
A Comparison of Case Acquisition Strategies for
Learning from Observations of State-Based Experts

Santiago Ontañón
Drexel University

Philadelphia, PA, USA
santi@cs.drexel.edu

Michael W. Floyd
Carleton University

Ottawa, Ontario, Canada
mfloyd@sce.carleton.ca

Abstract

This paper focuses on case acquisition strategies in
the context of Case-based Learning from Observation
(CBLfO). In Learning from Observation (LfO), a sys-
tem learns behaviors by observing an expert rather than
being explicitly programmed. Specifically, we focus on
the problem of learning behaviors from experts that rea-
son using internal state information, that is, informa-
tion that can not be directly observed. The unobserv-
ability of this state information means that the behaviors
can not be represented by a simple perception-to-action
mapping. We propose a new case acquisition strategy
called Similarity-based Chunking, and compare it with
existing strategies to address this problem. Additionally,
since standard classification accuracy in predicting the
expert’s actions is known to be a poor measure for eval-
uating LfO systems, we propose a new evaluation pro-
cedure based on two complementary metrics: behavior
performance and similarity with the expert.

Introduction
Learning from Observation (LfO) (Ontañón, Montaña, and
Gonzalez 2011) is a machine learning paradigm that aims
at automatically learning behaviors via unobtrusive observa-
tion of an actor or expert performing those behaviors. Work
on LfO in the literature is often referred to by a number of
largely synonymous terms such as behavioral cloning, im-
itation learning, apprenticeship learning or learning from
demonstration (with the small difference that in learning
from demonstration it is assumed that the expert actively
collaborates in the demonstration process).

In this paper we discuss Case-based Learning from Ob-
servation (CBLfO) (Floyd, Esfandiari, and Lam 2008), i.e.
approaches to LfO that use case-based reasoning. CBLfO
can be decomposed into two primary stages: case acqui-
sition and deployment. In the first stage, case acquisition,
cases are learned by observing an expert and in the second
stage, deployment, those cases are used by a CBR system to
replicate the observed behavior of the expert. In this paper
we focus on the first stage and specifically on the problem
of learning cases for behaviors that require the expert to rea-
son with unobservable internal information. We would like

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to emphasize that our focus is restricted to case acquisition
strategies that are only based on observations and not those
that require the supplemental interaction with the expert dur-
ing learning (Floyd and Esfandiari 2011b).

In many application domains, the behaviors that we are
interested in learning require the expert to reason using in-
ternal state information. This means that the behavior of the
expert cannot be represented by a regular perception to ac-
tion mapping (e.g. a policy), since the internal state of the
expert (which might depend, for example, on past events
or actions that are not in the current perceptual state) also
influences the choice of action. For example, consider the
example of trying to learn car driving behavior from obser-
vation. The driving speed exhibited by the driver depends on
the last speed limit sign seen. Even when there is no speed
limit sign in sight, the driver remembers the last one seen
and maintains such speed.

This paper presents two main contributions to case acqui-
sition in CBLfO. First, we present a new case acquisition
strategy designed to learn behaviors that require reasoning
with internal state information and compare it with exist-
ing case acquisition strategies. Second, we show that clas-
sification accuracy, a common metric in the LfO literature,
is not enough to assess the performance of LfO algorithms.
We propose an evaluation procedure that makes explicit the
strengths and weaknesses of the LfO algorithm by taking
into account both the performance of the resulting agent and
how similar to the expert the exhibited behavior is.

The remainder of this paper is structured as follows.
First, we introduce our application domain, real-time strat-
egy games. We then introduce the necessary background on
CBLfO, followed by a description of the different case ac-
quisition strategies used in our study. After that, we present
an empirical evaluation of the different strategies. The paper
closes with a discussion of the existing related work, as well
as concluding remarks and future research directions.

Real-time Strategy Games
Real-time Strategy (RTS) games are complex domains, of-
fering a significant challenge to both humans and artifi-
cial intelligence (AI). Designing AI techniques that can
play RTS games is a challenging problem because RTS
games have huge decision and state spaces, they are non-
deterministic, partially observable and real-time (Ontañón

Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference

387

et al. 2010; Aha, Molineaux, and Ponsen 2005). Moreover,
RTS games require spatial and temporal reasoning, resource
management, adversarial planning, uncertainty management
and opponent modelling (Buro 2003). The size of the state
and decision space, and the fact that the games are real-time
(leaving very little time for decision making), makes stan-
dard game tree search approaches inapplicable (although
they have been tried (Chung, Buro, and Schaeffer 2005)).

The most common approach is to hard-code human strate-
gies (for example McCoy and Mateas (2008)). The main dif-
ficulties here is that humans combine a collection of differ-
ent strategies at many different levels of abstraction, and it
is not obvious how to make all of those strategies interact in
a unified integrated architecture.

Given the complexity of such hard-coded strategies, au-
tomatic learning techniques have been proposed. However,
they cannot cope with the complexity of the full game and
have to be applied to specific sub-tasks in the game or to an
abstracted version of the game. For example, Aha, Molin-
eaux, and Ponsen (2005) use case-based reasoning to learn
to select between a repertoire of predefined strategies in dif-
ferent game situations. Another approach is reinforcement
learning (Marthi et al. 2005; Sharma et al. 2007), although it
only works for small instances of RTS games with a limited
number of units to control (single digits).

Learning from observation approaches have the advantage
that they do not have to explore the whole state space of the
game. For example, Könik and Laird (2006) study how to
learn goal-subgoal decompositions by learning from human
demonstrations. Weber and Mateas (2009) use learning from
demonstration to predict the opponent’s strategy. The work
presented in this paper is a natural continuation of the work
of Floyd, Esfandiari, and Lam (2008), Ontañón et al. (2010),
and Lamontagne, Rugamba, and Mineau (2012).

Case-based Learning from Observation
Case-based Learning from Observation (CBLfO) ap-
proaches the LfO problem by capturing the behavior of the
expert in a series of cases, which can later be retrieved and
reused for replicating the expert’s behavior. Specifically, in
LfO, the observed behavior is represented as a set of demon-
strations or learning traces, from which to learn.

A learning trace consists of a list of triples D =
[〈t1, S1, a1〉, ..., 〈tn, Sn, an〉], where each triple contains a
time stamp ti, game state Si, and an action ai. The action ai
is the action executed by the expert at time ti in response to
game state Si.

We will consider a game state S to be repre-
sented as a feature vector, and an action a by a
name and a set of parameters. For example, the action
a = Build(U0, “Barracks”, (23, 18)) represents an action
commanding unit U0 to build a building of type “Barracks”
at position (23, 18).

The operation of a Case-based Learning from Observation
agent proceeds in two stages:

1. Case Acquisition: the agent analyzes a set of demonstra-
tions {D1, ..., Dm} and generates a case base from them.

2. Deployment: the agent uses CBR in order to perform a
task (in our situation, play an RTS game) using the case
base previously acquired from the demonstrations.

In this paper, we will primarily focus on the case acquisi-
tion phase, although case acquisition techniques have impli-
cations on how the deployment stage is performed.

We will represent a case as a pair 〈S, P 〉, where S is a
game state and P is a plan. A case represents the fact that the
plan P was demonstrated by the expert as the correct thing
to do at game state S. The solution of a case (the plan) can
either be a single action or a complex plan. The case acqui-
sition strategies discussed in this paper only use plans that
are, at their most complex, a series of actions but systems
using more sophisticated plans also exist (Ontañón 2012).

Case Acquisition
Case acquisition is the problem of generating a set of
cases {〈S1, P1〉, ..., 〈Sm, Pm〉} from a set of learning traces
D1, ..., Dn, and is one of the most important processes in
CBLfO since the performance of the system strongly de-
pends on the quality of the cases in the case base.

This section first presents three existing case acquisition
strategies (Reactive Learning, Monolithic Sequential Learn-
ing, and Temporal Backtracking), and then introduces a new
strategy called Similarity-based Chunking that is specifi-
cally designed to address the problem of learning behav-
iors from experts who reason with internal states. Other case
acquisition strategies from the literature include hierarchi-
cal or dependency-graph algorithms (Ontañón 2012). How-
ever, those algorithms exploit additional domain knowledge,
which we do not assume is available to the LfO agent.

Reactive Learning
Given an expert trace, which contains a sequence of triplets,
the reactive learning strategy (RL) learns one case per entry
in the trace. Thus, from a trace consisting of n entries:

[〈t1, S1, a1〉, ..., 〈tn, Sn, an〉]

it will learn the following n cases:

{〈S1, a1〉, ..., 〈Sn, an〉}

In this strategy, the solution portion of the case is a plan
that only contains a single action. This case acquisition strat-
egy was introduced by Floyd, Esfandiari, and Lam (2008).
The top-left part of Figure 1 shows an example of the cases
created from an expert trace consisting of 11 actions.

Monolithic Sequential Learning
As we will show in the empirical evaluation, one of the is-
sues of the previous strategy is that it is purely reactive and
the resulting CBR system has problems properly sequenc-
ing actions. Notice that this is expected, since the one piece
of information that is lost in the reactive learning strategy
is the precise order of the actions. The monolithic sequen-
tial learning strategy (MSL) takes the completely opposite
approach, given an expert demonstration with n actions, it
learns a single case:

388

Monolithic Sequential Learning

 0 S1 Harvest(U2,(0,16))
 5 S2 Train(U4,”peasant”)
 420 S3 Harvest(U3,(17,23))
 430 S4 Train(U4,”peasant”)
 856 S5 Build(U5,”LumberMill”,(4,23))
1381 S6 Build(U5,”Barracks”,(8,22))
2000 S7 Train(U6,”archer”)
2009 S8 Build(U5,”tower”)
2615 S9 Train(U6,”archer”)
3226 S10 Attack(U7,EU1)
3230 S11 Attack(U8,EU2)

Learning Trace

Reactive Learning

case 1:

case 11: (S11 , Attack(U8,EU2))

(S1 , Harvest(U2,(0,16))

Temporal Backtracking

case 1:

case 11: (S10 , Attack(U7,EU1) ,)

(S1 , Harvest(U2,(0,16) , -)

case 11: (S11 , Attack(U8,EU2) ,)

case 1:

(S1 , Harvest(U2,(0,16))
 Train(U4,”peasant”)
 Harvest(U3,(17,23))
 ...
 Train(U6,”archer”)
 Attack(U7,EU1)
 Attack(U8,EU2))

Similarity-based Chunking

case 1:
(S1 , Harvest(U2,(0,16))

 Train(U4,”peasant”)
 Harvest(U3,(17,23)))

(S10 , Attack(U7,EU1)
 Attack(U8,EU2))case 6:

Figure 1: A visual comparison of the four case acquisition strategies used in our experiments

〈S1, sequence(a1, ..., an)〉
where sequence(a1, ..., an) represents a sequential plan
where all the actions are executed in exactly the same or-
der as the expert executed them. Thus, this strategy learns a
single case per demonstration. Figure 1 shows an example
of this learning strategy (top-right). As we will show below,
the problem with this strategy is that once a case has been re-
trieved, actions will be executed in a fixed sequence, without
any reactivity to the dynamics of the domain.

Temporal Backtracking Learning
Temporal Backtracking Learning (TBL) is an improvement
over the basic Reactive Learning strategy by extending the
case definition to preserve the order in which the actions
occurred while maintaining reactivity. Specifically, given a
sequence of cases learned using the Reactive Learning strat-
egy from a single demonstration (C1 = 〈S1, a1〉, ..., Cn =
〈Sn, an〉), Temporal-Backtracking annotates each case with
a link to the case that preceded it, resulting in the following
set of cases (as illustrated in the bottom-left of Figure 1):

C1 = 〈S1, P1,−〉,
C2 = 〈S2, P2, C1〉,

...
Cn = 〈Sn, Pn, Cn−1〉

When using cases defined in this manner, case retrieval is
modified in the following way. When we need to retrieve a
case given a query, we first retrieve all the cases more similar
than a certain threshold k1 to the query. Then, we evaluate
whether the actions in the set of retrieved cases are differ-
ent from one another. If all the retrieved cases predict the
same action, then that action is used, otherwise, temporal
backtracking is performed. Temporal backtracking uses the
temporal links between cases (the third element in the case
triple) to get more information, in the form of previously
encountered game states and performed actions, to discrimi-
nate between retrieved cases. It starts by going one time step
back and comparing the similarity between the action in the
previous case with the past action of the query. Only those

retrieved cases with a similarity above another threshold k2
are kept. If there is still disagreement between the actions
predicted, then we compare the game states in the previous
cases (keeping only cases with similarity above k3). If there
was still a disagreement, then we would move one more step
back in time (using thresholds k2 and k3 for past action sim-
ilarity and past state similarity respectively), and so on, until
we cannot go back in time anymore, or until the actions in
the remaining set of cases are all equivalent (or more similar
than a given threshold). See Floyd and Esfandiari (2011a)
for exact details of the retrieval algorithm.

Similarity-based Chunking Learning
As we will show in the experimental evaluation section,
while Temporal Backtracking Learning is a significant im-
provement over Reactive Learning, it still sometimes fails
to account for some sequencing of actions which causes
its performance during game play to be drastically re-
duced. Similarity-based Chunking Learning (SBCL) is a
middle ground between Reactive Learning and Monolithic
Sequential Learning, which divides the trace into contiguous
chunks, trying to capture the key aspects of action sequenc-
ing, while maintaining some of the reactivity.

It often happens that two consecutive states in a learning
trace are highly similar. This is a problem, since it means that
when using a Reactive Learning strategy, the two cases gen-
erated from those two states will be hard to distinguish and
action sequencing might suffer. The SBCL strategy chunks
together those highly similar consecutive entries, as follows:

1. Start at the first entry of the learning trace (the triple
〈t1, S1, a1〉).

2. Mark the current entry (〈ti, Si, ai〉) as the beginning of a
chunk. Move to the next entry (〈ti+1, Si+1, ai+1〉).

3. If the similarity of the current entry, the jth entry, to
the entry at the start of the chunk is higher than a
threshold k (similarity(Sj , Si) > k), add the cur-
rent entry to the current chunk, move to the next entry
(〈tj+1, Sj+1, aj+1〉), and repeat Step 3. Otherwise, the
current chunk has ended so a new case is created. If the
chunk starts at the ith entry and contains m entries, the

389

case will have the game state from the ith entry and a se-
quence of m actions (〈Si, sequence(ai, ..., ai+(m−1))〉).
The process then returns to Step 2.

4. Repeat until the end of the trace is reached.

An illustration of this strategy can be seen at the bottom-
right corner of Figure 1. Similarity-based chunking is related
to the idea of sequential case acquisition via conditional en-
tropy by Lamontagne, Rugamba, and Mineau (2012), but
where actions are grouped together by the similarity of the
game state, rather than by the frequency in which they ap-
pear in a sequence in demonstrations. However, they have
different goals: our strategy aims at solving problems related
to state-based experts, whereas the conditional entropy strat-
egy is designed to reduce the size of the case-base while still
performing similarly to the reactive learning strategy.

Experimental Evaluation
In order to compare the different case acquisition strategies,
we implemented them in the Darmok 2 (D2) system and
used a real-time strategy game called S3 as our domain.
We evaluated the performance of each of the case acquisi-
tion strategies along two different dimensions. First, perfor-
mance was measured by counting how many games the sys-
tem was able to win after learning. Second, similarity to the
expert’s behavior was measured by evaluating the learning
system’s accuracy in predicting the actions that the expert
would have executed in given situations.

Darmok 2
We used the Darmok 2 (D2) case-based reasoning system
to compare the different case-acquisition strategies. D2 im-
plements the on-line case-based planning cycle, a high-level
framework to develop case-based planning systems that op-
erate in real-time environments (Ontañón et al. 2010), and
was designed to play real-time strategy games.

The D2 system maintains the current plan to be executed
(which is initially empty). If the plan is empty, D2 retrieves
a case and the plan in the retrieved case is used as the cur-
rent plan. The retrieved plans might have to be adapted using
transformational adaptation techniques. D2 tracks the execu-
tion status of the plan in execution, and if any part of the plan
fails and cannot be adapted by the plan adaptation algorithm
of D2, the plan is discarded. Each time the current plan fin-
ishes, or is discarded, D2 restarts the cycle by retrieving an-
other case. For a more in-depth description of D2, the reader
is referred to a formal definition of the system (Ontañón et
al. 2009; Ontañón et al. 2010).

S3
The Darmok 2 system was used in a strategy game called
S3, a simplified version of Warcraft. In S3, players need to
collect wood (by chopping trees) and gold (by mining gold
mines) in order to construct buildings and train units to de-
feat their opponents. To achieve those goals, there are 8 dif-
ferent action operators they can use (each of them with 2 to
5 parameters). We used a collection of 5 different maps with
different characteristics: two maps contained several islands

Wins Ties Score Accuracy
Expert 12.0 6.0 42.0 100.0%
RL 0.0 2.4 2.4 42.3%
SML 2.6 2.8 10.6 36.4%
TBL 0.8 2.4 4.8 58.7%
SBCL 2.4 0.4 7.6 45.5%

Table 1: Game results and similarity with the expert’s be-
havior for each case acquisition strategy

connected by small bridges, two maps contained walls of
trees that players had to cut through in order to reach the
enemy, and one map consisted of a labyrinth of trees with
each player on one side. Maps in S3 are represented by a
two-dimensional grid, where in each cell we can have grass,
water or trees. The maps used in our evaluation had a size
of 64 × 32 cells. S3 contains 4 built-in AIs, implementing
4 different strategies: footman rush, archers rush, catapults
rush and knights rush.

Experimental Settings
We created a fifth AI, which we call the expert, implement-
ing a defensive knights rush strategy where a formation of
defensive towers are created and then knights are sent to at-
tack the enemy. The expert’s behavior has internal state: it
keeps track of how many units it has sent to attack so far, and
changes it’s behavior according to that. Thus, it is not possi-
ble to represent the behavior of this expert as a perception-
to-action mapping.

Expert traces were generated by making this strategy play
one game against each of the other AIs (including itself) in
each of the maps. The expert executed an average of 134.7
actions (minimum 47 and maximum 242) per trace. Then,
we selected 5 of these traces, one per map, where the expert
wins for the training set. When running experiments, when
a game reached 100000 cycles (over half an hour of running
time), it was stopped and considered a tie.

Performance in Playing the Game Results
Table 1 shows the average number of wins, ties, and overall
score (3 points for a win and 1 point for a tie) that our system
obtained using the different case acquisition strategies. Each
version of our system played against the 5 AIs (the 4 built-in
AIs and the expert) in 5 different maps (25 games per ex-
periment), and each experiment was repeated 5 times (total
of 125 games per strategy). For the Temporal Backtracking
strategy, we used used the thresholds k1 = 0.9, k2 = 0.5
and k3 = 0.7. For Similarity-based Chunking, we used the
threshold k = 0.85. These parameters were set via experi-
mentation to obtain the best results.

These results clearly indicate that strategies that learn
sequential actions (Sequential Monolithic and Similarity-
Based Chunking) obtain a much larger number of wins than
the other strategies. We believe this is due to the fact that
sequencing actions in an RTS game is key to winning the
game, and also because the behavior of the expert can only
be learned by learning action sequencing beyond a situation-
to-action mapping. Also, notice that the Sequential Mono-
lithic Learning strategy only manages to play the game at

390

all thanks to the adaptation component of Darmok 2, which
can adapt the actions in the retrieved case to the situation at
hand. Otherwise, blindly replicating the actions of the expert
in a different game would not result in any meaningful play
(this is true for all strategies, but particularly for this one).

However, these results do not indicate whether the sys-
tem behaves similar to the expert or not. They don’t indicate
whether the system was successful in learning from obser-
vation or not, only if the agent was able to achieve the pri-
mary goal of the expert (winning the game). Additionally, it
may not be possible for a learning agent to have a clearly de-
fined goal to measure its success unless that goal is explicitly
given by a domain expert.

Similarity with Expert’s Behavior Results
Table 1 also shows the accuracy with which our system
could predict the actions executed by the expert using each
case acquisition strategy, measured using a leave-one-out
strategy. The system learned from all but one trace and tried
to predict the actions for each game state in the remaining
trace. Moreover, given that the actions in RTS games are
complex, we only measured the accuracy with which the
system predicted the type of the action (whether it is an at-
tack action, a harvest action, etc.) regardless of the parame-
ters (there are 8 different types of actions).

Table 1 shows that even though the Sequential Monolithic
Learning strategy performed better in the game, it actually
does a poor job in predicting the actions executed by the ex-
pert. This was expected since this strategy blindly repeats
the sequence of actions in the retrieved case, which might
not correspond to what the expert would do in the situation
at hand. The strategy that better replicated the behavior of
the expert is the Temporal Backtracking Learning strategy.
Similarity-based Chunking outperforms Sequential Mono-
lithic Learning and Reactive Learning, but does not reach the
level of Temporal Backtracking Learning. Figure 2 shows a
visualization of how the classification accuracy of the sys-
tem varies as the game progresses. The horizontal axis rep-
resents time, measured as number of actions performed. Re-
active keeps the same average accuracy throughout, while
we can see that SML performs very well at the beginning
of the game, but drops very quickly. TBL keeps a better ac-
curacy throughout the game. SBCL shows a similar trend to
SML, but maintaining a higher accuracy for longer.

Analyzing the results, we see that the metrics used in our
evaluation (performance and similarity with expert) rank the
strategies differently, since they analyze different features of
the behavior of the system. According to performance (us-
ing the score metric) we obtained: SML > SBCL > TBL
> RL. According to similarity (using the average accuracy),
we obtained: TBL > SBCL > RL > SML. All the differ-
ences were found to be statistically significant using a paired
t-test with p < 0.05.

Both metrics have been extensively used in the literature,
and we argue that it is very important to use both of them
in LfO work in order to get a complete picture of the per-
formance of the LfO algorithms. Depending on the applica-
tion task, one metric might be more important than the other.
Thus, the only conclusive results in our evaluation is that our

new technique, SBCL, performs better than RL in both met-
rics. However, if we use their average rank, with a rank of
1 being the best and 4 the worst, the best case acquisition
strategies are SBCL (average rank of 2) and TBL (average
rank of 2), followed by SML (average rank of 2.5) and RL
(average rank of 3.5).

Related Work
Previous Case-based Learning from Observation systems,
as we have discussed in earlier sections, are ill-suited for
learning from experts with internal states because they learn
policies to map the expert’s current perception to an action.
Learning from observation systems that use other learning
approaches (Grollman and Jenkins 2007; Thurau and Bauck-
hage 2003; Coates, Abbeel, and Ng 2008) suffer the same
limitations because they attempt to learn similar mapping
policies.

The need for using sequences of problems and solutions
during reasoning has been explored in other CBR research
such as case-based plan recognition (Kerkez and Cox 2003).
Martı́n and Plaza (2004) note that reasoning often can not
be performed at a single point in time but requires reason-
ing over a period of time. It was found that reasoning with
a sequence of past inputs allows inputs that are otherwise
similar to be differentiated (Shih 2001).

Approaches that do take into account sequences of past
actions have been called trace-based reasoning (Mille 2006)
and episode-based reasoning (Sànchez-Marrè et al. 2005).
These approaches, while they have different names, both fol-
low a similar approach. Instead of reasoning with a single
input they use either a fixed-length sequence of past actions
(Doumat, Egyed-Zsigmond, and Pinon 2010) or a fixed-
length sequence of both inputs and actions (Champin, Prié,
and Mille 2003; Sànchez-Marrè et al. 2005). While these
approaches could be used to learn from experts who have
internal states, the fact that they make use of fixed-length
sequences during retrieval limits their applicability to learn-
ing from observation.

Conclusions and Future Work
This paper has focused on case acquisition strategies for
Case-based LfO systems that are designed to learn state-
based behaviors. We have introduced a new case acquisi-
tion strategy, Similarity-based Chunking, and compared it
against other case acquisition strategies from the literature.

Additionally, we have paid special attention to the
methodology to evaluate the performance of our system,
by using two complementary metrics: performance in game
play and similarity with the expert’s behavior. We have
shown that those two metrics analyze completely different
aspects of the performance of the system, and thus, argue
that both should be used when comparing LfO algorithms.

As part of our future work, we would like to develop a bet-
ter understanding of the different trade-offs between the ex-
isting case acquisition strategies in domains other than RTS
games. Also, we would like to explore the role that different
case adaptation strategies have in the performance of Case-
based LfO systems and how adaptation depends on the type

391

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	
 110	
 120	
 130	
 140	
 150	
 160	

Reac1ve	

Monolithic	
 Sequen1al	

Temporal	
 BackTracking	

Similarity-­‐based	
 Chunking	

Figure 2: A visualization of the classification accuracy of the system in predicting the expert’s actions over time using each of
the different case acquisition techniques. The horizontal axis represents time, measured in number of actions issued.

of case acquisition technique being employed. Finally, the
obtained results show that there is a significant amount of
room for improvement, indicating we can still improve our
case retrieval and adaptation techniques.

References
Aha, D.; Molineaux, M.; and Ponsen, M. 2005. Learning to win:
Case-based plan selection in a real-time strategy game. In 6th In-
ternational Conference on Case-Based Reasoning, 5–20.
Buro, M. 2003. Real-time strategy games: A new AI research
challenge. In 18th International Joint Conference on Artificial In-
telligence, 1534–1535.
Champin, P.-A.; Prié, Y.; and Mille, A. 2003. MUSETTE: Model-
ing USEs and Tasks for Tracing Experience. In ICCBR Workshop
From Structured Cases to Unstructured Problem Solving Episodes
For Experience-Based Assistance, 279–286.
Chung, M.; Buro, M.; and Schaeffer, J. 2005. Monte Carlo plan-
ning in RTS games. In IEEE Symposium on Computational Intel-
ligence and Games.
Coates, A.; Abbeel, P.; and Ng, A. Y. 2008. Learning for control
from multiple demonstrations. In 25th International Conference
on Machine Learning, 144–151.
Doumat, R.; Egyed-Zsigmond, E.; and Pinon, J.-M. 2010. User
trace-based recommendation system for a digital archive. In 18th
International Conference on Case-Based Reasoning, 360–374.
Floyd, M. W., and Esfandiari, B. 2011a. Learning state-based
behaviour using temporally related cases. In 16th United Kingdom
Workshop on Case-Based Reasoning, 34–45.
Floyd, M. W., and Esfandiari, B. 2011b. Supplemental case acqui-
sition using mixed-initiative control. In 24th International Florida
Artificial Intelligence Research Society Conference, 395–400.
Floyd, M. W.; Esfandiari, B.; and Lam, K. 2008. A case-based
reasoning approach to imitating RoboCup players. In 21st Interna-
tional Florida Artificial Intelligence Research Society Conference,
251–256.
Grollman, D. H., and Jenkins, O. C. 2007. Dogged learning for
robots. In 24th IEEE International Conference on Robotics and
Automation, 2483–2488.
Kerkez, B., and Cox, M. T. 2003. Incremental case-based plan
recognition with local predictions. International Journal on Artifi-
cial Intelligence Tools 12(04):413–463.
Könik, T., and Laird, J. E. 2006. Learning goal hierarchies from
structured observations and expert annotations. Mach. Learn. 64(1-
3):263–287.

Lamontagne, L.; Rugamba, F.; and Mineau, G. 2012. Acquisi-
tion of cases in sequential games using conditional entropy. In
ICCBR Workshop on TRUE: Traces for Reusing Users’ Experience
- Cases, Episodes and Stories, 203–212.
Marthi, B.; Russell, S.; Latham, D.; and Guestrin, C. 2005. Con-
current hierarchical reinforcement learning. In 19th International
Joint Conference on Artificial Intelligence, 779–785.
Martı́n, F. J., and Plaza, E. 2004. Ceaseless case-based reasoning.
In 7th European Conference on Case-Based Reasoning, 287–301.
McCoy, J., and Mateas, M. 2008. An integrated agent for playing
real-time strategy games. In 23rd Conference on Artificial Intelli-
gence, 1313–1318.
Mille, A. 2006. From case-based reasoning to traces-based reason-
ing. Annual Reviews in Control 30(2):223–232.
Ontañón, S.; Bonnette, K.; Mahindrakar, P.; Gómez-Martı́n, M. A.;
Long, K.; Radhakrishnan, J.; Shah, R.; and Ram, A. 2009. Learn-
ing from human demonstrations for real-time case-based planning.
In IJCAI Workshop on Learning Structural Knowledge From Ob-
servations.
Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2010. On-line
case-based planning. Computational Intelligence 26(1):84–119.
Ontañón, S.; Montaña, J. L.; and Gonzalez, A. J. 2011. Towards a
unified framework for learning from observation. In IJCAI Work-
shop on Agents Learning Interactively from Human Teachers.
Ontañón, S. 2012. Case acquisition strategies for case-based rea-
soning in real-time strategy games. In 25th International Florida
Artificial Intelligence Research Society Conference, 335–340.
Sànchez-Marrè, M.; Cortés, U.; Martı́nez, M.; Comas, J.; and
Rodrı́guez-Roda, I. 2005. An approach for temporal case-based
reasoning: Episode-based reasoning. In 6th International Confer-
ence on Case-Based Reasoning, 465–476.
Sharma, M.; Homes, M.; Santamaria, J.; Irani, A.; Isbell, C.; and
Ram, A. 2007. Transfer learning in real time strategy games using
hybrid CBR/RL. In 20th International Joint Conference on Artifi-
cial Intelligence, 1041–1046.
Shih, J. 2001. Sequential instance-based learning for planning in
the context of an imperfect information game. In 4th International
Conference on Case-Based Reasoning, 483–501.
Thurau, C., and Bauckhage, C. 2003. Combining self organiz-
ing maps and multilayer perceptrons to learn bot-behavior for a
commercial game. In 4th International Conference on Intelligent
Games and Simulation, 119–126.
Weber, B. G., and Mateas, M. 2009. A data mining approach to
strategy prediction. In IEEE Symposium on Computational Intelli-
gence and Games.

392

