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Abstract
The Dominance-based Rough Set Approach (DRSA) is
an extension of Rough Sets Theory to handle multicri-
teria classification problems by authorizing preference-
ordered attributes. The DRSA assumes the existence of
a single decision table while real-world decision prob-
lems imply generally several experts with different de-
cision tables. The objective of this paper is to propose
an algorithm for the aggregation of a set of decision ta-
bles, as a first step for approximating these tables. The
algorithm is illustrated using real-world data.

Introduction
The Dominance-based Rough Set Approach (DRSA)
(Greco, Matarazzo, and Slowiński 2001) is an extension of
rough sets theory (Pawlak 1991) to handle multicriteria clas-
sification problems by authorizing preference-ordered at-
tributes. The input data for DRSA are often structured in
a decision table where rows correspond to decision objects
and columns correspond to attributes. The attributes used in
rough approximation in multicriteria classification problems
are often divided into two disjoint subsets: a subset of condi-
tion attributes and a subset of decision attributes. The DRSA
assumes the existence of a single decision table. However,
multicriteria classification problems generally imply differ-
ent experts having different and conflicting objectives and
preferences, each with its decision table.

The approximation of several decision tables has been
addressed by several authors (Bi and Chen 2007; Chakhar
and Saad 2012; Chen, Kilgour, and Hipel 2012; Greco,
Matarazzo, and Slowiński 2006). The first step of rough ap-
proximation of decision tables consists in the aggregation
of these tables into a collective decision table with one col-
lective decision attribute. The objective of this paper is to
propose an algorithm for the aggregation of a set of decision
tables as a first step to rough approximation of these tables.
The algorithm is illustrated using real-world data.

The rest of paper is organized as follows. Section 2
presents the background and set decision tables aggregation
problem. Section 3 presents the aggregation algorithm. Sec-
tion 4 presents a numerical example. Section 5 concludes the
paper.
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Decision tables aggregation problem
In rough sets theory, information regarding the decision
objects is often structured in a 4-tuple information table
S = 〈U,Q, V, f〉, where U is a non-empty finite set of ob-
jects and Q is a non-empty finite set of attributes such that
q : U → Vq for every q ∈ Q. Vq is the domain of attribute
q. V =

⋂
q∈Q Vq , and f : U × Q → V is the information

function defined such that f(x, q) ∈ Vq for each attribute q
and object x ∈ U . Q is often divided into a sub-set C 6= ∅
of condition attributes and a sub-set D 6= ∅ of decision at-
tributes such that C ∪D = Q and C ∩D = ∅. In this case,
S is called a decision table.

In multicriteria decision-making, the domain of condition
attributes are supposed to be ordered according to decreasing
or increasing preference. Such attributes are called criteria.
We assume that the preference is increasing with a value of
f(·, q) for every q ∈ C. We also assume that the set of deci-
sion attributes D = {d} is a singleton. The unique decision
attribute d makes a partition of U into a finite number of
preference-ordered decision classes Cl = {Cl1, · · · , Cln}
such that each x ∈ U belongs to one and only one class.

In DRSA the represented knowledge is a collection of up-
ward union Cl≥t and downward union Cl≤t of classes de-
fined as follows:

Cl≥t =
⋃
s≥t

Cls, Cl
≤
t =

⋃
s≤t

Cls.

The assertion “x ∈ Cl≥t ” means that “x belongs to at
least class Clt” while assertion “x ∈ Cl≤t ” means that “x
belongs to at most class Clt”. The basic idea of DRSA is to
replace indiscernibility relation used in conventional rough
sets theory with dominance relation. The dominance relation
∆P associated with P is defined for each pair of objects x
and y as follows:

x∆P y ⇔ f(x, q) � f(y, q),∀q ∈ P.
To each object x ∈ U , we associate two sets: (i) the

P -dominating set ∆+
P (x) = {y ∈ U : y∆Px} contain-

ing objects that dominate x, and (ii) the P -dominated set
∆−P (x) = {y ∈ U : x∆P y} containing the objects dom-
inated by x. The P -lower and P -upper approximations of
Cl≥t with respect to P ⊆ C are defined as follows:

• P (Cl≥t ) = {x ∈ U : ∆+
P (x) ⊆ Cl≥t },
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• P̄ (Cl≥t ) = {x ∈ U : ∆−P (x) ∩ Cl≥t 6= ∅}.
Analogously, the P -lower and P -upper approximations of

Cl≤t with respect to P ⊆ C are defined as follows:

• P (Cl≤t ) = {x ∈ U : ∆−P (x) ⊆ Cl≤t },

• P̄ (Cl≤t ) = {x ∈ U : ∆+
P (x) ∩ Cl≤t 6= ∅}.

The P -boundaries of Cl≥t and Cl≤t are defined as:

• BnP (Cl≥t ) = P̄ (Cl≥t )− P (Cl≥t ),

• BnP (Cl≤t ) = P̄ (Cl≤t )− P (Cl≤t ).
The quality of classification (or approximation) of a par-

tition Cl by means of a set of criteria P is measured by the
ratio γP , which expresses the ratio of all P-correctly classi-
fied objects to all objects in the system.

Let H = {1, · · · , i, · · · , h} and let Si = 〈U,C ∪
{Ei}, V, fi〉, ∀i ∈ H be n decision tables where Ei and
fi are respectively the decision attribute and the informa-
tion function relative to the ith decision table. We assume
that a preference order for U represented by a finite set of
preference-ordered classes Cli = {Clt,i, t ∈ Ti}, Ti =
{0, · · · , ni}, such that

⋃ni

t=1 Clt,i = U , Clt,i ∩ Clr,i = ∅,
∀r, t ∈ Ti, r 6= t, and if x ∈ Clr,i, y ∈ Cls,i and r > s,
then x is better than y for the ith decision table. The ni is
the number of decision classes for the ith decision table.
The approximation of the ith decision table Si is character-
ized, among others, by: (i) the P -lower approximation and
P -boundary of Cl≤t,i and Cl≥t,i, for each t ∈ Ti, and (ii) the
quality of classification γiP .

The first step of rough approximation of decision tables
consists in the aggregation of these tables into a collective
decision table with one collective decision attribute. The
problem of decision tables aggregation can be stated as fol-
lows: Let Si = 〈U,C ∪ {Ei}, V, fi〉 (∀i ∈ H). Then, con-
struct a collective decision table S = 〈U,C ∪ {E}, V, g〉
where E is a decision attribute and g is an information func-
tion defined for each x ∈ U as follows:

g(x, q) =

{
f(x, q), if q ∈ C,
g(x,E), if q = E. (1)

The decision attribute E induces a partition of U into a
set of decision classes Cl = {Cl1, · · · , Cln} such that each
x ∈ U belongs to one and only one classClt ∈ Cl. To define
S it suffices to specify the values of g(x,E) for all x ∈ U .

Decision tables aggregation algorithm
As stated above, the objective of the aggregation algorithm
is to construct a decision table S by aggregating the decision
tables S1, · · · ,Sh. The idea of the aggregation algorithm is
to use the upward and downward approximation of unions of
classes in order to identify the possible assignments classes
for each decision object. Two sets will be constructed: (i)
set N1 contains the possible assignments obtained based on
the upward approximation of unions of classes; and (ii) set
N2 contains the possible assignments obtained based on the
downward approximation of unions of classes. These sets
will then be used to associate to each object x ∈ U an as-
signment interval I(x) = [l(x), u(x)] where l(x) and u(x)

are respectively the lower and upper classes to which ob-
ject x can be assigned. Finally, some simple rules are used
to reduce the assignment interval I(x) into a single element
representing the value of the collective decision attribute E.

Before introducing the aggregation algorithm we need to
introduce new concepts. More specifically, the definition of
sets N1 and N2 requires the introduction of three concepts:
concordance power, discordance power and the credibility
indexes. Let first standardize the quality of classifications
γkP (∀k ∈ H) as follows:

γ′k =
γkP∑h
r=1 γ

r
P

(2)

We assume that � ∈ {≥,≤} and Cl={Cl1, · · · , Cln}.
Concordance power For each x ∈ U and Clt ∈ Cl we
define the set: L(x,Cl�t ) = {i : i ∈ H ∧ x ∈ P (Cl�t,i)}
where P (Cl�t,i) is the P -lower approximation of Cl�t in re-
spect to the ith decision table. Then, the concordance pow-
ers for the assignment of x to Cl�t is then defined as follows.
Definition 1 The concordance power for the assignment of
x to Cl�t is computed as follows:

S(x,Cl�t ) =
k=n∑
k=1

Sk(x,Cl�t ) (3)

where:

Sk(x,Cl�t ) =

{
γ′k, if k ∈ L(x,Cl�t ),
0, otherwise. (4)

Discordance power For each x ∈ U and Clt ∈ Cl we
define the set B(x,Cl�t ) = {i : i ∈ H ∧ x ∈ BnP (Cl�t,i)}
where BnP (Cl�t,i) is the boundary of Cl�t in respect to the
ith decision table. Then, the discordance powers for the as-
signment of x to the boundary of Cl�t is defined as follows.
Definition 2 The discordance power for the assignment of
x to Cl�t is computed as follows:

Z(x,Cl�t ) =

k=n∏
k=1

Zk(x,Cl�t ) (5)

where

Zk(x,Cl�t ) =


1−γ′k

1−S(x,Cl�t )
, if γ′k > S(x,Cl�t )∧

k ∈ B(x,Cl�t ),
1, otherwise.

(6)

We may distinguish two cases in the definition of the dis-
cordance power. The first case holds when γ′k ≤ S(x,Cl�t ),
which leads to Zk(x,Cl�t ) = 1. In this case, there is no
veto effect for decision maker k and Zk(x,Cl�t ) will have
no effect on the definition of overall discordance power
Z(x,Cl�t ) and on the value of the credibility indexes as ex-
plained in the next paragraph. The second case holds when
γ′k > S(x,Cl�t ), which leads to 0 < Zk(x,Cl�t ) < 1. Here,
decision maker k do have a veto effect and Zk(x,Cl�t ) will
have an effect on the value of overall discordance power
Z(x,Cl�t ) and on the value of the credibility indexes as ex-
plained later.
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Credibility indexes Using the concordance and discor-
dance powers, we may define the credibility index for as-
signing x to Cl�t as follows.

Definition 3 Let x ∈ U and � ∈ {≥,≤}. The credibility in-
dexes for the assignment of x to Cl�t is computed as follows:

σ(x,Cl�t ) = S(x,Cl�t ) · Z(x,Cl�t ) (7)

This formula can be explained as follows. If there is no
support for the assignment of x to Cl�t , i.e., S(x,Cl�t ) = 0,
then the credibility indexes will be σ(x,Cl�t ) = 0. In turn,
if there is a full support, i.e., S(x,Cl�t ) = 1 (which im-
poses that Z(x,Cl�t ) = 1), then credibility indexes will be
σ(x,Cl�t ) = 1. Finally, if there is a partial support, i.e., 0 <
S(x,Cl�t ) < 1 (which imposes that 0 < Z(x,Cl�t ) ≤ 1),
then 0 < σ(x,Cl�t ) < 1. In the last case, we may distin-
guish two subcases, according to the verification or not of
the condition γ′k > S(x,Cl�t ). The first subcase holds when
the condition γ′k > S(x,Cl�t ) is not verified. This leads
to Z(x,Cl�t ) = 1 and then σ(x,Cl�t ) = S(x,Cl�t ) < 1.
In this subcase, the credibility index is simply equal to the
concordance power; hence the discordance power will have
no effect on the value of the credibility indexes σ(x,Cl�t ).
The second subcase holds when condition γ′k > S(x,Cl�t )
is verified. This leads to Z(x,Cl�t ) < 1 and consequently
σ(x,Cl�t ) = S(x,Cl�t ) ·Z(x,Cl�t ) < 1. In this subcase, the
credibility index is obtained by decreasing the concordance
power S(x,Cl�t ) proportionally to the value of the discor-
dance power Z(x,Cl�t ).

Definition of assignment interval Let λ ∈ [0.5, 1] be a
credibility threshold. Then, based on the credibility indexes,
we may define the sets N1 and N2 as follows.

Definition 4 The credibility indexes, we may define the sets
N1 and N2 as follows:

• N1(x) = {Clt : x ∈ U ∧ σ(x,Cl≥t ) ≥ λ},
• N2(x) = {Clt : x ∈ U ∧ σ(x,Cl≤t ) ≤ λ}.

Then, the idea for the definition of assignment intervals
is to constraint possible assignment classes by the content
of sets N1(x) and N2(x). Indeed, the set N1(x) is defined
based on the upward union of classes Cl≥t ; it should be used
to define the lower limit l(x) of the assignment interval of x.
In turn, the set N2(x) is defined based on downward union
of classes Cl≤t ; it should be used to define the upper limit
u(x) of the assignment interval of x.

Definition 5 Let x ∈ U . Then, we associate to each object
x an assignment interval I(x) = [l(x), u(x)] where:

l(x) =

{
argmaxCltN1(x), if N1(x) 6= ∅,
Cl0, otherwise. (8)

u(x) =

{
argminCltN2(x), if N2(x) 6= ∅,
Cln, otherwise. (9)

Reduction of the assignment interval Let I(x) =
[l(x), u(x)] be the assignment interval for object x ∈ U
defined as previously. Two cases hold for the reduction of
I(x). The first case holds when l(x) = u(x). Here, object
x is assigned to a single class and consequently we can set
g(x,E) = l(x) (or g(x,E) = u(x)). The second case holds
when l(x) < u(x). This corresponds to the situation where
object x can be assigned to more than one class. To specify
the value of g(x,E) when the second case holds we may
apply one of the following rules to reduce the collective as-
signment interval I(x) to a single class: the minimum value,
the maximum value, the median value, the floor of the me-
dian value and the ceil of the median value.

Aggregation algorithm The aggregation procedure is for-
malized in Algorithm 1. This algorithm works as follows. It
loops on the set of decision objects and for each object: (i)
computes the credibly indexes for upward unions of classes
(the first inner for loop); (ii) computes the credibly indexes
for downward unions of classes (the second inner for loop));
(iii) computes the assignment interval I(x) = [l(x), u(x)];
and (vi) computes the values of the collective decision at-
tribute E.

Functions SigmaUpward and SigmaDownward per-
mit to compute the credibility indexes and function
IntervalReduction permits to compute the assignment inter-
val.

Application

We consider a real-world data relative to the management
of post-accident nuclear risk in the PRIME project (Chakhar
and Saad 2012). The problem involves 18 decision objects
and 7 attributes (radioecological vulnerability of agricultural
area (A1), radioecological vulnerability of forest area (A2),
radioecological vulnerability of urban area (A3), real estate
vulnerability (A4), Tourism vulnerability (A5), economic
vulnerability of companies (A6), and employment vulner-
ability (A7)).

The main input is three decision tables summarized in
Table 1. Each object is described in terms of seven condi-
tion attributes (A1, A2, · · ·, and A7) and three decision at-
tributes (E1, E2, and E3). The values of condition attributes
correspond to vulnerability levels. The values of decision at-
tributes correspond to the global vulnerability levels as spec-
ified by three experts. All condition and decision attributes
are evaluated on a six-level ordinal scale (from normal situ-
ation (0) to major and long-lasting negative impact (5)).

The software 4eMka2 (which implements the DRSA) is
used to approximate the individual decision tables. The out-
puts of individual approximations are then complied in a sin-
gle .txt file and provided as input to a prototype implement-
ing the aggregation algorithm.

The credibility indexes values computed using Equation
(7) are given in Table 2. The assignment intervals along with
the application of interval reduction rules are given in Table
3.
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Algorithm 1: Aggregation
Input : I // where I = 〈U,C, V, f〉 is the common decision table.

S1, · · · , Sh //where Si = 〈U,C ∩ {Ei}, V, fi〉.
λ // where λ ∈ [0.5, · · · , 1] is the credibility threshold.
ir−rule // where ir − rule is the interval reduction rule.
default−rule // default rule to use when “median” rule do not apply.

Output: S // where S = 〈U,C ∩ E, V, g〉 is the aggregated decision table.
E ←− decision attribute;
Q←− C ∪ {E};
H ←− {1, 2, · · · , h}
for (all x ∈ U) do

//...computes the credibly indexes for upward unions of classes...
N1 (x)←− ∅;
for (all t ∈ {1, 2, · · · , n}) do

σ
(
x,Cl

≥
t

)
←− SigmaUpward(S1, · · · , Sh, t, x);

if
(
σ(x,Cl

≥
t
) ≥ λ

)
then

N1 ←− N1 ∪ Clt;
end

end

//...computes the credibly indexes for downward unions of classes...
N2 (x)←− ∅;
for (all t ∈ {0, 1, · · · , n− 1}) do

σ
(
x,Cl

≤
t

)
←− SigmaDownward(S1, · · · , Sh, t, x);

if
(
σ(x,Cl

≤
t
) ≥ λ

)
then

N2 ←− N2 ∪ Clt;
end

end

//...computes the assignment interval I(x) = [l(x), u(x)]...
l(x)←− Cl0;
u(x)←− Cln ;
if (N1 6= ∅) then

l(x)←− argmaxClt
N1(x);

end
if (N2 6= ∅) then

u(x)←− argminClt
N2(x);

end

//...computes the values of the collective decision attribute g(x,E)...
for (all q ∈ C) do

g (x, q)←− f(x, q);
end
if ( l(x) = u(x)) then

g(x,E)←− l(x);
end
else

g(x,E)←−
IntervalReduction(l(x), u(x), ir−rule, default−rule);

end
end
S←−< U,Q, V, g >;
return S

Conclusion
We proposed an algorithm for the approximation of a set of
decision tables. The algorithm is illustrated using real-world
data. In the future, we intend to study the mathematical prop-
erties of the introduced concepts. We also intend to conceive
and to develop a full-featured decision support system sup-
porting the aggregation algorithm.
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