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Abstract

Probabilistic reasoning under the so-called principle of max-
imum entropy is a viable and convenient alternative to
Bayesian networks, relieving the user from providing com-
plete (local) probabilistic information and observing rigor-
ous conditional independence assumptions. In this paper,
we present a novel approach to performing computational
MaxEnt reasoning that makes use of symbolic computations
instead of graph-based techniques. Given a probabilistic
knowledge base, we encode the MaxEnt optimization prob-
lem into a system of polynomial equations, and then apply
Gröbner basis theory to find MaxEnt inferences as solutions
to the polynomials. We illustrate our approach with an ex-
ample of a knowledge base that represents findings on fraud
detection in enterprises.

1 Introduction
Probability theory provides one of the richest and most
popular frameworks for uncertain reasoning with efficient
graph-based propagation techniques like Bayesian networks
(cf., e.g., (Cowell et al. 1999; Pearl 1988)). However, proba-
bilistic reasoning is problematic if the available information
is incomplete, e.g., the Bayesian network approach does not
work in such cases. Moreover, the rigorous conditional in-
dependence assumptions that are indispensable for Bayesian
networks may be deemed inappropriate in general. The prin-
ciple of maximum entropy (in short, MaxEnt principle) of-
fers an alternative for probabilistic reasoning that overcomes
these weaknesses of Bayesian networks – it relies on speci-
fied conditional dependencies, and as an inductive reasoning
method, it completes incomplete information in a most cau-
tious way (Shore and Johnson 1980; Jaynes 1983), yielding
unique probability distributions from probabilistic knowl-
edge bases, and matches the ideas of probabilistic common-
sense reasoning perfectly (Paris 1999). For computing Max-
Ent distributions, efficient tools can be used (Rödder and
Meyer 1996). Nevertheless, in spite of its proved excellent
general properties (Paris 1994; Kern-Isberner 2001), Max-
Ent reasoning is still perceived as a black box methodology
that returns probabilities according to some abstract opti-
mization principle.
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In this paper, we present a novel methodology for per-
forming probabilistic reasoning at maximum entropy that
is based on the strong conditional-logical structures that
underly the MaxEnt principle and makes use of symbolic
computations to process information in a generic way. We
show how MaxEnt distributions can be obtained by solv-
ing systems of polynomial equations in which probabilities
occur as symbolic parameters. This provides new insights
into MaxEnt reasoning by abstracting from numerical pe-
culiarities and representing the dependencies between the
probabilistic rules in the knowledge base in an algebraic
way. The methodology of Gröbner bases (Buchberger 2006;
Cox, Little, and O’Shea 2007) from computer algebra can
then be applied to perform computational probabilistic rea-
soning according to the MaxEnt principle, and to provide
answers for queries to the knowledge base, yielding not only
the inferred probabilities but revealing also the conditional-
logical grounds on which the inference is based with respect
to the given knowledge base. We present the basic ideas of
our approach (for a more detailed mathematical elaboration
see (Kern-Isberner, Wilhelm, and Beierle 2014)) and illus-
trate them with an example from auditing in which evidence
for fraud (so-called red flags) can be combined to yield an
overall estimation how probable fraud is in the enterprise un-
der consideration, building on previous work (Finthammer,
Kern-Isberner, and Ritterskamp 2007).

The organization of this paper is as follows: Section 2
gives a short recall of probabilistic knowledge representa-
tion and the MaxEnt principle. Section 3 provides an insight
into computer algebra with Gröbner bases. Our approach
of combining Gröbner basis methods and MaxEnt reasoning
is presented in Section 4. Section 5 shows how to answer
MaxEnt queries symbolically. In Section 6, an example in
the field of auditing illustrates the presented methodology.
Section 7 concludes the paper with a short summary and an
outlook.

2 Basics of Knowledge Representation
Consider a probabilistic conditional language (L|L)prob =
{(B|A)[x] | (B|A) ∈ (L|L), x ∈ [0, 1]} with Roman upper-
case letters denoting atoms or formulas in a propositional
language L over a finite alphabet. The language L is
equipped with the common logical connectives ∧ (and),
∨ (or) and ¬ (negation). To shorten mathematical formu-
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las, we write AB instead of A ∧ B and A instead of ¬A.
An element (B|A)[x] ∈ (L|L)prob, called (probabilistic)
conditional, may be understood as the phrase ”If A, then
B with probability x”. Formally, we have to introduce the
concept of a probability distribution P on L. Therefore, let
Ω be the set of all possible worlds ω; here, Ω is simply a
complete set of interpretations of L. If a world ω satis-
fies a formula (or atom) A, we write ω |= A and call ω
a model of A. Usually, we identify each possible world ω
with the minterm (or complete conjunction) that has exactly
ω as a model. Then, every A ∈ L can be assigned a prob-
ability via P(A) =

∑
ω|=A P(ω). Conditionals are inter-

preted by distributions via conditional probabilities. If P is
a probability distribution on Ω resp. L, satisfaction of a con-
ditional by P is defined by P |= (B|A)[x] iff P(A) > 0

and x = P(B|A) = P(AB)
A . A probability distribution P

satisfies a set of conditionals C ⊆ (L|L)prob iff P satisfies
every conditional in C. The set C is called consistent iff there
exists a distribution satisfying it. A finite set of condition-
als KB = {(B1|A1)[x1], . . . , (Bn|An)[xn]} ⊆ (L|L)prob

is called a knowledge base, and there may exist several (or
none) distributions satisfying it since usually, KB represents
incomplete knowledge. In order to use inductively the infor-
mation in KB it is very helpful to choose a ”best” model
of KB. The principle of maximum entropy (cf. (Kern-
Isberner 1998) and (Paris 1994)) provides a well-known so-
lution to this problem by fulfilling the paradigm of informa-
tional economy, i.e., of least amount of assumed information
(cf. (Gärdenfors 1988)). Therefore, one maximizes the en-
tropy H(Q) = −

∑
ω∈ΩQ(ω) logQ(ω) of a distribution Q

with Q being a model of KB. It can be shown that for every
consistent knowledge baseKB such a distributionME(KB)
with maximal entropy exists, and, in particular,ME(KB) is
unique (cf. (Paris 1994)). It immediately follows that KB
is consistent iff ME(KB) exists. Taking the conventions
∞0 = 1, ∞−1 = 0 and 00 = 1 into account, the distribu-
tionME(KB) is given by

ME(KB)(ω) = α0

∏
1≤i≤n

ω|=AiBi

α1−xi
i

∏
1≤i≤n

ω|=AiBi

α−xi
i (1)

with a normalizing constant α0 and effects αi > 0 iff xi ∈
(0, 1), αi = ∞ iff xi = 1, and αi = 0 iff xi = 0. The
effects αi are associated with the corresponding conditionals
and solve the following system of non-linear equations

(1− xi) α1−xi
i

∑
ω|=AiBi

∏
j 6=i

ω|=AjBj

α
1−xj

j

∏
j 6=i

ω|=AjBj

α
−xj

j

= xi α
−xi
i

∑
ω|=AiBi

∏
j 6=i

ω|=AjBj

α
1−xj

j

∏
j 6=i

ω|=AjBj

α
−xj

j

(2)

for 1 ≤ i ≤ n (cf. (Kern-Isberner 2001)); note that the
αi follow the three-valued logics of conditionals, being in-
effective on Ai. If ME(KB) exists, we can compute the
MaxEnt probability of any further conditional (B|A) from
ME(KB). This yields a (non-monotonic) MaxEnt inference
relation |∼ME with KB |∼ME (B|A)[x] iff ME(KB) |=
(B|A)[x].

3 Basics of Gröbner Basis Theory
Gröbner bases are specific generating sets of ideals in poly-
nomial rings that allow to condense information given by al-
gebraic specifications of problems; a recommendable refer-
ence for the material presented in this section is (Cox, Little,
and O’Shea 2007). Let Q[Y] be the polynomial ring in vari-
ables Y = {y0, y1, . . . , ys} over the field of rational num-
bers Q. Polynomials f ∈ Q[Y] may be understood as finite
linear combinations of terms over Q where a term is an ele-
ment of the set T = {ye00 ye11 · · · yess | e0, e1, . . . , es ∈ N0}.
The set of terms occurring in a polynomial f ∈ Q[Y] with
non-vanishing coefficients is called support of f , written
supp(f). An element (ζ0, ζ1, . . . , ζs) ∈ Cs+1 is called a
root of f iff f(ζ0, ζ1, . . . , ζs) = 0. Terms t ∈ T can be
embedded into Q[Y] as monomials with coefficient 1. Dif-
ferently from the univariate case, terms in several variables
can be ordered (reasonably) in many ways.
Definition 1 (Term Ordering, lc�, lm�). Let � be a total
ordering with related strict ordering ≺ on T . � is a term
ordering iff for all t ∈ T we have 1 = y0

0 y
0
1 · · · y0

s � t, and
for all t, t1, t2 ∈ T , t1 � t2 implies t t1 � t t2.

Let � be a term ordering on T and f =
∑m

i=1 ci ti ∈
Q[Y] with ci ∈ Q \ {0}, ti ∈ T for 1 ≤ i ≤ m and t1 ≺
. . . ≺ tm. The leading coefficient of f is lc�(f) = cm, and
the leading monomial of f is lm�(f) = cm tm.

An important class of term orderings are the so called
elimination term orderings. With elimination term order-
ings, it is possible to expose the part of an ideal that de-
pends on certain variables, only. A term ordering � on T is
an elimination term ordering for the variables y1, . . . , ys iff
for all f ∈ Q[Y], lm�(f) ∈ Q[y0] implies f ∈ Q[y0].
An example of such a term ordering is the lexicographi-
cal term ordering �lex on T that is recursively defined by
ye00 ye11 · · · yess ≺lex y

f0
0 yf11 · · · yfss iff es < fs or es = fs

and ye00 ye11 · · · y
es−1

s−1 ≺lex yf00 yf11 · · · y
fs−1

s−1 presupposing
that y0 ≺lex y1 ≺lex . . . ≺lex ys. In particular, such an
elimination term ordering always exists.
Definition 2 (Ideal). A subset I ⊆ Q[Y] is called a (poly-
nomial) ideal iff 0 ∈ I and for all f, g ∈ I, h ∈ Q[Y] also
f + g ∈ I as well as h f ∈ I.

Let I ⊆ Q[Y] be an ideal, and let F ⊆ I so that for all
f ∈ I there are f1, . . . , fm ∈ F and h1, . . . , hm ∈ Q[Y]
such that f =

∑m
i=1 hi fi holds. Then F is called a gener-

ating set of I, written I = 〈F〉. Obviously, the ideal I only
consists of polynomials that vanish in the common roots of
the polynomials in F . Therefore, we can speak of the com-
mon roots of I, which are exactly the same as the common
roots of F .

In order to understand the fundamental importance of
Gröbner bases, imagine that the problem under considera-
tion can be described by a set F of polynomials, and the
solutions of the problem correspond to the common roots
of F . The ideal generated by F provides an algebraic con-
text to condense the problem description without changing
(essentially) the solutions of the problem.
Definition 3 (Gröbner Basis). Let I ⊆ Q[Y] be an ideal
with I 6= 〈{0}〉 and let � be a term ordering on T .
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A subset B� = {b1, . . . , bm} ⊆ I is called a Gröbner
basis for I with respect to � iff 〈{lm�(b) | b ∈ B�}〉 =
〈{lm�(f) | f ∈ I}〉. In particular, I = 〈B�〉 holds in
this case, i.e., B� is a generating set of I. B� is called a
minimal Gröbner basis for I with respect to � iff in addi-
tion lc(bi) = 1 and t /∈ 〈{lm(B� \ {bi})}〉 hold for all
t ∈ supp(bi) and 1 ≤ i ≤ m.

As a consequence of the Hilbert’s Basis Theorem, every
ideal I ⊆ Q[Y] with I 6= 〈{0}〉 has a unique minimal
Gröbner basis with respect to a given term ordering �, writ-
ten GB�(I) (cf. (Cox, Little, and O’Shea 2007)). The stan-
dard method to calculate Gröbner bases is Buchberger’s al-
gorithm that is implemented in all current computer algebra
systems such as Maple or Mathematica.

Given an ideal I ⊆ Q[Y], it is possible to focus on just
one variable, say y0. The intersection I ∩ Q[y0] is still an
ideal, called elimination ideal of I for y1, . . . , ys. In order
to determine I ∩ Q[y0], one derives a minimal Gröbner ba-
sis for I with respect to an elimination term ordering for
y1, . . . , ys. By deleting all polynomials with terms contain-
ing at least one of the variables y1, . . . , ys, one obtains a
Gröbner basis for I ∩Q[y0]. Note that elimination ideals are
usually defined more generally which is not necessary in our
case. To gain a first insight, again (Cox, Little, and O’Shea
2007) is recommended.

4 Polynomial Representation of Probabilistic
Knowledge Bases

Let KB = {(B1|A1)[x1], . . . , (Bn|An)[xn]} be a proba-
bilistic conditional knowledge base. For our further con-
siderations in this paper we assume the probabilities xi to
be rational numbers and non-trivial, i.e., xi ∈ (0, 1) for
1 ≤ i ≤ n. Thus, for each probability xi, there are unique
natural numbers pi, qi ∈ N such that pi

qi
= xi and pi, qi

are relatively prime. Indeed, conditional probability con-
straints in practical applications are usually rational, and
cases where xi = 0 resp. xi = 1 for some 1 ≤ i ≤ n occur
can be treated similarly, or even more simply (cf. (Kern-
Isberner 2001)). For applying Gröbner bases methods to
knowledge representation, it is necessary to transform the
system of equations (2) into a polynomial equation system.
Since the probabilities are assumed to be rational, we may
apply the substitution

yqii := αi (3)

for 1 ≤ i ≤ n to (2). Multiplying both sides with
qi y

pi

i

∏
j 6=i y

pj

j and rearraging terms lead to fi = 0 with

fi := (qi − pi) yqii
∑

ω|=AiBi

∏
j 6=i

ω|=AjBj

y
qj
j

∏
j 6=i

ω|=Aj

y
pj

j

−pi
∑

ω|=AiBi

∏
j 6=i

ω|=AjBj

y
qj
j

∏
j 6=i

ω|=Aj

y
pj

j

(4)

for 1 ≤ i ≤ n. Then, F := {f1, . . . , fn} is a set of polyno-
mials in the variables y1, . . . , yn which represent the original
conditionals in the knowledge base according to (2) and (3).

As vanishing the polynomials in (4) describes a necessary
condition for the effects αi of the conditionals in KB (more
precisely for α1/qi

i ), we are interested in the (real and pos-
itive) common roots of F . Note that αi = 0 and therefore
yi = 0 iff xi = 0 for 1 ≤ i ≤ n. As we concentrate on
knowledge bases with non-trivial probabilities xi ∈ (0, 1),
the accomplished transformation of (2) does not mean any
loss of information, and we may ignore trivial roots of (4),
i.e., roots with at least one entry that is zero. Therefore, we
cancel out variables if possible, i.e., we repeatedly divide
fi by yj for 1 ≤ i, j ≤ n until the result is still a polyno-
mial. Furthermore, we may cancel polynomial combinations
of variables if all of the coefficients are positive. Since this
applies to both polynomial combinations

f+
i := (qi − pi) yqii

∑
ω|=AiBi

∏
j 6=i

ω|=AjBj

y
qj
j

∏
j 6=i

ω|=Aj

y
pj

j ,

f−i := pi
∑

ω|=AiBi

∏
j 6=i

ω|=AjBj

y
qj
j

∏
j 6=i

ω|=Aj

y
pj

j ,

we divide the polynomial fi by the greatest common divisor
gcd(f+

i , f
−
i ). Note that gcd(f+

i , f
−
i ) is positive for any as-

signment of y1, . . . , yn which leads to the effects of the con-
ditionals in KB. The result is still a polynomial. Altogether,
we observe the set of polynomials F∗ := {f∗1 , . . . , f∗n} with

f∗i :=
f+
i − f

−
i

gcd(f+
i , f

−
i )

(5)

for 1 ≤ i ≤ n. In (Cox, Little, and O’Shea 2007), it can
be found how the greatest common divisor of multivariate
polynomials can be derived using Gröbner bases methods.

As a first result of applying Gröbner bases methods to
reasoning under the MaxEnt principle, we formulate a nec-
essary condition for the consistency of a knowledge base.
Note that Theorem 1 is a refinement of Theorem 2 in (Kern-
Isberner, Wilhelm, and Beierle 2014).

Theorem 1. Let KB= {(B1|A1)[x1],. . . ,(Bn|An)[xn]}be a
consistent knowledge base with non-trivial probabilities and
let � be a term odering on T . Then GB�(〈F∗〉) 6= {1}.

5 MaxEnt Reasoning for Answering Queries
For our further investigations, it is essential to know what
inferences can be drawn from a consistent knowledge base
KB = {(B1|A1)[x1], . . . , (Bn|An)[xn]} under the MaxEnt
methodology. So, let (B|A) be an (additional) arbitrary con-
ditional. Then, KB |∼ME (B|A)[x] is satisfied iff

x =
ME(KB)(AB)

ME(KB)(A)
. (6)

Hence, ifME(KB) is known, it is possible to derive x from
(6). To apply Gröbner bases methods, it is necessary to for-
mulate a polynomial counterpart for (6). Therefore, we asso-
ciate the variable y0 with the unknown probability x. Mak-
ing use of (1) and the substitutions pi

qi
= xi as well as (3)
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for 1 ≤ i ≤ n, (6) leads to the new equation f̂ = 0 with the
polynomial

f̂ := y0

∑
ω|=A

∏
1≤i≤n

ω|=AiBi

yqii
∏

1≤i≤n

ω|=Ai

ypi

i

−
∑

ω|=AB

∏
1≤i≤n

ω|=AiBi

yqii
∏

1≤i≤n

ω|=Ai

ypi

i

(7)

in the variables y0, y1, . . . , yn. Since all coefficients of the
expressions

f̂+ := y0

∑
ω|=A

∏
1≤i≤n

ω|=AiBi

yqii
∏

1≤i≤n

ω|=Ai

ypi

i

and f̂− :=
∑

ω|=AB

∏
1≤i≤n

ω|=AiBi

yqii
∏

1≤i≤n

ω|=Ai

ypi

i

are 1, and thus, they are positive, we may divide f̂ through
gcd(f̂+, f̂−) similar to (5). The resulting polynomial is

f̂∗ :=
f̂+ − f̂−

gcd(f̂+, f̂−)
. (8)

The next theorem derives a necessary condition for the Max-
Ent probability x.
Theorem 2 (MaxEnt Inference). Given a consistent
knowledge base KB = {(B1|A1)[x1], . . . , (Bn|An)[xn]}
with non-trivial probabilities and a further conditional
(B|A) with KB |∼ME (B|A)[x], the MaxEnt probability x
is a common root of 〈F∗ ∪ {f̂∗}〉 ∩Q[y0].

Proof. As KB is consistent with non-trivial probabilities,
ME(KB) exists and there is a common root (ζ1, . . . , ζn) ∈
(0,∞)n of F and also of F∗. The MaxEnt probability x is
given then by (6) and (x, ζ1, . . . , ζn) is a common root of the
polynomials f̂∗, f∗1 , . . . , f

∗
n in the variables y0, y1, . . . , yn.

As a consequent, it is also a common root of the ideal
I := 〈F∗ ∪ {f̂∗}〉. Now, let � be an arbitrary elimination
term ordering on T for y1, . . . , yn. Since a Gröbner basis is
just a specific representation of an ideal, making transition
to GB�(I) does not affect the common roots of I. Finally,
GB�(I)∩Q[y0] is a subset of GB�(I) and does not mention
any of y1, . . . , yn. Furthermore, it is a representation of the
elimination ideal I ∩Q[y0], and thus, x is a common root of
I ∩Q[y0].

6 Fraud detection in enterprises
We apply the presented methodology to an example in the
field of auditing. During an audit, the auditor has to estimate
the risk if the balance sheet has been manipulated premed-
itatedly. It depends on the outcome of this risk estimation
whether the audit will be done more intensely. The esti-
mation typically results from investigating risk indicators,
so-called red flags (cf. Tab. 1). A collocation of appropriate
red flags has emanated from a study of Albrecht and Rom-
ney (Albrecht and Romney 1986) and is discussed in (Ter-
linde 2003). The authors presented a list of possible fraud

Red flag Description

R1 Corporate officers have personal high debts or
losses

R2 Corporate officers are greedy
R3 Close connections between corporate officers

and distributors
R4 Lack of established and consistent rules for

the employees
R5 Doubts regarding the integrity of the corpo-

rate officers
R6 Inappropriate complex corporate structure
R7 Company Management is under high pressure

to present positive operating profit
R8 High amount of unusual transactions at the

end of the accounting year
R9 Unfair payment practices
R10 Decreasing profit qualities
R11 Business with affiliated companies
R12 Required internal revision is missing

Table 1: Description of the red flags

Red flag Balance sheet manipulated Not manipulated

R1 0.44 = 11/25 0.05 = 1/20

R2 .41 = 41/100 .06 = 3/50

R3 .48 = 12/25 .10 = 1/10

R4 .55 = 11/20 .11 = 11/100

R5 .59 = 59/100 .19 = 19/100

R6 .36 = 9/25 .08 = 2/25

R7 .31 = 31/100 .06 = 3/50

R8 .40 = 2/5 .11 = 11/100

R9 .24 = 6/25 .03 = 3/100

R10 .27 = 27/100 .06 = 3/50

R11 .50 = 1/2 .23 = 23/100

R12 .40 = 2/5 .13 = 13/100

Table 2: Red flags that are significant for balance sheet audit

indicators to auditors who uncovered balance sheet manip-
ulation and asked them which indicators had been relevant.
A comparison group of auditors specified their observed in-
dicators in cases where no balance sheet manipulation was
detected. An excerpt of the red flags categorized as signifi-
cant is shown in Tab. 2. The last two columns indicate the
relative frequency of the mentioned red flag in dependence
of wether balance sheet manipulation is present or not.

The data from Tab. 2 may now serve as a knowledge base
to which a query is made (cf. (Finthammer, Kern-Isberner,
and Ritterskamp 2007)). Therefore, the auditor takes a note
of which red flags apply to the inspected company. In a more
general case with any number of red flags R1, . . . , Rn, the
knowledge base looks like

KBaudit := {(R1|M)[x1], . . . , (Rn|M)[xn],

(R1|M)[xn+1], . . . , (Rn|M)[x2n]}
(9)

where M stands for ”case of balance sheet manipulation”

499



(M stands for ”case of no balance sheet manipulation”, re-
spectively) and x1, . . . , x2n denote the relative frequencies
of occurrence of the corresponding red flags. A typical in-
ference query would be to ask for the probability of the pres-
ence of a balance sheet manipulation given the available in-
formation on an enterprise, i.e.,

KBaudit |∼ME (M |O)[x] ? (10)

based on the observation

O :=

 ∧
1≤i≤s

Rmi

 ∧
 ∧

s+1≤i≤r

Rmi

 (11)

withmi ∈ {1, . . . , n} for 1 ≤ i ≤ r andmi 6= mj for i 6= j.
This means that the red flags Rm1

, . . . , Rms
apply to the in-

spected company and the red flags Rms+1
, . . . , Rmr

do not.
Furthermore, no information about the remaining red flags
is available. Note that this ignorance on the remaining red
flags is not possible with Bayesian networks and, in addi-
tion, that MaxEnt does not need a prior probability of M .

To give an answer to the query (10), we apply the method-
ology presented above. Therefore, we have to determine the
polynomial analogue to KBaudit. From (4), we get

fi,audit := (qi − pi) yqii
∑

ω|=MRi

∏
j 6=i

ω|=MRj

y
qj
j

2n∏
k=n+1

ypk

k

−pi
∑

ω|=MRi

∏
j 6=i

ω|=MRj

y
qj
j

2n∏
k=n+1

ypk

k

for 1 ≤ i ≤ n. The polynomials corresponding
to the conditionals (R1|M)[xn+1], . . . , (Rn|M)[x2n] in
KBaudit look similarly, so we focus on the polynomials
f1,audit, . . . , fn,audit in the following. First, we want to
simplify the polynomial expressions. As

∑
ω|=MṘi

∏
j 6=i

ω|=MRj

y
qj
j

is just the sum of each combination of the terms yqjj for
1 ≤ j ≤ n with j 6= i in both cases, i.e., Ṙi = Ri or
Ṙi = Ri, we introduce vectors εi := (εi1, . . . , ε

i
n) ∈ {0, 1}n

with εii = 0. The other entries may be 0 or 1 where the case
εij = 1 matches the condition ω |= MRj , and we sum up
over every possible combination of them. This leads to

fi,audit = (qi − pi) yqii
∑
εi

∏
j 6=i

(y
qj
j )ε

i
j

2n∏
k=n+1

ypk

k

−pi
∑
εi

∏
j 6=i

(y
qj
j )ε

i
j

2n∏
k=n+1

ypk

k

(12)

for 1 ≤ i ≤ n. Note that εii does not appear in (12) and
is only set vacuously to 0 so that the sums in (12) are not
exploited twice. Now, it is obvious that both sums appearing
in (12) are exactly the same. Therefore,

gcd(f+
i,audit, f

−
i,audit) =

∑
εi

∏
j 6=i

(y
qj
j )ε

i
j

2n∏
k=n+1

ypk

k

holds, and it follows that f∗i,audit := (qi − pi) yqii − pi for
1 ≤ i ≤ n. As the same argumentation may be given for the
remaining polynomials fn+1,audit, . . . , f2n,audit, we get

f∗i,audit = (qi − pi) yqii − pi (13)

for 1 ≤ i ≤ 2n, i.e., for every polynomial counterpart of the
conditionals inKBaudit. This result demonstrates the power
of the simplification step (5) in full clarity and reflects the
symmetric inner structure of the knowledge base KBaudit.
As we are interested in positive real roots,

yi =

(
pi

qi − pi

)1/qi

holds for 1 ≤ i ≤ 2n, and the effects of the condition-
als in KBaudit are given as αi = pi

qi−pi
by reversing the

substitution (3). In order to answer the inference query
(10), it is necessary to derive the polynomial f̂∗audit which
is (8) applied to KBaudit. This can be done by perform-
ing analogous steps as before. With the use of the auxil-
iary set M := {m1, . . . ,ms} (cf. (11)) and the vectors
ε := (ε1, . . . , εn) ∈ {0, 1}n with εmi

= 0 for 1 ≤ i ≤ r
(again, the remaining entries may be 0 or 1, and we sum up
over every combination), we get

f̂∗audit := y0

 ∏
1≤j≤n

j∈M

y
qj−pj

j

∏
1≤k≤n

k/∈M

y
pk+n

k+n

∑
ε

n∏
i=1

(yqii )εi

+
∏

1≤j≤n

j∈M

y
qj+n−pj+n

j+n

∏
1≤k≤n

k/∈M

ypk

k

∑
ε

n∏
i=1

(y
qi+n

i+n )εi


−
∏

1≤j≤n

j∈M

y
qj−pj

j

∏
1≤k≤n

k/∈M

y
pk+n

k+n

∑
ε

n∏
i=1

(yqii )εi .

(14)

Example 1. Assume that an auditor examines a balance
sheet with the help of a checklist based on the red flags given
in Tab. 2. Then, his background knowledge is

KBaudit = {(R1|M)[x1], . . . , (R12|M)[x12],

(R1|M)[x13], . . . , (R12|M)[x24]}

with the probabilities (cf. Tab. 2)

x1 = 11/25, x2 = 41/100, x3 = 12/25, x4 = 11/20,
x5 = 59/100, x6 = 9/25, x7 = 31/100, x8 = 2/5,
x9 = 6/25, x10 = 27/100, x11 = 1/2, x12 = 2/5,
x13 = 1/20, x14 = 3/50, x15 = 1/10, x16 = 11/100,
x17 = 19/100, x18 = 2/25, x19 = 3/50, x20 = 11/100,
x21 = 3/100, x22 = 3/50, x23 = 23/100, x24 = 13/100.

The simplified polynomials (13) relating to KBaudit are

f∗1,audit = 14 y25
1 − 11, f∗2,audit = 59 y100

2 − 41,
f∗3,audit = 13 y25

3 − 12, f∗4,audit = 9 y20
4 − 11,

f∗5,audit = 41 y100
5 − 59, f∗6,audit = 16 y25

6 − 9,
. . .
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Note that the example is only restricted to twelve red flags in
order to make the formulas more readable, and note that the
equations f∗i,audit = 0 can be solved easily.

Furthermore, we assume that during the audit, evidence
for the presence ofR1, R3, R4, R9, R12 and for the absence
of R5, R6, R7, R8, R10 is found, while nothing is known
about the other red flags. The proper inference query is

KBaudit |∼ME (M |O)[x] ?

with O = R1 R3 R4 R5 R6 R7 R8 R9 R10 R12. The result-
ing polynomial according to (14) is

f̂∗audit = y0 (y14
1 y13

3 y9
4 y

19
9 y3

12 y
3
14 y

19
17 y

2
18 y

3
19 y

11
20 y

3
22 y

23
23

(1 + y100
2 + y2

11 + y100
2 y2

11) + y19
13 y

9
15 y

89
16 y

97
21 y

87
24

y41
2 y59

5 y9
6 y

31
7 y2

8 y
27
10 y11 (1 + y50

14 + y100
23 + y50

14

y100
23 ))− y14

1 y13
3 y9

4 y
19
9 y3

12 y
3
14 y

19
17 y

2
18 y

3
19

y11
20 y

3
22 y

23
23 (1 + y100

2 + y2
11 + y100

2 y2
11).

Now, it is not very difficult to find x from determining the y0-
component of a common root of f̂∗audit and f∗i,audit accord-
ing to Theorem 2. The auditor has to assume balance sheet
manipulation with a probability of x ≈ 99, 998% which is
so high because of the great amount of observed red flags.

7 Conclusion
In this paper, we presented a novel approach to calculating
probability distributions according to the MaxEnt principle
by means of computer algebra. We explored the algebraic
inner structure of such distributions (Kern-Isberner 2001)
which implements conditional-logical features to encode the
information given by a probabilistic knowledge base by way
of a system of polynomial equations. Any solution of this
equation system defines the MaxEnt distribution appertain-
ing to the knowledge base; in fact, the MaxEnt distribution
is determined uniquely by the system (cf. (Kern-Isberner
2001)). Our approach allows an algebraic understanding of
MaxEnt inferences by means of Gröbner bases theory and
symbolic computation and thus connects profound mathe-
matical methods with inductive probabilistic reasoning on
maximum entropy, a principle that has often been perceived
as a black box methodology. To our knowledge, our ap-
proach is the first to make this connection explicit. Previ-
ous work by Dukkipati (cf. (Dukkipati 2009)) investigated
a similar link between Gröbner bases and MaxEnt distribu-
tions in the field of statistics but does not address any issues
of knowledge representation, in particular, Dukkipati’s ap-
proach does not consider knowledge bases nor inferences.

The approach presented in this paper also makes it pos-
sible to perform generic MaxEnt inferences, i.e., yield-
ing symbolic inferred MaxEnt probabilities without know-
ing the given probabilities of the knowledge base explicitly
(cf. (Kern-Isberner, Wilhelm, and Beierle 2014)). As part of
our current and future work, we continue the elaboration of
computational symbolic reasoning according to the MaxEnt
principle in order to improve the understanding of MaxEnt
reasoning and make it more transparent and usable for ap-
plications.
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