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Abstract
We consider false-name manipulation in weighted voting
games (WVGs). False-name manipulation involves an agent,
termed a manipulator, splitting its weight among several false
identities in anticipation of power increase. False-name ma-
nipulation has been identified as a problem in WVGs. Indeed,
in open anonymous environments, this manipulation can be
easy and cheap to achieve. Previous works have considered
false-name manipulation in WVGs using the well-known
Shapley-Shubik and Banzhaf indices to compute agents’
power. Upper and lower bounds on the extent of power that a
manipulator may gain exist for the case when a manipulator
splits into k = 2 false identities for both the Shapley-Shubik
and Banzhaf indices. The bounds on the case when an agent
splits into k > 2 false identities, until now, has remained open
for the two indices. This paper answers this open problem by
providing four non-trivial bounds on false-name manipula-
tion in WVGs when an agent splits into k > 2 false identities
for both the Shapley-Shubik and Banzhaf indices. One of the
bounds is also shown to be asymptotically tight, i.e., there ex-
ists at least a game in which an agent achieves the proposed
bound by splitting into several false identites.

1 Introduction
WVGs are classic cooperative games which provide com-
pact representation for coalition formation models in human
societies and multiagent systems. One way of modeling co-
operation for making joint decisions that is frequently found
in the real world is via the use of WVGs. WVGs represent
mathematical abstractions of voting systems. In a WVG, a
quota is given and each agent has an associated weight. A
subset of agents whose total weight is at least the value of the
quota is called a winning coalition. Agents’ relative power
in such games is measured using power indices. Two promi-
nent indices found in the literature are the Shapley-Shubik
(Shapley and Shubik 1954) and Banzhaf (Banzhaf 1965) in-
dices. These indices are used in this paper to analyze the
effects of false-name manipulation in WVGs.

False-name manipulation in WVGs, originally studied by
(Bachrach and Elkind 2008), involves an agent, termed a
manipulator, splitting its weight among several identities
(called false agents) in anticipation of power increase. False-
name manipulation has been identified as a problem in
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WVGs (Bachrach and Elkind 2008; Aziz and Paterson 2009;
Aziz et al. 2011). This is because the anticipated power in-
crease by a manipulator is at the expense of other agents in
the game. When an agent engages in false-name manipula-
tion, the number of agents in the new game increases by the
number of false agents that the manipulator splits. Also, the
quota and weights of other agents in the new game remain
the same. The sum of the power of the false agents becomes
the new power of the manipulator.

Bachrach and Elkind (2008) and Aziz and Paterson
(2009) study false-name manipulation in WVGs using the
Shapley-Shubik and Banzhaf indices respectively to evalu-
ate the effect of this problem when an agent splits into ex-
actly k = 2 false identities. They provide upper and lower
bounds on the extent of power a manipulator may gain or
lose in a WVG. The two papers, however, left as an open
problem bounds on the case when an agent splits into k > 2
false identities. Apart from this, Lasisi and Allan (2010) con-
sider an empirical analysis of splitting into more than two
false identities but left the issue of theoretical bounds as an
open problem. This problem, until now, also remain open
in a recent work of (Aziz et al. 2011). We answer this open
problem by providing four non-trivial bounds on false-name
manipulation in WVGs when a manipulator splits into k > 2
false identities using the Shapley-Shubik and Banzhaf power
indices to compute agents’ power.

2 Preliminaries
Definition 1. Simple Game.

Let I = {1, . . . , n} be a set of n ∈ N agents. The non-
empty subsets of I are called coalitions. A simple game is a
coalitional game, (I, v), where v : 2I → {0, 1}. A coalition
S ⊆ I is winning if v(S) = 1 and losing if v(S) = 0.
Definition 2. Weighted Voting Game.

A WVG is a simple game which has a weighted form,
(W, q), where W = (w1, . . . , wn) ∈ (R+)n corresponds to
the weights of agents in I , and q ∈ R+ is the quota of the
game. A coalition S wins if the total weight of S, w(S) =∑
i∈S wi ≥ q, which implies that v(S) = 1. A WVG G of

n agents with quota q is denoted by G = [w1, . . . , wn; q].
Definition 3. Shapley-Shubik Power Index.
The Shapley-Shubik index quantifies the marginal contribu-
tion of an agent to the grand coalition. Each permutation of
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the agents is considered. We term an agent pivotal in a per-
mutation if the agents preceding it do not form a winning
coalition, but by including this agent, a winning coalition is
formed. We specify the computation of the index using no-
tation of (Aziz et al. 2011). Denote by π, a permutation of
the agents, so π : {1, . . . , n} → {1, . . . , n}, and by Π the
set of all possible permutations. Denote by Sπ(i) the prede-
cessors of agent i in π, i.e., Sπ(i) = {j : π(j) < π(i)}. The
Shapley-Shubik index, ϕi(G), for each agent i in a WVGG:

ϕi(G) =
1

n!

∑
π∈Π

[v(Sπ(i) ∪ {i})− v(Sπ(i))]. (1)

Definition 4. Banzhaf Power Index.
An agent i ∈ S ⊆ I is referred to as being critical in a
winning coalition, S, if w(S) ≥ q and w(S\{i}) < q. The
Banzhaf power index computation for an agent i is the pro-
portion of times i is critical compared to the total number of
times any agent in the game is critical. The Banzhaf index,
βi(G), for each agent i in a WVG G is given by

βi(G) =
ηi(G)∑
j∈I ηj(G)

(2)

where ηi(G) is the number of coalitions for which agent i is
critical in game G.

Formal Problem Definition
Let k ∈ N. Consider a WVG G = [w1, . . . , wn; q] of n
agents. Let agent i ∈ I with weight wi in G be a manipu-
lating agent. Suppose agent i splits its weight among k ≥
2 false agents, i1, . . . , ik, having corresponding weights,
wi1 , . . . , wik , such that wi =

∑k
j=1 wij and wij > 0. We

have a new set of agents after splitting: I ′ = {1, . . . , i −
1, i1, . . . , ik, i + 1, . . . , n}. The initial game G of n agents
has been altered by agent i to give a new WVG G′ of
n+ k − 1 agents. Note that the weights of other agents and
the quotas in the two games are the same.

Let φ be any of Shapley-Shubik or Banzhaf index. De-
note by (φ1(G), . . . , φn(G)) ∈ [0, 1]n the power of agents
in a WVG G of n agents. Thus, for a manipulating agent
i with power φi(G) in G, the sum of the power of the
k ≥ 2 false agents in G′ that the manipulating agent splits

is
∑k
j=1 φij (G′). The ratio τ =

∑k
j=1 φij

(G′)

φi(G) compares the
sum of the power of the false agents in the altered gameG′ to
the power of the manipulator (before it splits) in the original
game G. τ gives a factor of the power gained or lost when
agent i alters gameG to giveG′. We say that φ is susceptible
to manipulation if there exists a game G′ such that τ > 1;
the split is termed advantageous. If τ < 1, then the split is
disadvantageous, while the split is neutral when τ = 1.

3 Shapley-Shubik Power Index Bounds
Theorem 1. (Upper Bound). LetG be a WVG of n agents. If
an agent i alters G by splitting into k ≥ 2 false agents
in a new game G′, then, the power index of the agent in
the new game using the Shapley-Shubik index is at most
nk

n+k−1ϕi(G). Moreover, this bound is asymptotically tight.

Proof. Let an agent i be a distinguished manipulator that
splits into k false agents, i1, . . . , ik. Let ΠG−i be the set of
all permutations of the remaining n − 1 agents in game G
(i.e., not including agent i). Also, let r ∈ N be the positions
of the agents in permutations ΠG−i. We define the term, i-
pivotal-basis, to be a permutation πr ∈ ΠG−i such that it is
possible to insert agent i into πr immediately after position r
to make i pivotal in gameG. We refer to the resulting permu-
tation(s) as being i-pivotal. For example, consider a WVG
[5, 5, 4, 1; 12], having the agent, say i, with weight 4 as a ma-
nipulator. The agent can be inserted into the i-pivotal-basis
permutation (5, 5, 1) in two different ways: before and after
1, and resulting in the i-pivotal permutations (5, 5, 4, 1) and
(5, 5, 1, 4).

Define also π′r to be a morphed permutation in game G′
as one formed from inserting the false agents, i1, . . . , ik,
into permutation πr starting from the r-th position in any
order. Suppose there are Pi i-pivotal different permutations
that can be formed from the set ΠG−i, then, the Shapley-
Shubik index of agent i in game G, ϕi(G) = Pi

n! .
Our hope is that for every case where the insertion of

agent i into a permutation πr at position r makes i pivotal in
game G we can create X ∈ N permutations in which a false
agent is pivotal in the corresponding morphed permutation
π′r of game G′. There are two ways we can obtain permuta-
tions in game G′ in which one of the false agents is pivotal:

A. Insert the false agents, i1, . . . , ik, into a permutation in
game G for which agent i is not pivotal, but a false agent
is now pivotal in the altered game G′.

B. Insert the false agents, i1, . . . , ik, into an i-pivotal-basis
permutation πr starting immediately after the r-th posi-
tion. Those seem like good candidates, because the re-
sulting permutation after inserting i into πr immediately
after position r is i-pivotal, so a false agent may be pivotal
in the morphed permutation π′r of game G′.

Case A: We show that there are no permutations in this
case. Suppose there exists a morphed permutation of game
G′ in which a false agent ij is pivotal, but the permutation
π∗r ∈ ΠG−i in game G from which it is formed is not i-
pivotal-basis. This permutation inG′ has the following form:

C ij D

where, C and D, are respectively the left and right sides
of the morphed permutation from the pivotal false agent
ij . Taking this permutation, create a new permutation by
sliding all the false agents from C right towards ij . Also,
slide all the false agents from D left towards ij . Now, all
the false agents occur together with ij still pivotal in this
new permutation. This shows that the insertion of agent i
into the permutation π∗r makes i pivotal in game G. Thus,
π∗r is i-pivotal-basis. Since this is a contradiction to our
assumption, there are no permutations in this case.

Case B: Consider a certain i-pivotal-basis permutation πr ∈
ΠG−i for which the insertion of agent i immediately after
position r makes i pivotal in G. We need to insert the false
agents into this permutation starting immediately after posi-
tion r. This is done by the following steps:
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1. Decide on which of the k false agents should be pivotal
in the newly created permutation. There are C(k, 1) = k
ways1 of doing this.

2. Order the remaining false agents, and call this ordering,
ρ. There are (k − 1)! ways of doing this.

3. Now, merge ρ with πr without changing the order of ele-
ments in ρ or πr to create a new permutation π′r. To un-
derstand how to count the ways of doing this, realize that
there are n− 1 items in πr and k − 1 items in ρ. To get a
complete ordering, we form a new permutation by taking
the next element of πr or ρ. This is simply permutations
with repetition2, which gives, (n−1+k−1)!

(n−1)!(k−1)! .

4. To complete the new permutation π′r, we place the agent
selected in step 1 at the appropriate spot in the permu-
tation. There is at most one possibility. Either we find a
place to insert the agent to make it pivotal, or we cannot.

Now, from steps 1 to 4 above, we see that there are at most
k·(k−1)!·(n−1+k−1)!

(n−1)!(k−1)! = k·(n+k−2)!
(n−1)! possible ways of finding

a new permutation in which a false agent is pivotal in π′r. We
repeat the process for each of the Pi i-pivotal-basis permu-
tations πr ∈ ΠG−i. Hence, the sum of the Shapley-Shubik
power of the false agents in game G′,

k∑
j=1

ϕij (G′) ≤ Pi · k · (n+ k − 2)!

(n− 1)!(n+ k − 1)!

=
Pi · k

(n− 1)!(n+ k − 1)

=
k

(n− 1)!(n+ k − 1)
· n! · Pi

n!

=
nk

(n+ k − 1)
ϕi(G).

We now prove that this bound is asymptotically tight. Let
G = [k, k, . . . , k;nk] be a unanimity WVG of n agents. It
is clear that the only winning coalition consists of all the
agents. So, ϕi(G) = 1

n for all agents i ∈ I in the
game. Suppose the last agent splits into k false identi-
ties each with weight 1, we have a new game G′ =
[k, k, . . . , k, 1, 1, . . . , 1︸ ︷︷ ︸

k times

;nk] of n + k − 1 agents. Then,

ϕi(G
′) = 1

n+k−1 for each agent i in the altered game

G′. Hence,
∑k
j=1 ϕnj (G′) = k

n+k−1 = nk
n+k−1ϕn(G).

Theorem 2. (Lower Bound). LetG be a WVG of n agents. If
an agent i alters G by splitting into k ≥ 2 false agents
in a new game G′, then, the power index of the agent in
the new game using the Shapley-Shubik index is at least

k
C(n+k−1,k−1)ϕi(G).

1C(n, r) = n!
r!(n−r)!

.
2Consider a director who decides whether to take from πr or

ρ. He says “original” to take from πr or “splinter” to take from
ρ. He must say “original” n− 1 times and “splinter” k − 1 times.

Proof. Let agent i be a manipulator that splits into k false
agents, i1, . . . , ik, in an altered game G′. Consider any i-
pivotal-basis permutation πr ∈ ΠG−i of agents in game
G. Recall that r is defined such that when agent i is inserted
into πr at position r, i is pivotal in game G. Now, consider a
morphed permutation π′r in game G′ formed from inserting
the false agents into πr starting from position r, in which
a false agent is pivotal. While there are many permutations
π′r that can be morphed from πr in which a false agent is
pivotal, at the very least, we know that if all the false agents
are adjacent (in any order) and are inserted at position r in
πr, one of the false agents must be pivotal. Thus, for each
πr, there are k! such permutations that can be morphed from
πr. Notice, that we have ignored all other cases where the
false agents are not adjacent in the permutation and one of
the false agents is also pivotal.

Suppose there are Pi i-pivotal permutations that can be
formed from the set ΠG−i in game G, then, the sum of the
Shapley-Shubik power of the false agents in game G′,

k∑
j=1

ϕij (G′) ≥ k! · Pi
(n+ k − 1)!

=
k!

(n+ k − 1)!
· n! · Pi

n!

=
k!n!

(n+ k − 1)!
ϕi(G)

=
k

C(n+ k − 1, k − 1)
ϕi(G).

4 Banzhaf Power Index Bounds
Theorem 3. (Upper Bound). LetG be a WVG of n agents. If
an agent i alters G by splitting into k ≥ 2 false agents in a
new game G′, then, the Banzhaf power index of the agent in
the new game can be as much as k · βi(G).

Proof. Let i be a manipulator that splits into k false agents,
i1, . . . , ik, with corresponding weights, wi1 , . . . , wik , in a
new game G′. We assume without loss of generality that
wi1 ≤ · · · ≤ wik . Define a base coalition, SG−i, to be a set
of agents from a winning coalition in a WVG G for which
agent i is removed. Note that there are three possibilities for
any agent to be critical in a winning coalition in game G:

1. Winning coalitions which do not contain agent i.
2. Winning coalitions which contain agent i, but in which i

is not critical.
3. Winning coalitions in which agent i is critical.

Now, we need to transform each winning coalition in G
to coalitions in the game G′, and then count the number of
critical agents in each transformed coalition.

Case 1: Let X1 be the total number of winning coalitions
in game G which do not contain agent i. Let X2 be the
average number of the critical agents in each of these
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winning coalitions. Since agent i is not present in any
of these winning coalitions, the winning coalitions are
not changed by transformation. Thus, the total number of
critical agents from this case in the new game,G′, isX1 ·X2.

Case 2: Let Y1 be the total number of winning coalitions
which contain agent i, but in which i is not critical. Let Y2

be the average number of critical agents in each of these
coalitions. To create coalitions in G′, we add 1 or more of
the false agents to the base coalition SG−i to create a new
winning coalition S′G′−i. There are 2k− 1 ways of selecting
1 or more of the false agents. No false agent will be critical,
since agent iwas not critical in SG−i, but every critical agent
in SG−i will still be critical in S′G′−i. Thus, we have a total
of Y1 · Y2 · (2k − 1) critical agents.

However, as we remove some of the false agents from
the coalition, we could create new critical agents. For
example, in the game [5,5,5;10], coalition, {5, 5, 5}, has
no critical agents, but coalition {5, 5, 4} has two critical
agents where none were critical before. Let Y3 be the
average number of new critical agents created in each
transformed coalition. Thus, the number of critical agents in
this case can be counted as Y1 ·Y2 ·(2k−1)+Y1 ·Y3 ·(2k−2).

Case 3: Let Z1 be the total number of winning coalitions
in which agent i is critical. Let Z2 be the number of criti-
cal agents in each of these winning coalitions (not counting
agent i). Note that we do not expect Z2 to be the same for
each winning coalition, but for simplicity, we assume Z2 is
the average number. To create a coalition in G′, we add 1 or
more of the false agents to the base coalition, SG−i, to cre-
ate a new winning coalition S′G′−i. There are 2k−1 ways of
selecting 1 or more of the false agents. Since i was critical
in the original coalition, we must add enough false agents to
SG−i to make S′G′−i winning. For example, if the sum of the
weights of agents in SG−i is w, and the quota of game G is
q, the false agents which are added must be of a cumulative
weight of at least q−w. We call this needed weight from the
false agents, the i-need:

a. If the sum of the weights of false agents added is less than
i-need, the coalition is losing and no critical agents will
be contributed from this case.

b. If the sum of the weights of the false agents is as close
to i-need without having excess false agents, the trans-
formed coalition will be winning and every false agent
will be critical. The critical agents of SG−i will also be
critical in S′G′−i. For simplicity of analysis, we assume
that the false agents are all of the same weight. Let p
be the minimal number of false agents that are required
to meet the i-need. There are C(k, p) ways of selecting
which false agents are present in the transformed coali-
tion. The number of winning coalitions in which the false
agents are critical is Z1 · p · C(k, p), since there are Z1

base coalitions, C(k, p) ways of deciding which of the p
false agents to include, and all the p false agents will be
critical. However, in each of these transformed coalitions,
the agents which were critical in the base coalition are

still critical. Thus, the total number of critical agents is:
Z1 · p · C(k, p) + Z1 · Z2 · C(k, p).

c. If the added false agents exceed i-need, the transformed
coalition will be winning but it is possible that none of
the false agents is critical. The critical agents of SG−i will
also be critical in S′G′−i. We must count how many false
agents are critical and how many total agents are critical
from this case. For simplicity, we assume that all false
agents are of the same weight, so that by adding an extra
false agent, none of the false agents is critical. There are
C(k, p+ 1) + . . .+ C(k, k) =

∑k
j=p+1 C(k, j) ways of

selecting p+ 1 or more of the false agents. Thus, the total
number of critical agents are Z1 · Z2 ·

∑k
j=p+1 C(k, j).

Putting it altogether, the total number of critical agents
(including the k false agents):
X1 ·X2 + Y1 · Y2 · (2k − 1) + Y1 · Y3 · (2k − 2) + Z1 · p ·
C(k, p) + Z1 · Z2 · C(k, p) + Z1 · Z2 ·

∑k
j=p+1 C(k, j) =

X1 ·X2 + Y1 · Y2 · (2k − 1) + Y1 · Y3 · (2k − 2) + Z1 · p ·
C(k, p) + Z1 · Z2 ·

∑k
j=p C(k, j).

Now, the original Banzhaf power of agent i in G,
βi(G) = Z1

Z1+X1·X2+Y1·Y2+Z1·Z2
. Similarly, the new

power of agent i in game G′(which is the sum
of the power of the false agents),

∑k
j=1 βij (G

′) =
Z1·p·C(k,p)

X1X2+Y1Y2·(2k−1)+Y1Y3·(2k−2)+Z1·p·C(k,p)+Z1Z2·
∑k

j=p C(k,j)
.

The ratio, τ =
∑k

j=1 βij
(G′)

βi(G) , gives,
p·C(k,p)(Z1+X1X2+Y1Y2+Z1Z2)

X1X2+Y1Y2·(2k−1)+Y1Y3·(2k−2)+Z1·p·C(k,p)+Z1Z2·
∑k

j=p C(k,j)
.

Since we want to find the highest possible ratio, we need
to determine cases which maximize the ratio. Note that the
ratio of increase of poweri of agent i is bounded by, 1

poweri
,

since the new power of the agent can be at most 1. We
note that if p is small,

∑k
j=p C(k, j) approaches 2k. Since

a large denominator makes for a small ratio, terms in the
denominator which are multiplied by 2k without terms in
the numerator being multiplied by a large number drive
down the ratio. Consider the case in which Y1 · Y2 = 0
and Y1 · Y3 = 0. Let p = k. Now our ratio becomes:
k(X1·X2+Z1+Z1·Z2)
X1·X2+k·Z1+Z1·Z2

which is bounded by k. Thus, there are
cases where splitting into several false identities improves
the power of a manipulator by a factor of as much as k.

We next show the existence of such a case. Let G =
[w1, w2, . . . , wn; q] be a unanimity WVG of n agents such
that q =

∑n
i=1 wi. It is clear that the only winning

coalition consists of all the agents. So, βi(G) = 1
n for

all agents i ∈ I in the game. Suppose the last agent
splits into k false identities, we have a new game G′ =
[w1, w2, . . . , wn−1, wn1

, wn2
, . . . , wnk

; q] of n + k − 1
agents. Then, βi(G′) = 1

n+k−1 for each agent i in the al-
tered game G′. The ratio of the new power to the original
power of the manipulator is nk

n+k−1 . So, as n goes to in-
finity, the denominator approaches n. Thus, the ratio goes
to k. Similarly, as k goes to infinity, the denominator ap-
proaches k, and the ratio goes to n.
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Theorem 4. (Lower Bound). Let G = [w1, . . . , wn; q] be
a WVG of n agents. If an agent i alters G by splitting into
k ≥ 2 false agents in a new game G′, then, the Banzhaf
power index of the agent in the new game is at least

βi(G) ·

 1

1 + (n−1)·2n+k−1

k
∑

x∈I ηx(G)

 .
Proof. Let agent i with weight wi be a manipulator in a
WVG G of n agents. Suppose i splits into k false agents,
i1, . . . , ik, with corresponding weights, wi1 , . . . , wik , in a
new game G′. We assume without loss of generality that
wi1 ≤ · · · ≤ wik . Recall that ηi(G) is the number of win-
ning coalitions for which an agent i is critical in a WVG
G. We first bound the least number of winning coalitions in
the altered gameG′ for which at least one of the false agents
is critical. The idea is to consider winning coalitions in G′
(having at least one false agent) that are derived from only
the winning coalitions in G for which agent i is critical.

Define a base coalition, SG−i, to be a set of agents from a
winning coalition in a WVG G for which agent i is critical,
but later removed, i.e., w(SG−i) < q and w(SG−i ∪ {i}) ≥
q. It is clear that w(SG−i) < q ≤ w(SG−i) + wi =
w(SG−i) + wi1 + · · · + wik . The following are the possi-
bilities for the relationships among the base coalition, SG−i,
the quota, q, and the weights, wi1 , . . . , wik , of the k false
agents in the altered game G′:

0. q − w(SG−i) ≤ wi1
1. wi1 < q − w(SG−i) ≤ wi2 ≤ . . . ≤ wik
2. wi1 ≤ wi2 < q − w(SG−i) ≤ wi3 ≤ . . . ≤ wik
.

.

.

k. q − w(SG−i) > wik

We need to consider all the k+1 cases above to determine
which case gives the least number of winning coalitions
in game G′ for which at least one of the false agents is
critical. Consider the extreme cases (i.e., cases 0 and k) first;

Case 0: q − w(SG−i) ≤ wi1 . In this case,
i1, i2, . . . , ik, are each critical for the coalitions,
(SG−i ∪ {i1}), (SG−i ∪ {i2}), . . . , (SG−i ∪ {ik}), re-
spectively, in G′. Hence, the sum of the number of winning
coalitions for the false agents,

∑k
j=1 ηij (G′) = k · ηi(G).

Case k: q − w(SG−i) > wik . In this case, none of the
false agents is critical on its own when it is included in
SG−i. The least possible number of coalitions in this
case occurs when each of the false agents is critical in
the winning coalition, (SG−i ∪ {i1, i2, . . . , ik}). Hence,
the sum of the number of winning coalitions for the false
agents,

∑k
j=1 ηij (G′) = k · ηi(G).

For the remaining cases (i.e., cases 1 to k − 1), we need to
know the number of false agents that should be included in
SG−i such that the new coalition in G′ is winning and at

least one of the false agents is critical in the coalition:

Case 1: wi1 < q − w(SG−i) ≤ wi2 ≤ . . . ≤ wik . In this
case, i1 is not critical in any coalition. However, i2, i3, . . .,
ik, are each critical, in the coalitions, (SG−i ∪ {i1, i2}),
(SG−i∪{i1, i3}), . . . , (SG−i∪{i1, ik}), and the coalitions,
(SG−i ∪ {i2}), (SG−i ∪ {i3}), . . . , (SG−i ∪ {ik}), respec-
tively. Thus, the sum of the number of winning coalitions
for the false agents,

∑k
j=1 ηij (G′) = 2(k − 1) · ηi(G).

Case 2: wi1 ≤ wi2 < q − w(SG−i) ≤ wi3 ≤ . . . ≤ wik . In
this case, both i1 and i2 are critical in (SG−i ∪ {i1, i2}). i3
is critical for (SG−i ∪ {i3}), (SG−i ∪ {i1, i3}), and
(SG−i ∪ {i2, i3}). Similarly, by substituting each
of the false agents, i4, . . . , ik, in place of i3, in
each of the last three coalitions, the false agents are
each critical in the coalitions. Thus, the sum of the
number of winning coalitions for the false agents,∑k
j=1 ηij (G′) = (2 + 3(k− 2)) · ηi(G) = (3k− 4) · ηi(G).

In the same vein, it is easy to show that the least num-
ber of winning coalitions for the false agents in each of the
remaining cases is at least k · ηi(G), for k ≥ 2. Hence,

k∑
j=1

ηij (G′) ≥ k · ηi(G). (3)

We now bound the number of winning coalitions in the
altered game G′ for which the non-manipulators are criti-
cal. Consider an arbitrary (non-manipulating) agent, j 6= i,
in game G, and let
S1 = {S ⊆ I \ {j} : i /∈ S,w(S) < q,w(S) + wj ≥ q},
S2 = {S ⊆ I \ {j} : i ∈ S,w(S) < q,w(S) + wj ≥ q}.

S1 are winning coalitions which do not include the manipu-
lator. S2 are winning coalitions which include the manipula-
tor. We have that the number of winning coalitions in game
G for which agent j is critical, ηj(G) = |S1| + |S2|. Now,
all winning coalitions in G′ will be derive from G. First,
all winning coalitions in set S1 are also winning coalitions
in G′. On the other hand, since i splits into k false agents
in G′, winning coalitions for G′ are derived from set S2 by
replacing i with one or more of the false agents. Formally,
we consider the following cases for the resultant winning
coalitions for agent j in game G′ when i splits into k false
agents, i1, . . . , ik.

Case A: Let S ∈ S1. Clearly, since i /∈ S, S remains
unchanged from game G to G′. Hence, for this case, agent
j remains critical in G′ for |S1| winning coalitions.

Case B: Let S ∈ S2. Since i ∈ S, the winning coalitions in
gameG′ for this case must include one or more of the k false
agents. There are 2k−1 ways of selecting one or more of the
false agents and adding them to S. Because the power of the
false agents is the ratio of the number of winning coalitions
the false agents are involved in divided by the total number
of winning coalitions, the least power will be obtained when
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the false agents are involved in the fewest winning coali-
tions and the non-manipulating agents are involved in the
maximum number of winning coalitions. Thus, we seek to
know the maximum number of coalitions in which the non-
manipulating agents can participate. The case which yields
the maximum number of winning coalitions is that agent j is
critical for all coalitions (containing one or more of the false
agents). Thus, agent j can be critical in at most (2k−1)·|S2|
winning coalitions in gameG′. Now, the number of winning
coalitions in game G′ for which agent j is critical,

ηj(G
′) ≤ |S1|+ (2k − 1)|S2|

= |S1|+ |S2|+ (2k − 2)|S2|
= ηj(G) + (2k − 2)|S2|

It remains for us to bound |S2|. We note, from elementary
combinatorics3 that, if a finite set A contains n distinct el-
ements, a particular element a ∈ A occurs in exactly 2n−1

subsets of the set A. Also, it is easy to see from the defini-
tion of S2 that |I \ {j}| = n− 1, and since the manipulating
agent, i ∈ I \ {j}, then, |S2| ≤ 2n−2. Hence,

ηj(G
′) ≤ ηj(G) + (2k − 2) · 2n−2

= ηj(G) + 2n+k−2 − 2n−1

≤ ηj(G) + 2n+k−2.

Thus, the total number of winning coalitions for all the
n− 1 non-manipulating agents in game G′ is

∑
x∈I\{i}

ηx(G′) ≤
∑

x∈I\{i}

(ηx(G) + 2n+k−2) (4)

Putting it altogether, we substitute (3) and (4) in the sum
of the Banzhaf index of the false agents in game G′:

k∑
j=1

βij (G′) =

∑k
j=1 ηij (G′)∑k

j=1 ηij (G′) +
∑
x∈I\{i} ηx(G′)

(5)

≥
∑k
j=1 ηij (G′)∑k

j=1 ηij (G′) +
∑
x∈I\{i}(ηx(G) + 2n+k−2)

(6)

≥ kηi(G)

kηi(G) +
∑
x∈I\{i}(ηx(G) + 2n+k−2)

(7)

=
kηi(G)

kηi(G) +
∑
x∈I\{i} ηx(G) +

∑
x∈I\{i} 2n+k−2

(8)

3The number of subsets in which any particular element of an
n-set appears in its power set is just the counting of all the ways of
selecting i out of the remaining n− 1 elements of the set to be part
of the subset which includes the element, with i = 0, 1, . . . , n −
1. This is given as

∑n−1
i=0 C(n− 1, i) = 2n−1.

≥ kηi(G)

k
∑
x∈I ηx(G) + (n− 1) · 2n+k−2

(9)

=
kηi(G)

k
∑
x∈I ηx(G)

·

 1

1 + (n−1)·2n+k−2

k
∑

x∈I ηx(G)

 (10)

= βi(G) ·

 1

1 + (n−1)·2n+k−2

k
∑

x∈I ηx(G)

 . (11)

Note that inequality (6) holds since the denominator of the
estimate (i.e., the right hand side of the inequality) is larger
than that of the actual value. Similarly, (7) holds since the
estimate uses a smaller number of winning coalitions for the
false agents than that of the actual value. Clearly, if the same
quantity is subtracted from the numerator and denominator,
and the numerator is less than the denominator, then the ratio
gets smaller. Finally, (9) is trivially true4.

5 Conclusions
We consider false-name manipulation in WVGs when an
agent splits into k > 2 false identities. This problem, un-
til now, has remained open for both the Shapley-Shubik and
Banzhaf indices. We resolve this open problem. Specifically,
we provide four non-trivial bounds when an agent splits into
k ≥ 2 false agents using the two indices. One of the bounds
is also shown to be asymptotically tight. The analyses of
these novel results not only increase our understanding on
the extent of power that manipulators may gain while they
engage in false-name manipulation in WVGs, they also pro-
vide further insights into the problem which we believe may
reveal methods on how to reduce the effects of the menace.
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