremental con-
straint propagation through the function CWC (Closure by
Weak Composition). The composed instructions CWC are
not given but we can suppose that they are similar to those
given in (Vilain and Kautz 1986). CWC takes as parameter
a QCN and possibly a second parameter corresponds to a
couple of variables of this QCN. It returns the closure by
weak composition of the QCN used as parameter. When a
pair of variables is given in parameter, it is supposed that
the QCN used as parameter is �-consistent by considering
all triples of edges not containing e. In each step of the
search of MinSubQCN, a constraint is selected and split into
non-empty sub-relations of the subclass A. Then, this con-

Function MinSubQCN(Ninit,N ,e)
input : two QCNs Ninit = (V,Cinit) and N = (V,C)

such that N ⊆ Ninit and e a pair of variables.
output: a sub-QCN of N .

1 begin
2 N ← CWC(N , e) ;
3 if N = ⊥V then
4 return ⊥V ;
5 Select (v, v′) ∈ V × V such that

A(N [v, v′])) 6⊆ Ninit[v, v
′];

6 if a such pair does not exist then
7 return N ;
8 Split N [v, v′] into sub-relations r1, . . . , rk ∈ A

such that 1 < k < |B|;
9 N ′ ← N ;

10 foreach i ∈ 1, . . . , k do
11 N [v, v′]← ri; N [v′, v]← r−1i ;
12 N ←MinSubQCN(Ninit,N , (v, v′)) ;
13 if N 6= ⊥V then
14 return N ;
15 N ← N ′ ;

16 return ⊥V

straint is iteratively defined by each of these sub-relations.
The search continues by a recursive call of MinSubQCN.
The notion of eligibility proposed in (Condotta, Ligozat, and
Saade 2007) is implemented through the selection of the new
constraint to be treated in line 5. Only an eligible constraint,
i.e. a constraint defined by a relation whose closure with re-
spect to A is not included in the constraint ofNinit, can be se-
lected. The notion of eligibility allows to minimize the depth
of the search tree. We can notice that in the case where N
admits a �-consistent atomic sub-QCN, MinSubQCN finds
and returns a non trivially inconsistent QCN. By using an
approach similar to the one followed by (Nebel 1996), we
can formally establish the following property:

Proposition 1 Consider two QCN Ninit = (V,Cinit), N =
(V,C) such that N ⊆ Ninit. The call of the function
MinSubQCN(Ninit,N ) returns a QCN N ′ non trivially in-
consistent and �-consistent such thatN ′ ⊆ N and A(N ′) ⊆
Ninit when such a QCN N ′ exists, it returns ⊥V otherwise.

The function MinimizeSDCM is the main method that al-
lows the calculation of the minimal QCN of a QCN. It takes
as parameter the QCN N = (V,C) for which we want to
calculate its minimal QCN. As we will show in what fol-
lows, this method will be complete in the case where for
the subclass A, �-consistency of a QCN implies minimality
of this QCN. Roughly, MinimizeSDCM is divided into three
successive steps. The first step during which different vari-
ables are initialized, a second step allows the calculation of
the feasible base relations, and finally, a third step, where the
result is returned. Let us describe these steps into details.

The different variables initialized during the first step are:
Ninit, NF and NNonF. Ninit allows to save the initial state of
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Function MinimizeSDCM(N ,C)

input : N = (V,C) a QCN on 2B, A a subclass of 2B.
output: A sub-QCN of N

1 begin
// Step 1: Initialization

2 Ninit ← N ;
3 NF ← ⊥V ; NnonF ← ⊥V ;
4 N ← PreTreatment(N );
5 NnonF ← Ninit \ N ;
6 if N [v, v′] = ∅ for some v, v′ ∈ V then
7 return ⊥V ;

// Step 2: Minimization

8 while {(v, v′) : (N [v, v′] \ NF[v, v′]) 6= ∅} 6= ∅ do
9 Select (v, v′) ∈ V × V such that

(N [v, v′] \ NF[v, v′]) 6= ∅ ;
10 r ← N [v, v′] \ NF[v, v′];
11 N [v, v′]← r; N [v′, v]← r

−1;
12 N ′ ←MinSubQCN(Ninit,N );
13 if N ′ = ⊥V then
14 NnonF[v, v′]← NnonF[v, v′] ∪ r;
15 NnonF[v′, v]← (NnonF[v, v′])−1;
16 else
17 NF ← NF ∪A(N ′);
18 N ← Ninit \ NnonF

// Step 3: Return of the result
19 return NF

the QCN N . The QCN NF will allow to store the base re-
lations of N detected as feasible base relations during the
treatment. At the end of the treatment,NF correspond to the
minimal QCN of N given as parameter. The QCN NNonF

allows the accumulation of the base relations of N which
will be detected as unfeasible during the treatment. After
the initialization of these variables, an optional preliminary
treatment is performed over N (line 4), here the aim is to
eliminate some unfeasible base relations with a fast method.
This pre-treatment could be for example the calculation of
the closure �-consistency of N . This pre-treatment must re-
turn an equivalent sub-QCN of N . The base relations de-
tected as unfeasible during this pre-treatment are added to
the QCN NNonF (line 5). In the case where N is detected
as trivially inconsistent we can assert that Ninit is not con-
sistent. Its minimal QCN is then the QCN ⊥V returned in
line 7. In the contrary case, we continue the treatment. We
note here that during this level, N is a sub-QCN equivalent
to Ninit. This property will stay satisfied until the end of the
call of MinimizeSDCM.

In the second step of the treatment (line 8), the constraints
of the QCN N are treated until all of its base relations are
detected as feasible or as unfeasible. For this purpose, a pair
of variables (v, v′) is selected in line 9, for which, the cor-
responding constraint contains non-classified base relations.

These base relations correspond to the relation r (line 10).
The constraint of N between v and v′ is then defined by
this relation (line 11), a non trivially inconsistent and �-
consistent sub-QCNN ′ ofN is then searched through a call
of the method MinSubQCN (line 12). If such sub-QCN does
not exist, we can state that N is inconsistent and therefore,
the base relations of r are unfeasible. These base relations
are then added to NNonF (lines 14-15) and removed from N
(line 18). In the case where a sub-QCN N ′ of N non triv-
ially inconsistent is found, the base relations of �(A(N ′))
are characterized as base relations belonging to the minimal
QCN of Ninit and then added to NF. A(N ′) is defined by
relations of the subclass A. It is as well �-consistent since
N ′ is �-consistent. Therefore, given that �-consistency im-
plies minimality for A, we can affirm that A(N ′) is minimal.
Furthermore, and since A(N ′) ⊆ Ninit we can conclude that
A(N ′) ⊆ (Ninit)min.

Let us prove now that after a certain number of finite loops
the second step will end. We have previously seen that in
case where the call of the function MinSubQCN (line 12)
returns a trivially inconsistent QCN then the base relations
of r were removed fromN . In the contrary case, this call re-
turns a QCN N ′ non trivially inconsistent and �-consistent.
We can affirm that A(N ′) is non trivially consistent as well.
We have as well, A(N ′[v, v′]) ∩ N ′[v, v′] 6= ∅. Therefore,
A(N ′[v, v′]) ∩ r 6= ∅. As a result, at least one of these base
relations of r is added to NF. From all what precedes, we
can conclude that during each iteration of the second step, at
least one of these base relations of N is added to NF or re-
moved from it. Consequently, the second step is performed
at most δ times with δ = Σ(v,v′)∈V×V {|Ninit[v, v

′]|}.
Following the second step, all base relations ofNinit have

been treated, we can then affirm that NF returned in line 19
corresponds to the minimal QCN of Ninit. From all this, we
can establish the following result:

Theorem 1 Given a QCN N and a subclass A for
which �-consistency implies minimality, the algorithm
MinimizeSDCM computes the minimal QCN of N .

Running Example
In the example we are proposing, we consider QCNs of
IA and the set of the convex relations C as subclass A
used by the method MinimizeSDCM. Consider the call of
MinimizeSDCM with the QCN N described in Figure 2(a)
as parameter. The indexes associated to each base relation
Figure 2(a) identify the step during which the base rela-
tion has been characterized as feasible (index placed at the
top) or non feasible (index placed at the bottom). The in-
dex 0 corresponds to base relations detected unfeasible dur-
ing the pre-treatment (the closure of the weak composition
in this example). Each index i ∈ 1, . . . , 7 identifies the ith
iteration performed during the second step of the function
MinimizeSDCM. The pair of variables (v, v′) selected, the
relation r corresponding to base relations to be treated and
the QCNN ′ returned by MinSubQCN are indicated for each
one of these iteration. Note that for this example, we have
C(N ′) = N ′ for each iteration. These QCN are �-consistent
and defined by convex relations.

19



{eq1, s1, si1, f 6}

v0

v2v1 {eq3, p1, d5, di1, o1, m1, f i1}

{d1, di2, oi1, s3, si2, f 1}
{eq2, f 1, f i2}

{eq7, oi1, mi1, si3, f 4}

{eq4, p0, o1, m1, s1}

v3

(a) N

{eq, o,m, s}

v1

v3

v2

{d, di, oi, s, si, f}

{eq, oi,mi, si, f}{eq, s, si, f}

{eq, p, d, di, o,m, fi}

{eq, f, fi}

v0

(b) �(N )

(v, v′) r return of
MinSubQCN

(v1, v2) {eq, p, d, di, o,m, fi} N′1
(v0, v1) {di, s, si} N′2
(v2, v3) {eq, si, f} N′3
(v2, v3) {eq, f} N′4
(v1, v2) {d} N′5 = ⊥
(v1, v3) {f} N′6
(v2, v3) {eq} N′7 = ⊥

(c) Selected relations

{o,m, s}

v1

v3

v2

{oi,mi}

{f}

{p, di, o,m, fi}

{d, oi, f}

{eq, s, si}

v0

(d) N ′
1

{p, o,m}
v1

v3

v2

{oi,mi}

{o,m}
{eq, fi}

{s}

{di, si}
v0

(e) N ′
2

{eq}
v1

v3

v2

{s} {s}
{eq}

{si} {si}

v0

(f) N ′
3

{f}
v1

v3

v2

{eq}

{di, o, f i}

{f}{eq, s, si}

{d, oi, f}
v0

(g) N ′
4

{o,m}
v1

v3

v2

{f}
{f} {o,m, s}

{f} {oi,mi}

v0

(h) N ′
6

{eq, s, si, f}

v1

v3

v2

{d, di, oi, s, si, f} {eq, o,m, s}
{eq, f, fi}

{eq, p, di, o,m, fi}

{oi,mi, si, f}

v0

(i) Nmin

Figure 2: Tracing of the call of the function MinimizeSDCM

We have for example the base relation p belonging to the
constraint between v0 and v2 has been detected as unfea-
sible during the pre-treatment phase, whereas the base re-
lation d of the constraint between v1 and v2 has been de-
tected feasible during the fifth iteration of the second step.
As another example, the base relations di and si belonging
to the constraint between v0 and v1 have been detected as
feasible during the second iteration of the step 2. The min-
imal QCN of N returned at the end of the treatment cor-
responds to the QCN illustrated in Figure 2(i). This QCN
is obtained after 7 iterations performed during the second
step of MinimizeSDCM. This example shows that the itera-
tive treatment performed during the second step can classify
several base relations in a same iteration.

Experiments
In order to study the behaviour of the algorithm
MinimizeSDCM, we conducted some experiments concern-
ing QCNs of the Interval Algebra. These QCNs have been
generated from the model S (Nebel 1996). This model can
randomly generate consistent QCNs according to three pa-
rameters n, d, and s, where n is the number of variables
of the generated QCNs, d is the density of the non trivial
constraints (constraints defined by a relation other than the
total relation, i.e. a relation other than B) and s the average
number of base relations of a non trivial constraint. For this
model, the consistency of a generated QCN is guaranteed
by adding a consistent scenario. A set of QCN generated
through the model S using the parameters n, d and s will be
denoted by S(n, d, s). The presented experiments concern
instances issued from the series S(n, d, 6.5) with n varies
between 40 à 80 with an incremental step of 10 and d varies
between 2 à 24 with an incremental step of 2. For each se-
ries, we generated 100 QCNs.

Two subclasses of relations have been used to define
the subclass A of the algorithm MinimizeSDCM, namely
the subclass of convex relations C and the subclass of the
strict relations S. In what follows, MinimizeSDCMC (resp.

MinimizeSDCMS ) refers to the algorithm MinimizeSDCM
using C (resp. using S) as tractable subclass. MinimizeH

refers to a naive minimization algorithm (as described in
introduction) based on the efficient algorithm proposed in
(Condotta, Ligozat, and Saade 2007) to solve the consis-
tency problem of a QCN. This method is similar to the func-
tion MinSubQCN previously presented and uses the precon-
vex subclass H as tractable subclass. The implementation
of these functions has been done using the C programming
language, for the corresponding experiments a timeout of 5
hours has been given for each series.

Figure 3(a) illustrates the cpu time required by
MinimizeSDCMC to solve the sequences S(n, d, 6.5) We
note that for each fixed number n of variables, there exists
a ceiling from which the calculation of minimal QCNs be-
come very hard. For example, for n = 60 (resp. n = 80),
this ceiling is placed around d = 12 (resp. d = 10). We
note that similarly, after this phase of hight growing calcula-
tion time, a decreasing phase is found from a certain density
of non trivial constraints. These phases can be partially ex-
plained by the structure of the generated QCNs.

From Figure 3(b), we can note that for each number of
variables n, starting from a certain density of non trivial con-
straints, the percentage of unfeasible relations increases in a
fast manner. This can explain the first increase of the calcu-
lation time. Note that for a given n, the number of base re-
lation of the generated QCNs decreases when the density of
the non trivial constraint increases. For example, for n = 50,
the average number of base relations is 31298 for d = 2 and
decreases progressively until it reached 24684 for d = 24.
This decrease of the number of relation can explain the last
phase in which the calculation time decreases.

The figure 3(c) shows the cpu time put by the three meth-
ods MinimizeSDCMC , MinimizeSDCMS and MinimizeH.
It is showing clearly that the methods MinimizeSDCMC

and MinimizeSDCMS perform better than the method
MinimizeH. This is justified by the fact that the first two
methods can treat many base relations during one single
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Figure 3: Experimental results

iteration during the main treatment whereas MinimizeH

can treat one single base relation. For illustrative pur-
poses consider the series S(40, 14.0, 6.5). For this series,
MinimizeSDCMC , MinimizeSDCMS and MinimizeH realize
respectively an average of 685, 854 et 8315 main iterations.

During five hours, MinimizeH can not treat even one sin-
gle series of S(80, d, 6.5). By examining Fgure 3(c), we no-
tice that MinimizeSDCMC is faster than MinimizeSDCMS .
A possible explanation of this is that the subclass C allows
a finest splitting of the relations of IA than the subclass
S: approximately 3.54 as average number of sub-relations
for C and around 5.13 as average number sub-relations for
MinimizeSDCMS . As a direct effect of this difference, the
search performed by MinSubQCN can be faster by using the
subclass C than the subclass S. Furthermore, the sub-QCN
returned by MinSubQCN through C can be more wide.

Conclusions
In this paper, we have introduced an algorithm called
MinimizeSDCM allowing to solve the minimal labeling
problem of a QCN given a tractable subclass for wich �-
consistency implies minimality. Our preliminary experimen-
tation shows how this algorithm can be efficient. A future
work is to conduct extensive experiments concerning other
qualitative calculus than the IA. Also, a research perspective
consists in defining and studying specific algorithms for the
minimal labeling problems using tractable classes for which
�-consistency implies a property stronger than the minimal-
ity such that the global consistency.
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