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Abstract

Support vector machines (SVMs) are among the most used
methods for pattern recognition. Acceptable results have
been obtained with such methods in many domains and appli-
cations. However, as most learning algorithms, SVMs have
hyperparameters that influence the effectiveness of the gener-
ated model. Thus, choosing adequate values for such hyper-
parameters is critical in order to obtain satisfactory results for
a given classification task, a problem known as model selec-
tion. This paper introduces a novel model selection approach
for SVMs based on multi-objective optimization and on the
bias and variance definition. We propose an evolutionary al-
gorithm that aims to select the configuration of hyperparam-
eters that optimizes a trade-off between estimates of bias and
variance; two factors that are closely related to the model ac-
curacy and complexity. The proposed technique is evaluated
using a suite of benchmark data sets for classification. Exper-
imental results show the validity of our approach. We found
that the model selection criteria resulted very helpful for se-
lecting highly effective classification models.

Introduction

A support vector machine (SVM) (Cortes and Vapnik 1995)
is a supervised learning algorithm able to build a classifi-
cation model from a labeled data set. The underlying idea
of SVMs is to find the hyperplane that maximizes the sep-
aration of examples from two classes. SVM has become a
quite popular method in classification and regression tasks,
mainly due to its high performance and scalability. Nonethe-
less, a SVM has some adjustable parameters, usually called
hyperparameters (Guyon et al. 2010), that can affect its per-
formance. Thus, determining the adequate hyperparameter
values is needed, this problem is usually known as model
selection.

Model selection is the task of choosing the model that best
describes a data set (Hastie, Tibshirani, and Friedman 2009).
Therefore, the model selection seeks for hyperparameters
values that maximize the generalization performance of the
associated SVM. The generalization error of a classifier can
be decomposed in two terms: squared bias and variance,
components that are closely related to accuracy and model
complexity. In general, bias describes the extent to which
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the systematic error of the learning algorithm contributes
to the generalization error of the model, while variance de-
scribes the extent to which variations in the training data or a
random behavior of the learning algorithm contributes to the
error. So, minimizing both components is important in order
to select a model that performs well on unseen data. How-
ever, these two components are in conflict, and minimizing
one of them causes an increase in the other one. In this sense,
the model selection problem can be seen as a multi-objective
optimization problem.

Previous studies have tackled the SVM model selection
task using evolutionary algorithms. In (Huaitie et al. 2010),
the authors propose a combination of genetic algorithms and
simulated annealing to choose the parameters for a RBF
kernel function for an SVM. Multi-objective approaches
have also been proposed. In (Chatelain et al. 2007; 2010;
Ethridge, Ditzler, and Polikar 2010; Li, Liu, and Gong
2011), the authors propose to optimize the specificity and
sensitivity as objectives, tackling the problem of model se-
lection for unbalanced data sets (i.e. preventing to choose a
model that performs well for one class but not for the other
one). Other works have considered the accuracy and the
number of support vectors as the objectives to optimize (Sut-
torp and Igel 2006; Ayd ), under the assumption that the
number of support vectors is associated to the model com-
plexity. The previous works have taken into account the
parameters selection for one kind of kernel function and
they do not perform the kernel type selection. To the best
of our knowledge, estimated values of bias and variance
have not been previously used in a multi-objective approach
for model selection. In this paper we face the problem of
model selection for SVMs as a multi-objective optimization
task. We propose a multi-objective evolutionary algorithm
for model selection that simultaneously minimizes estimates
of bias and variance, which are approximated from a finite
data set. We used the NSGA-II (Deb et al. 2000) algorithm
as search strategy because of its efficiency and because it
could provide diverse solutions that satisfy a trade-off be-
tween these two components. We evaluated our approach
using a suite of benchmark data sets for classification. Ex-
perimental results show that the proposed approach selects
highly effective classification models, when it is compared
to an SVM without performing hyperparameters selection,
and a related method for model selection.



Multi-objective optimization problem

A multi-objective optimization problem (MOOP), is the
problem to find a solution that minimizes (or maximizes)
two (or more) objectives that are usually in conflict (i.e. find-
ing a solution that would give acceptable values for the ob-
jectives). According to Deb (Deb 2001), a MOOP can be
stated as:

f(x)=[fi(x),.... fi(x)]
gi(x)<0i=1,...,p
hj(x)=0j=1,...,q

where x = [x1,...,2,] € R" is a n-dimensional variable
decision vector, [ is the number of objectives, p the num-
ber of inequality constrains, and ¢ is the number of equality
constrains.

Most of the multi-objective optimization algorithms are
based on the dominance concept to determine if a solution
is better than another. We say that a solution x(1) dominates
a solution x(? (x() < x(?) if and only if x(*) is better
than x(2) at least in one objective and it is not worse in the
rest (Coello, Lamont, and Veldhuizen 2007; Deb 2001).

Generally, most of the multi-objectives problems do not
have an unique solution, but a set of solutions. This set of
solutions satisfies a trade-off between the different objec-
tives being optimized. In order to establish this trade-off,
the most accepted notion of optimum in MOOP is the so
called Pareto optimal. Formally, the notion of Pareto opti-
mal says that a solution x* € R" is a Pareto optimal if and
only if #x € R™, for which x < x* (Coello, Lamont, and
Veldhuizen 2007). This definition says that a solution x* is
a Pareto optimal if there does not exist another solution such
that improving one objective causes any other objective to
worsen. It is important to note that this definition does not
produce a single solution, but a set of trade-off solutions be-
tween the different objectives. The set of trade-off solutions
is known as Pareto optimal set. The vectors included in
the Pareto optimal set are called non-dominated solutions.
The plot of values of the objective functions which are non-
dominated vectors in the Pareto optimal set is called Pareto
front. Several techniques have been proposed for solving a
MOQOFP, such as weighted sum, e-constrains and evolutionary
algorithms, the latter have shown an advantage over classi-
cal techniques (Coello, Lamont, and Veldhuizen 2007) and
one of these is used in this work.

minimize
subject to

Bias-Variance Estimation

The ultimate goal of model selection in classification tasks
is that of finding a model that obtains the highest possible
generalization performance. That is, a model that guaran-
tees to obtain a low error rate on samples that were not seen
during the training process and that come from the same dis-
tribution than the training set. Generalization error of a clas-
sifier can be decomposed into the squared-bias and variance
terms (Hastie, Tibshirani, and Friedman 2009):

err (fp (x)) ={Ep [fp (x)] — f (x)}* +

1
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where f (z) is the target function (the desired output),
fp () is the model trained with the data set D and Ep [] is
the expected value taken from all data sets D.

A number of studies have been addressed to extend
the bias and variance decomposition into the classification
field (Kong and Dietterich 1995; Kohavi and Wolpert 1996;
Friedman 1997; Webb 2000).

Each of those definitions is able to provide information
about the model’s performance, giving insights of how much
the bias and the variance contribute to the model error. In our
study we adopted the Kohavi and Wolpert’s definition (Ko-
havi and Wolpert 1996), because is close to the bias/variance
decomposition formulated for regression tasks, and is one
of the most used (Webb and Conilione 2005). The values
for bias and variance can be estimated using sampling tech-
niques, such as cross-validation, bootstrapping, etc.

In classification tasks, square bias is a measure of the con-
tribution to the error of the central tendency (i.e. the class
with the most votes across the multiple predictions) when
a model is trained with different data sets. The variance is
a measure of the deviations to the central tendency when a
model is trained with different data sets (Webb 2000).

Multi-objective evolutionary algorithm

Evolutionary algorithms are heuristic search techniques in-
spired in Darwin’s evolutionary theory. These kind of al-
gorithms are based on the idea of the survival of the fittest
individual where stronger individuals have a higher chance
of reproduction. Generally, an evolutionary algorithm has
five basic components: an encoding scheme, in a form of
chromosomes or individuals, that represents the potential so-
lutions to the problem, a form to create potential initial solu-
tions, a fitness function to measure how close a chromosome
is to the desired solution, selection operations and operators
for selection and reproduction.

Evolutionary algorithms have been used for solving
multi-objective problems. The main advantage of using
this kind of algorithms is that they obtain several points
in the Pareto front in a single run. Different evolution-
ary algorithms have been proposed for multi-objective op-
timization, including: Distance-based Pareto Genetic Al-
gorithm (DPGA) (Osyczka and Kundu 1995), Niched-
Pareto Genetic Algorithm (NPGA) (Horn, Nafpliotis, and
Goldberg 1994), Strength Pareto Evolutionary Algorithm
(SPEA) (Zitzler and Thiele 1999), Pareto Archived Evolu-
tion Strategy (PAES) (Knowles and Corne 2000), Nondom-
inated Sorting Genetic Algorithm II (NSGA-II) (Deb et al.
2000), etc. A comprehensive review of evolutionary tech-
niques for solving multi-objective problems can be found
in (Coello, Lamont, and Veldhuizen 2007; Deb 2001).

In this work, we used the NSGA-II!, which is an elitist ge-
netic algorithm, that uses a crowding distance to preserve the
diversity in the solutions. A general description of NSGA-
II is presented in Algorithm 1. As most genetic algorithms,
NSGA-II creates an offspring population, O;, from a parent
population, P;. Nonetheless, this algorithm combines both

' An implementation of this algorithm in Matlab is available in
http://delta.cs.cinvestav.mx/"ccoello/EMOO/NSGA-II-Matlab.zip



populations, T; = O; + P;, and the individuals are sorted
based on non-dominance. Note that the size of T} is 2NV, but
the size of the new population, P;, 1, should be N. P, is
formed from the non-dominated fronts. This process begins
adding the first non-dominated front to P, ;, followed by
the second front, and so on until the population has at least
N individuals. The fronts that were not added are deleted. If
the P, population size is greater than /N a niche strategy
is used for choosing the individual of the last added front to
be part of P .

Algorithm 1 NSGA-II (Deb et al. 2000)

Require: N (number of individuals),
f (fitness functions),
g (number of generations in the evolutionary process)
Initialize population P;
Evaluate objective functions
Assign rank based on Pareto dominance
fort=1— gdo
Generate child population Q+
Binary tournament selection
Evolutionary operations
for each parent and child in population do
Assign rank based on Pareto dominance
Generate set of non-dominate vectors
Add solutions to next generation starting from the first
front until individuals found determine crowding distance
between points on each front
end for
Apply elitism over the lower front and those outside a crowd-
ing distance
Create next generation
end for

SVM Model Selection

The generalization performance of an SVM is highly influ-
enced by the choice of its hyperparameters. Therefore, in
order to obtain acceptable performance in a given classifi-
cation task, hyperparameters must be chosen appropriately.
We propose a multi-objective evolutionary algorithm for se-
lecting the kernel function together with its hyperparameters
for SVM classifiers by minimizing the bias and variance. In
general, it is said that a low bias is associated with a low
error in the training set, but the model could be overfitted,
in contrast, a low variance is associated with a low model
complexity, and the model could be underfitted. With this
premise, we believe that if both components are minimized,
models with a good generalization ability can be obtained.
Thus, we faced the model selection task as a multi-objective
optimization problem using as objectives estimates of bias
and variance, trying to select the model with the best trade-
off between both components.

The proposed approach is as follows: given a labeled data
set, we divide it into two different sets called training set and
validation set. The training set is used to fit the parameters
of the model during the hyperparameters space exploration.
The NSGA-II algorithm is used as a search strategy for the
exploration task. Once the search process is completed, a set
of trade-off solutions is obtained, this set is called the Pareto
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Figure 1: Several points in the Pareto front represent a trade-
off between the bias and variance of the model. Models with
high bias could be underfitted while models with high vari-
ance could be overfitted.
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Figure 2: Codification schema to represent a SVM model

optimal set. Each solution in the Pareto optimal set satisfies
to some extent a trade-off between our objectives, that is bias
and variance. The next step is to choose a final model to be
used for classification. One could argue to use all solutions
in an ensemble. However, since solutions with high variance
(which are highly probable of being overtfited) and solutions
with high bias (which are highly probable of being underfit-
ted) are contained in that Pareto optimal set (see Figure 1),
they could affect the ensemble performance. Therefore, just
one solution is chosen from the Pareto optimal set. We use
a validation set to test each model in the Pareto optimal set.
We select the solution with the lowest error rate in the vali-
dation set. Then, the model is trained using both, a training
set and a validation set.

A multi-objective evolutionary algorithm requires a way
to codify solutions, a way to evaluate the individuals fitness,
and evolutionary operators. The rest of this section provides
a detailed description of the components of the proposed
evolutionary algorithm.

Representation

Evolutionary algorithms require a codification to represent
the potential solutions for the optimization problem. This
codification is usually called chromosome or individual. For
the purpose of our study, the individual codifies the SVM
hyperparameters with a 4D numerical vector, see Figure 2.

The kernel parameter can take values between O and 3.
This is an integer value and represents the type of kernel
function, according to the ID presented in Table 1. n, v and
C0 are the hyperparameters for the kernels, according to the
mathematical expression shown in Table 1. Note that the n,
~ and CO hyperparameters can take very large values (in-
finity, in theory), for computational reasons these values are
initially limited, although during the evolutionary process
they could be increased.



We used Matlab to implement the proposed method. We
used the SVM implementation from the LIBSVM (Chang
and Lin 2011) package.

Fitness Function

Bias and variance are the objectives to be minimized. Since
only a finite sample of data is available for the model selec-
tion process, it is only possible to obtain approximations to
the bias and variance of a model. For estimating the bias
and variance, we used the Kohavi and Wolpert’s definition
for the classification task, because it is one of the closest to
the bias and variance decomposition for regression task, and
itis one of the most used (Webb and Conilione 2005). Under
this definition, bias and variance are computed as follows:

. 1
bZaSzz§Z[Pyﬂx(YF:y|X::C)*P(YH:?/)]2
yey
Uar:1 17213 (Y =y)°
5 D\XYm =Y

yey

where Y is the set of output classes, Y is the fixed function
that maps each sample x to a class y, and Y}7 is a hypothesis
estimating Y.

In order to estimate the bias and variance values, n x k-
fold cross validation is used. We fixed the values of n to ten,
and k to three, as it was employed by Webb (Webb 2000).
In each three-fold cross validation, the data set is randomly
divided into three disjoint subsets. A subset is used for test-
ing once, and the rest for training, and this process is re-
peated three times. So, each sample is classified one time,
and the three-fold cross validation process is repeated ten
times. Therefore, each sample is classified ten times, and
these classifications are used to compute the probabilities
used in the above expressions to approximate bias and vari-
ance.

Computational Issues

Our approach can be considered a wrapper method. Wrap-
per methods explore the hyperparameters space and evaluate
several models in order to select the best one. We used n x k
fold cross validation to estimate the bias and variance values
for our fitness function. Thus, the model has to be trained
and tested several times in order to determine the fitness of
the model. This causes that the fitness function evaluation to
be computationally expensive.

Table 1: Different kernels types used with SVM, where u
and v are training vectors and n, v and Cy are the kernel

parameters.
ID Name kernel
0 Linear u v
1 Polynomial (y*xu -v+CO)"
2 RBF e lu—vl?
3 Sigmoid tanh (- v’ - v 4 CO)
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Table 2: Data sets used in our experiments. Each data set
has 100 partitions for training and testing, except Splice and
Image data set with 20 partitions.

ID Dataset Feat. Training Testing  Repli-
Samples Samples cations

1 Banana 2 400 4900 100

2 BC 9 200 77 100

3 Diabetes 8 468 300 100

4 FS 9 666 400 100

5 German 20 700 300 100

6  Heart 13 170 100 100

7  Image 20 1300 1010 20

8  Ringnorm 20 400 7000 100

9  Splice 60 1000 2175 20

10 Thyroid 5 140 75 100
11 Titanic 3 150 2051 100
12 Twonorm 20 400 7000 100

13 Waveform 21 400 4600 100

Let [ be the number of times that a specific model is
trained and tested in the evaluation step, IV is the number of
evaluated models per generation, and g is the number of gen-
erations in the evolutionary algorithm, the number of trained
models is given by [ x N x g. Despite the computational
cost, the model selection algorithm has the advantage of de-
termining an adequate configuration for the SVM classifier
without requiring a set of experiments manually performed
for this purpose. The computational cost is the main draw-
back of the adopted approach, but we are actually working
on ways to make it efficient.

Experiments and results

We performed several experiments using a suite of bench-
mark data sets? described in Table 2. The data sets are
diverse in terms of the number of features and samples
and they have been used in several works (Rétsch, On-
oda, and Miiller 2001; Escalante, Montes, and Sucar 2009;
Zhou and Xu 2009). For each data set, we randomly se-
lected 10 partitions. For each trial, a population size equal
to 25 and a number of generations equal to 50 are fixed.

Figure 3 shows the Pareto fronts obtained for some data
sets in a particular trial. These plots show the trade-off that
exists between the bias and variance. Each point plotted in
the Pareto front represents the optimal solutions that were
found by the NSGA-II algorithm. These solutions satisfy a
trade-off between model bias and variance and they allow us
to know the expected generalization error over new samples.
Each of these solutions is evaluated using the validation data
set to select the final model.

Table 3 shows the results obtained with our proposal,
called MOSVMMS. We report the error rates and the stan-
dard deviation of ten replications obtained in the test set for
each data set. These results are compared with those of the
standard SVM (i.e. a SVM with the default hyperparam-

*These data sets are available in
http://theoval.cmp.uea.ac.uk/matlab/benchmarks/
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Figure 3: Obtained Pareto fronts from a particular trial of
the proposed method.

eters), and of with PSMS (Escalante, Montes, and Sucar
2009), which is a full model selection method that has ob-
tained an acceptable performance over data sets from differ-
ent domains. PSMS uses particle swarm optimization (PSO)
for selecting a combination of feature selection method, pre-
processing method, learning algorithm and the associated
hyperparameters. In order to make a fair comparison of our
results, we fixed the learning algorithm to SVM and feature
selection and pre-processing methods were not selected, we
used the same ten partitions for both approaches.

From Table 3, we can observe that the multi-objective
SVM model selection (MOSVMMS) obtained lower error
rates for most of the data sets, and it was worse for four
data sets only. DemsSar (Demsar 2006) recommends the
Wilcoxon Signed Rank test to compare two classifiers over
different data sets. We applied this statistical test with 95%
of confidence to compare our obtained results with those ob-
tained using just a SVM and those using PSMS. The sta-
tistical test showed that MOSVMMS outperforms signifi-
cantly to other approaches in the banana, image, ringnorm,
splice, thyroid, twonorm and waveform data sets, when it is
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Table 3: Comparison of the multi-objective SVM model se-
lection (MOSVMMS), with SVM (with default parameters)
and PSMS. The reported results are the error rates averages
over ten trials for each data set, and the best result is shown
in bold.

ID SVM PSMS MOSVMMS
1 46.11 £+ 3.64 10.81 £0.64 10.69 £0.56
2 29.87+3.77 31.95+3.93 30.39 £ 7.30
3 23.17+1.69 27.73+£1.95 23.10£1.94
4 32.73+1.63 32.80+1.50 32.98 £1.86
5 23.60 + 2.22 25.80 £ 3.98 24.30 £2.67
6 1790 £2.85 24.90+£10.73 17.40+ 2.80
7 15.37£1.01 3.90 £ 0.83 3.42+0.62
8 24.75+0.51 2.37+£2.20 1.63 +0.11
9 16.37 £ 0.85 12.78£1.92 11.70£0.90
10 11.60 + 3.61 4.80 £ 2.82 4.27+2.72
11 2251+0.16 2281 £1.10 24.37 £ 5.86
12 3.57£0.59 7.82 +£14.88 2.64£0.28
13 13.45 £ 0.63 12.08+1.23 10.53 £0.87
Ave. 21.61 +1.78 16.66 + 3.67 15.19 +2.19

compared to the SVM without performing hyperparameters
selection. With respect to PSMS, a related method in the
state of the art, there was a statistical significance difference
for the heart and twonorm data sets. For the breast-cancer,
flare-solar, german and titanic data sets, in which our pro-
posal was outperformed, the statistical test did not show that
the differences were statistically significant. When we eval-
uated them over all data sets, according to the Wilcoxon
Signed Rank test, the proposed method performs signifi-
cantly to better than SVM without hyperparameters selec-
tion and PSMS.

Conclusions and Future Work

We presented a novel evolutionary multi-objective optimiza-
tion approach for model selection of SVMs. Bias and vari-
ance estimates of a model are related to its accuracy and
complexity. We propose using estimates of both terms as
the objectives to be minimized in order to obtain models
with an acceptable generalization performance. An advan-
tage of the proposed method is that it can be applied to data
sets from different domains as shown in our reported exper-
iments. Since the bias and variance estimates are based on
a cross-validation approach, our proposal does not depend
of the model, thus it can be easily extended to other models
than SVM and to the full model selection formulation.

Even though the computational work load, due to the in-
tensive search to explore the hyperparameters space, we con-
sider that it can be acceptable if we take into account that the
final user does not have to deal with the selection of the val-
ues for the parameters of the SVM classifier.

Our experimental results showed an advantage of our pro-
posal, when it was compared to a SVM without performing
hyperparameters selection, and with a related method from
the state of the art. Statistical significance tests showed that
the difference was significant, giving evidence of the advan-
tage of our proposal with respect to the other approaches



considered for comparison.

Our current work is focused to study alternative methods
to estimate the bias and variance of the models. We are also
studying to extend our proposed method for different learn-
ing algorithms, that is, the method will be able to choose
among different learning algorithms and their associated hy-
perparameters. As a future work, we want to study the ef-
fect of the population size and the number of generations in
the quality of the selected model, as well as alternatives to
reduce the computational cost of the model selection algo-
rithm. We also want to study strategies to choose accurate
and diverse solutions from the Pareto optimal set, perhaps
considering an ensemble. Finally, we want to compare our
obtained results with PSMS using all its components and
with other multi-objective model selection approaches and
to test our proposed method with high dimensional data sets.
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