
Correlation-Based Refinement of Rules with Numerical Attributes

André Melo
University of Mannheim

andre@informatik.uni-mannheim.de

Martin Theobald
University of Antwerp

martin.theobald@ua.ac.be

Johanna Völker
University of Mannheim

voelker@informatik.uni-mannheim.de

Abstract

Learning rules is a common way of extracting useful
information from knowledge or data bases. Many of
such data sets contain numerical attributes. However,
approaches like Inductive Logic Programming (ILP) or
association rule mining are optimized for data with cat-
egorical values, and considering numerical attributes is
expensive. In this paper, we present an extension to the
top-down ILP algorithm, which enables an efficient dis-
covery of datalog rules from data with both numeri-
cal and categorical attributes. Our approach comprises a
preprocessing phase for computing the correlations be-
tween numerical and categorical attributes, as well as an
extension to the ILP refinement step, which enables us
to detect interesting candidate rules and to suggest re-
finements with relevant attribute combinations. We re-
port on experiments with U.S. Census data, Freebase
and DBpedia, and show that our approach helps to effi-
ciently discover rules with numerical intervals.

Introduction
Discovering patterns by learning rules from knowledge or
data bases enables us to obtain concise descriptions of a do-
main, to predict new facts and to detect anomalies. Espe-
cially by considering numerical values such as birth dates
or measurements, which are common in many data sets, we
are often able to unveil interesting patterns (e.g. spatial or
seasonal). We illustrate the benefits and challenges of learn-
ing rules with numerical attributes by an example from the
U.S. Census1 dataset, where we would like to discover rules
describing the marital status of a person with a minimum
confidence threshold of 0.7. The rules shown in Table 1 do
not satisfy the given threshold, but we can significantly in-
crease their confidence values if we restrict the numerical
age variable Y to specific intervals.

In particular, by observing how the confidence values are
distributed over the age variable Y (cf. Figure 1), we notice
that for the numerical intervals [0, 30], [30, 80] and [90,∞)
the confidences are much higher. In other words, the fig-
ure shows that younger people are likely to be single (1a),
middle-aged married (1b), and elderly widowed (1c).

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1U.S. Census (2000): http://www.rdfabout.com/demo/census/

id rule conf
r1 maritalStatus(X,single) :- age(X,Y) 0.40
r2 maritalStatus(X,married) :- age(X,Y) 0.46
r3 maritalStatus(X,widowed) :- age(X,Y) 0.06

Table 1: Example of rules without numerical intervals

(a) r1 (b) r2 (c) r3

Figure 1: Confidence distribution over age Y

Given this insight, we can refine the rules r1, r2 and r3
by restricting Y to the aforementioned intervals, and obtain
rules which satisfy the confidence threshold (cf. Table 2).

id rule conf
r4 maritalStatus(X,single) :- age(X,Y),Y ∈ [0, 30] 0.91
r5 maritalStatus(X,married) :- age(X,Y),Y ∈ [30, 80] 0.72
r6 maritalStatus(X,widowed) :- age(X,Y),Y ∈ [90,∞) 0.71

Table 2: Example of rules refined with numerical intervals

However, note that if we had attempted to learn a concept
which is uncorrelated to the attribute age, such as quarterOf-
Birth, a costly search for interesting age intervals would
have been useless. This is because for every quarter of the
year the confidence distribution over Y is practically uni-
form, as seen in the Figure 3 example for the first quarter
case (quarterOfBirth(X,q1) :- age(X,Y)). Hence, there is no
interval for Y that yields significant confidence gain when
compared to the overall Y domain. Generally, it is desirable
to avoid the computation of intervals for uninteresting com-
binations of numerical and categorical attributes, since the
queries to obtain the support and confidence distributions
are expensive and the search space can easily become too
large. So, before running these expensive queries for a rule

Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference

345

with unrestricted numerical attributes variables, we would
like to estimate the likelihood that the rule has a confidence
distribution with interesting intervals.

This interestingness estimation can also be used for
choosing better categorical refinements. For example, we
could further extend rule r2 (cf. Table 1) by also consid-
ering the U.S federal state a person lives in. We observe that
the confidence distribution of rule r2 refined with Florida
(Figure 2b) is very similar to the confidence distribution
of the more general rule r2 (Figure 2a), whereas for South
Dakota (Figure 2c) the distribution is less uniform and yields
higher confidence values. Therefore, we are more likely to
discover interesting rules if we choose South Dakota instead
of Florida as a refinement of the base rule.

(a) USA (b) Florida (c) South Dakota

Figure 2: Confidence distribution of rule r2 over the age at-
tribute for the overall USA population (a) as well as refined
by the states Florida (b) and South Dakota (c)

In this paper, we propose an efficient approach to min-
ing datalog rules with numerical and categorical attributes
which employs information theory techniques to speed up
the ILP algorithm. We estimate the likelihood of any given
rule to have an interesting refinement in the form of an inter-
val restriction on the numerical attribute. This way of mea-
suring a rule’s (potential) interestingness enables us to effi-
ciently explore the search space, rank the rules, and prune
uninteresting rules (e.g. quarterOfBirth(X,q1) :- age(X,Y)).
Our approach comprises a preprocessing phase for comput-
ing the correlations between numerical and categorical at-
tributes, as well as an extension to the ILP refinement step.
We demonstrate the feasibility of our approach by means
of experiments with three large-scale datasets (U.S. Census
data, Freebase and DBpedia).

Problem Definition
Firstly we need to introduce the notions of base rules and
refined rules:

Definition 1 A Base Rule is a rule whose body contains a
free numerical attribute variable.

Definition 2 A Refined Rule is a base rule with the numeri-
cal attribute variable restricted to some interval.

For example, the rules r1, r2 and r3 are examples of base
rules, while r4, r5 and r6 are their refined counterparts. Note
that we only consider base rules with a single numerical at-
tribute. Our goal is to learn refined rules which yield signif-
icant confidence gain over their corresponding base rules.

Definition 3 Confidence Gain is the ratio of the confidence
of a refined rule to its base rule (conf(rref)/conf(rbase)).

The confidence of a rule h :- b (with h being the head
literal and b being the body clause of the rule) is defined as
conf(h:-b) = supp({h, b})/supp(b). Its support is given by
the number n+ of covered positive examples, i.e., supp(h:-
b) = n+({h, b}).

We consider a base rule interesting if it has a refined rule
that satisfies the minimum support, confidence and confi-
dence gain thresholds. As we want to efficiently explore the
datalog base rules search space in ILP, our goal is to pre-
dict the interestingness of a base rule before computing its
confidence distribution.

Related Work
Related work consists of approaches for learning rules with
numerical attribute intervals (also called quantitative rules)
in association rule mining as well as Inductive Logic Pro-
gramming (ILP). To the best of our knowledge, there is no
prior work which focuses on the efficient exploration of the
base-rules search space in ILP. The works presented in this
section address different problems which are tightly related
to our proposed approach.

The related works on association rule mining focus on
learning rules of the form (A1 ∈ [l1, u1])∧C1 ⇒ C2, where
A1 is an uninstantiated numerical attribute, l1 and u1 are the
lower and upper boundaries of A1, and C1 and C2 are instan-
tiated conditions. Srikant and Agrawal (1996) use a priori
discretization of the numerical attribute domain into fine par-
titions in order to treat them as regular categorical attributes.
They learn rules for the individual partitions and then try
to merge rules with adjacent partitions into wider intervals,
but their approach does not guarantee the optimality of the
generated intervals. Brin, Rastogi, and Shim (1999) propose
an algorithm with linear complexity for finding optimal in-
tervals. It features a supervised bucketing technique, which
collapses instances together, reducing input size without sac-
rificing optimality. Mata, Alvarez, and Riquelme (2002) em-
ploy evolutionary techniques which do not require the dis-
cretization of the numerical attributes, and Salleb-Aouissi,
Vrain, and Nortet (2007) employ a genetic-base algorithm
in order to find the optimal interval boundaries. Note that
these algorithms could be integrated into our ILP extension
for finding the optimal lower and upper boundaries, after we
have detected an interesting base rule.

Inductive Logic Programming (ILP), introduced by Mug-
gleton (1991), is a state-of-the-art technique for learning
concepts from examples, which we base our approach on.
There are two main induction methods: top-down (which
starts with specific clauses and searches for generaliza-
tions), and bottom-up (which starts with a general clause
and searches for specializations). In this paper, we use the
top-down approach of FOIL Quinlan (1990), which essen-
tially consists of a covering and a specialization loop. The
former ensures completeness, i.e. all positive examples are
covered, whereas the latter ensures consistency, i.e. no nega-
tive examples are covered. In order to handle noisy data, we
use a minimum expected accuracy (namely the probability

346

that an example covered by the clause is positive) as a stop-
ping criterion in the specialization loop. We also restrict the
hypothesis space to safe datalog rules, which support arith-
metical predicates providing the expressiveness required to
define the intervals of numerical attributes.

Interestingness Measure
We are interested in base rules with non-uniform confidence
distributions of low entropy, which can result in interesting
refined rules with high confidence gain. This kind of confi-
dence distribution is the result of divergent support distribu-
tions of a rule’s body and positive examples.

In Figure 3 we compare the rules quarterOfBirth(X,q1):-
age(X,Y) and maritalStatus(X,married):-age(X,Y) which
share the same body. As we see in Figures 3a and 3d, the
first rule’s body and positives distribution are practically the
same resulting in an uniform confidence distribution (3e),
while for the latter rule, its divergent positives distribution
(3b) leads to a more interesting confidence distribution (3c).

age(X,Y)

(a)

age(X,Y),maritalStatus(X,married)

(b)

maritalStatus(X,married) :- age(X,Y)

(c)

age(X,Y),quarterOfBirth(X,q1)

(d)

quarterOfBirth(X,q1) :- age(X,Y)

(e)

Figure 3: Example of a body support distribution (3a) with
different positives distributions (3b) and (3d)

The interestingness of a rule can be measured by com-
puting the divergence of the {body} and {body, head} sup-
port distributions. Hence, we discretize the domain of Y into
k disjoint buckets b1, . . . , bk, in order to obtain the support
histogram of a clause c, which is defined as:

h(c) =< h1(c), . . . , hk(c) >, where
hi(c) = supp(c|Y ∈ bi) and |h(c)|1 = supp(c)

from which we obtain the probability density distribution
of support f(c) = h(c)/supp(c), where |f(c)|1 = 1.

Based on this we define the interestingness measure as
IY (l|c), where l is the literal to be added to the clause c, and
Y is the free numerical attribute variable we want to find an
interval for. To compute IY we use a divergence measure D
compare the distributions of c and{c, l} over Y :

IY (l|c) = D(f(c)||f({c, l})) (1)

Because of sampling error, this divergence measure tends
to yield higher values for clauses with lower support, and
thus favors them over higher support clauses. In order to

compensate this effect, and because we are also interested
in rules with high support, we propose a hybrid interesting-
ness measure combining divergence and support:

IY (l|c) = supp({c, l}) ∗D(f(c)||f({c, l})) (2)

In our implementation, we use Kullback-Leibler (1951) as
the divergence measure D, and we apply Laplace smoothing
to all distributions prior to the divergence value calculation
in order to remove the zeros.

Correlation Lattice
In a preprocessing step, we create a correlation lattice for
each numerical property. The purpose of the lattice is to
model the correlations between a given numerical property
and different categories, which in our implementation are
defined by categorical literals.

A correlation lattice is structurally similar to an item-
set lattice, introduced by Agrawal, Imieliński, and Swami
(1993). It describes the correlations between a numerical
property and multiple categorical attributes. The target nu-
merical property with a join variable X and a free numerical
variable Y is used as the root literal, and the categorical lit-
erals correspond to the items in the itemset lattice. All of the
categorical literals are joined by the join variable X , form-
ing in each node n a unique clause cn. Figure 4 shows an
example of lattice for the attribute age(X,Y).

age(X,Y)

age(X,Y),
quarterOfBirth(X, q1)

age(X,Y),
quarterOfBirth(X, q4)

. . . age(X,Y),
maritalStatus(X, single)

age(X,Y),
maritalStatus(X,married)

.

age(X,Y),
quarterOfBirth(X, q1),
maritalStatus(X, single)

age(X,Y),
quarterOfBirth(X, q1),

maritalStatus(X,married)

.
age(X,Y),

quarterOfBirth(X, q4),
maritalStatus(X, single)

age(X,Y),
quarterOfBirth(X, q4),

maritalStatus(X,married)

Figure 4: Example of correlation lattice for the numerical
attribute age

Additionally, every node n has a corresponding histogram
h(cn) with cn support distribution over Y . Therewith, all the
edges between a parent node and a child node have an asso-
ciated interestingness value of adding the child’s new literal
to the parent’s clause. Since we need to compare the support
distributions, the bucket boundaries of the histograms must
be consistent through the whole lattice. These boundaries
are defined in the root node based on the overall population.
In our implementation, the number of buckets is arbitrar-
ily defined, and we use equal frequencies as discretization
method, because of its robustness with regard to skewed dis-
tributions.

The correlation lattice is built with an Apriori-based al-
gorithm, similar to that introduced by Agrawal and Srikant

347

(1994), which takes advantage of the anti-monotonicity
property of the support of the clauses in the lattice. Thus,
it is possible to safely prune the nodes which do not satisfy
the support threshold. We also limit the number of levels in
the lattice to dmax, which is upper bounded by the maximum
number of literals in clauses allowed in the ILP algorithm.

Independence Test
With the information contained in the lattice, we can test
whether two categorical literals are independent given a cer-
tain clause. Let us assume we have two nodes n and m
with common parent p, and common child q, with clauses
cp, cn = {cp, ln}, cm = {cp, lm} and cq = {cp, lm, ln},
where lm and ln are literals not contained in the clause cp.
It is possible to estimate the histogram ĥ of a node q, as-
suming that ln and lm are conditionally independent given
cp, as ĥ(cq) = h(cn)h(cm)/h(cp). With the estimated ĥ(cq)
and the observed actual h(cq), we can perform a Pearson’s
chi-squared test of independence.

Figure 5 shows an example where we check whether mar-
italStatus(X,single) and employmentStatus(X,unemployed)
are independent. There the test yields a p-value of 0.96,
which means that we have a high confidence that the two
literals are conditionally independent.

Node p :
cp = {hasIncome(X,Y)}
h(cp) =< 6, 10, 8, 4, 2, 1 >

Node m :
cm = {hasIncome(X,Y),
maritalStatus(X, single)}
h(cm) =< 4, 5, 4, 3, 1, 0 >

Node n :
cn = {hasIncome(X,Y),

employmentStatus(X, employed)}
h(cn) =< 3, 6, 6, 4, 2, 1 >

Node q :
cq = {hasIncome(X,Y),
maritalStatus(X, single),

employmentStatus(X, employed)}
h(cq) =< 2, 4, 2, 4, 1, 0 >
ĥ(cq) =< 2, 3, 3, 3, 1, 0 >

Figure 5: Example of a test for independence between
the literals maritalStatus(X,single) and employmentSta-
tus(X,unemployed)

Detecting independence is important because, when we
refine a clause in the specialization loop by adding a new lit-
eral, the confidence distribution is not likely to change sig-
nificantly, if this new literal is conditionally independent of
the head given the body. For example, if we refine lm:-cp
by adding ln to the body, the confidence distribution does
not change significantly because of the conditional indepen-
dence (P (lm|cp) ≈ P (lm|cp, ln)). Therefore, it is useful to
set a maximum p-value threshold in order to define and de-
tect independence. Note that for deeper levels in the lattice, a
particular node can be generated from different pairs of join-
ing nodes, therefore we cannot prune the conditionally inde-
pendent nodes. Instead, we mark the two edges joining the
conditionally independent nodes as independent, and take
that into account when refining a clause in order to prune a

conditionally independent refinement.

Scalability
Building a complete lattice can become an unfeasible task
even with the apriori pruning and the maximum depth.
In this case the lattice with k categories can have up to∑dmax

i=1

(
k
i

)
nodes. As employing a very large k would be

prohibitive, we suggest to use the interestingness measures
introduced in the previous section as pruning heuristics. We
also evaluate their performance in the experiments section.

Although the lattice construction can take a significant
amount of time, it is important to point out that the clauses
contained in the lattice comprise a portion of the ILP search
space. The information in the lattice can be reused in the
core ILP algorithm preventing the execution of unnecessary
queries. In addition, we can directly extract rules of the form:

h(X, kh) :- b1(X, kb1), ..., bn(X, kbn), r(X,Y), Y ∈ [l, u]

where r is the root numerical property, l and u are
the lower and upper boundaries of Y , h(X, kh) and
b1(X, kb1), . . . , bn(X, kbn) are the categorical literals, with
n < dmax. Rules of this form are semantically equivalent
to association rules with numerical attributes, with every in-
stantiation of X considered as a transaction.

The correlation lattice can be easily extended to incorpo-
rate more complex categories by adopting a broader defini-
tion of categories. If we use categorical clauses as defined
in Melo (2013) instead of categorical literals, we are able to
access categories which are not directly connected to the lat-
tice join variable X. This allows us to, for instance, incorpo-
rate categories from linked datasets by using the owl:sameAs
property as a linking relation, enabling us to add cross-
domain information to the lattice. However, the problem also
becomes more challenging as the number of categories con-
sidered and joins required can dramatically increase.

ILP Algorithm
In order to take advantage of the proposed preprocessing
when learning datalog rules with numerical attributes, we
need to extend the core ILP algorithm. In the specialization
loop, whenever we detect a base rule whose numerical at-
tribute has a correlation lattice, we query the lattice in order
to check whether it is relevant to consider refining it with
numerical intervals.

Algorithm 1 first checks whether a clause is a base rule,
then for each base rule we query the lattice to obtain its in-
terestingness value (cf. Algorithm 2). Subsequently, if the
interestingness value satisfies the minimum threshold, we
search for the numerical interval (cf. Algorithm 3), where
the support and confidence distributions are queried.

These distributions are then analyzed by an algorithm
which searches for interesting intervals which is represented
by the getInterestingIntervals function. Note that for the ex-
periments described further below, we did not search for
an optimal interval as proposed by Brin, Rastogi, and Shim
(1999), for example, but we only checked if there exists any
interesting interval. This is sufficient, in order to find out
whether our interestingness predictions are correct. Finally,

348

we add the refined rules with the optimal intervals to the re-
finement graph and continue the ILP algorithm normally.

Algorithm 1: Numerical Attribute Interval Refinement
foreach literal l in the body of the clause c do

if l is numerical and
l has free numerical attribute variable and
∃ a lattice latticel for l’s property then

if getInterestingness(c,latticel) ≥mininterest then
searchNumericalIntervals(c,l);

Algorithm 2: getInterestingness(cbase,latticel)
Y ← numerical variable of lnum;
b← root node of latticel;
foreach li ∈ body of cbase do

if li 6= lnum and li joins lnum and li is categorical then
b← b.getChild(li);

lhead ← head of cbase;
cbody ← clause of node b;
h← b.getChild(lhead);
if h 6= b and edge {b, h} is not independent then

return IY (lhead, cbody);
else

return 0;

Algorithm 3: searchNumericalIntervals(cbase,lnum)
Y ← numerical variable of lnum;
conf []← queryConfidenceDistribution(cbase,Y);
supp[]← querySupportDistribution(cbase,Y);
intervals← getInterestingIntervals(conf ,supp);
foreach intervali ∈ intervals do

cref ← c refined with intervali;
add cref to ILP’s refinement graph;

Experiments
For our experiments we developed a Java-based implemen-
tation of the proposed ILP extension, which uses RDF3X
(Neumann and Weikum 2010) as a knowledge base backend.
First we focus on evaluating the quality of the correlation
lattice and the scalability of its construction in terms of run-
time. Afterwards we evaluate how the proposed correlation-
based approach affects the core ILP algorithm. Since there
is no prior work on the exploration of base rules search
space, we compare our approach against the naı̈ve exhaus-
tive search, which searches for all the base rules in the ILP
refinement graph. This allows us to evaluate the core contri-
bution of the proposed approach by measuring the runtime
reduction and its impact on the number of learned rules in
comparison to the naı̈ve approach.

We used support only (supp) as a baseline, Kullback-
Leibler only (kl-only), and Kullback-Leibler combined with
support (kl*supp). Experiments with other divergence mea-
sures such as Jensen-Shannon and Chi-square were car-
ried out, too. However, preliminary results showed no ma-
jor performance differences. Hence, we only report results

for Kullback-Leibler focusing on the comparison of sup-
port only, divergence only, and hybrid measures. Our exper-
iments were conducted on a Intel i7-3770 3.40 GHz with
32 GB RAM.

U.S. Census. In the first experiment, we greedily built
limited size correlation lattices using the different interest-
ingness measures as heuristics. We varied the limit size and
counted the number of interesting rules with numerical in-
tervals which can be found in the lattice, in order to assess
its quality. Finally, we measured the required time for build-
ing the lattices. For this experiment, we use the U.S. Cen-
sus (2000) dataset, because of its high quantity of numerical
and categorical properties, high completeness and low noise.
We built a lattice for the income property and 16 categorical
properties totalizing 224 categories with various degrees of
correlation with income. The lattice was constructed on a 1.7
GB partition (with 884,365 person entities) and the extracted
rules were tested on a 0.5 GB partition (with 369,024 person
entities). The partitions were created with random sampling,
and they are mutually disjoint.

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

·105

#Nodes per lattice level

T
im

e
t
o

b
u
il
d

l
a
t
t
ic
e
(m

s)

supp

kl*supp
kl-only

(a) Build time per lattice size

0 100 200 300 400 500

0

20

40

60

80

#Nodes per Lattice level

#
In

t
e
r
e
st

in
g

R
u
l
e
s

supp

kl*supp
kl-only

(b) Learned rules per lattice size

Figure 6: Evaluation of the correlation lattice construction

In Figure 6a, we see that supp takes the longest to build
the lattice, kl-only takes the shortest, while kl*supp lies in-
between. This is because the support prioritizes nodes with
higher support clauses, while the divergence, because of
sampling error, prioritizes lower support.

Figure 6b shows that although for the hybrid measure
the lattice requires much less time to be built than for
supp, the number of resulting interesting rules is roughly
the same on average, and significantly higher for smaller
lattices. The comparatively low efficiency of the supp mea-
sure for smaller lattice sizes can be accounted for by the fact
that the literals with the highest support, such as hasDefi-
ciency(X,none), tend to have very low divergence and low
correlation to income. We also tested the accuracy of facts
predicted by the learned rules. For all measures, the aver-
age accuracy was 0.81, with the exception of kl-only (0.75),
since the sampling error caused a lower average support.

In the second experiment, we evaluate the proposed ILP
extension, and compare the effectiveness of the different in-
terestingness measures. When the minimum interestingness
thresholds are set to zero, our approach is equivalent to a
naı̈ve exhaustive search. Therefore, we know the number
of interesting base rules which exist in the search space.
This is reflected by the top-right points in Figure 7. For the

349

evaluation reported in the following, we use DBpedia 3.92

and Freebase3. Although these datasets do not contain as
many numerical facts as the U.S. Census data, they consist
of richer RDF graphs with a high number of links between
different entities. Hence, they enable us to evaluate our ex-
tension’s performance when it comes to learning more com-
plex datalog rules.

DBpedia. In the DBpedia experiment, we used 27 prop-
erties from the domain movies and related domains contain-
ing 3.5 million facts, and focused on learning rules with nu-
merical intervals for the movie budget property with 14,769
facts. Firstly we ran the naı̈ve algorithm where for all base
rules in the ILP refinement graph we perform the numerical
intervals search, in order to find out how many interesting
refined rules exist and how long the exhaustive search takes.
Afterwards, we run our proposed extension with different in-
terestingness threshold values, and for each threshold value,
we measured the runtime spent with the search for refined
rules and the number of interesting rules discovered. Fig-
ure 7a shows the number of learned rules per runtime for
the different measures. We notice that supp has a nearly lin-
ear growth, while the other measures have an overall better
performance, indicating that including divergence in the in-
terestingness measure helps speed up the ILP algorithm.

0 1 2 3

·104

0

20

40

60

80

100

Runtime (ms)

#
L
e
a
r
n
e
d

R
u
l
e
s

supp

kl*supp
kl-only

(a) DBpedia

0 1 2 3 4 5 6

·104

0

20

40

60

Runtime (ms)

#
L
e
a
r
n
e
d

R
u
l
e
s

supp

kl*supp
kl-only

(b) Freebase

Figure 7: Evaluation of the ILP extension

Freebase. We performed the same experiment on 27 prop-
erties of the Freebase domain people and related domains
containing a total of 10 million facts, and learned rules
with numerical intervals for the properties weight, dateOf-
Birth, height and salary, with 99,918, 1,351,870, 160,326
and 16,452 facts, respectively. This difference in terms of
performance highly depends on characteristics of the data,
such as the degree of correlation between the numerical at-
tributes and categories or the average support of the interest-
ing base rules. Nevertheless, we notice that the hybrid mea-
sure are the most robust of the proposed measures, consis-
tently being the best overall performer in the experiments.

Conclusions
In this paper, we presented an extension to the ILP algorithm
which uses correlation lattices to enable the efficient discov-
ery of rules with numerical attribute intervals. We suggested

2http://dbpedia.org/Downloads39
3https://developers.google.com/freebase/data (2013-10-06)

different interestingness measures for constructing these lat-
tices and evaluated their performance on the lattice construc-
tion and interestingness prediction tasks. Our experiments
indicate that the combination of divergence and support is
the best performing measure both as a pruning heuristic and
for speeding up the core ILP algorithm.

Possible next steps are to study of the lattice build time
and ILP speed up trade-off, to extend our approach to han-
dle multidimensional as numerical attributes, to investigate
numerical domain discretization methods and their effect on
our approach, and to determine optimal minimum interest-
ingness threshold values by analyzing the lattices structure.
Finally, we are envisioning an application of our approach to
multiple Linked Data sources. By building correlation lat-
tices with categories from distinct but related sources we
hope to enable an efficient discovery of cross-domain rules.

Acknowledgement
The work reported in this paper was partially funded by
the DFG project GOLD4. Johanna Völker is supported by
a Margarete-von-Wrangell scholarship of the European So-
cial Fund (ESF) and the Ministry of Science, Research and
the Arts Baden-Württemberg.

References
Agrawal, R., and Srikant, R. 1994. Fast algorithms for mining
association rules in large databases. In Proceedings of the 20th
International Conference on Very Large Data Bases, VLDB, 487–
499.
Agrawal, R.; Imieliński, T.; and Swami, A. 1993. Mining associa-
tion rules between sets of items in large databases. SIGMOD Rec.
22(2):207–216.
Brin, S.; Rastogi, R.; and Shim, K. 1999. Mining optimized
gain rules for numeric attributes. In Proceedings of the 5th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, 135–144. ACM Press.
Kullback, S., and Leibler, R. A. 1951. On information and suffi-
ciency. Ann. Math. Statist. 22(1):79–86.
Mata, J.; Alvarez, J.; and Riquelme, J. 2002. An evolutionary
algorithm to discover numeric association rules. In In Proceedings
of the ACM symposium on Applied computing (SAC), 590–594.
Melo, A. 2013. Learning rules with numerical and categorical
attributes from linked data sources. Master’s thesis, Universität des
Saarlandes, Saarbrücken.
Muggleton, S. 1991. Inductive logic programming. New Genera-
tion Computing 8(4):295–318.
Neumann, T., and Weikum, G. 2010. The RDF-3x engine for
scalable management of RDF data. The VLDB Journal 19(1):91–
113.
Quinlan, J. R. 1990. Learning logical definitions from relations.
Machine Learning 5:239–266.
Salleb-Aouissi, A.; Vrain, C.; and Nortet, C. 2007. Quantminer:
A genetic algorithm for mining quantitative association rules. In
Veloso, M. M., ed., IJCAI, 1035–1040.
Srikant, R., and Agrawal, R. 1996. Mining quantitative association
rules in large relational tables. SIGMOD Rec. 25(2):1–12.

4http://gold.linkeddata.org

350

