Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference

Action Classification Using Sequence Alignment and Shape Context

Sultan Almotairi and Eraldo Ribeiro
Florida Institute of Technology
Melbourne, U.S.A.

Abstract

In this paper, we describe a method for classifying hu-
man actions from videos. The method uses the Longest
Common Sub-Sequence (LCSS) algorithm to match ac-
tions represented by sequences of pose silhouettes. The
silhouettes are extracted from each video frame us-
ing foreground segmentation. The main novelty of our
method is the use of the Shape Context (SC) and Inner-
Distance Shape Context (IDSC) as a pairwise shape-
similarity measurement for constructing the sequence-
alignment cost matrix. Experiments performed on two
action datasets compare our approach favorably with
previous related methods.

1 Introduction and Background

The recognition of human actions from videos is a major
goal of computer vision. While many solutions have been
proposed, the problem remains largely open mostly due to
the algorithmic and mathematical challenges of accounting
for large variations in both pose appearance and motion dy-
namics that are inherent to human actions. When accounting
for motion dynamics, current action-classification methods
use motion descriptors based on clustered pixel inter-frame
motion (i.e., optical flow) or motion curves of tracked re-
gions or objects (i.e., trajectories). Besides motion features,
the appearance of the human pose is a strong visual cue for
action classification.

In the method described in this paper, we represent actions
as a sequence of shapes of silhouette poses. The motion cue
is implicitly represented by the variations of these silhouette
shapes over time while the action is performed. First, the
pose shapes are extracted from each video frame using fore-
ground segmentation. The entire action is then represented
by the sequences of poses. Once these sequence of poses
are at hand, our method performs action classification by
using the robust sequence-alignment method Longest Com-
mon Sub-Sequence (LCSS) (Vlachos, Kollios, and Gunop-
ulos 2002). Recognition is done using a nearest-neighbor
classification scheme based on LCSS. Here, we use a shape-
similarity measure as the cost function for the sequence-
matching algorithm. More specifically, we use the Shape-
Context (SC) and Inner-Distance Shape Context (IDSC) as a
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pairwise shape-similarity measurement for constructing the
LCSS cost matrix. Demonstrating the suitability of SC and
IDSC for action classification is a key contribution of our
paper. The main steps of our method are shown in Figure 1.

Shape descriptors such as Shape-Context (Belongie, Ma-
lik, and Puzicha 2002) have been used for representing hu-
man pose (Xian-Jie et al. 2005). Shape descriptors can also
provide information about pose in 3-D space from a sin-
gle 2-D image (Mori and Malik 2002). Some recent ap-
proaches also apply the SC descriptor to the recognition of
human action (Sullivan and Carlsson 2002; Kholgade and
Savakis 2009; Xian-Jie et al. 2005; Hsiao, Chen, and Chang
2008). Among these approaches, the one by Sullivan and
Carlsson (2002) is closely related to our method. They de-
veloped a view-based approach that recognizes human ac-
tions by using a set of manually selected key poses. Khol-
gade and Savakis (2009) proposed a 4-D spatio-temporal
shape-context descriptor, which captures both the magni-
tude and the direction of points along the human contour
over consecutive frames of a video. Similarly, Hsiao, Chen,
and Chang (2008) proposed a temporal-state shape-context
method, which extracts local characteristics of the space-
time shape that is generated by concatenating consecutive
silhouettes of an action sequence.

Our method is closely related to the one developed by
Blackburn and Ribeiro (2007), who project sequences of
silhouettes onto a lower-dimensional manifold using the
Isomap non-linear manifold learning. Their method matches
action manifolds using Dynamic Time Warping (DTW). Our
method does not use manifold learning but directly measures
similarity via sequence alignment. We follow the approach
in Filipovych and Ribeiro (2011) and attempt to quantify
the changes in pose (i.e., the dynamics of pose variation)
by comparing the sequence of silhouettes directly using the
LCSS sequence-alignment method. In contrast with DTW,
which matches all frames in both query and test videos,
LCSS allows for partial matching. As a result, our method is
less sensitive to outliers than those using DTW.

Our experiments show that our method performs well for
human-action recognition when silhouettes can be reliably
extracted. We tested our approach on two popular human-
action datasets. We compared our method with some related
methods.
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Figure 1: An overview of our method. First, we extract silhouettes from video sequences. The sequence-alignment method

LCSS is used to measure similarity.

2  Our Method

Given two sequences of silhouettes representing an action,
we measure their similarity by means of a robust sequence-
alignment method. We use the Longest Common SubSe-
quence (LCSS), a dynamic-programming approach that cal-
culates the minimum cost of aligning two sequences.

2.1 Data pre-processing

The input to our method is a sequence of binary images
representing the shape of the human body (i.e., pose sil-
houettes). Given a video ¥ = {f1,...,fv} with N image
frames, we begin by extracting a silhouette representation of
the pose for each frame. Silhouette extraction is done using
basic background subtraction followed by a post-processing
step to remove smaller noisy regions (e.g., using Gaussian
blur and morphological operations). Then, all silhouettes are
resized to a standard rectangular size. However, the length of
sequences can vary.

2.2 Measuring pose similarity

Matching cost using Shape-Context. The cost of match-
ing two silhouettes is calculated using SC (Belongie, Ma-
lik, and Puzicha 2002). For each point p; in Figure 1(b), we
want to find the best matching point g; on Figure 1(d). Con-
sequently, the total dissimilarity of matching Figure 1(a) and
Figure 1(c) is the cost calculated as a sum of matching errors
between corresponding points. Therefore, the cost of match-
ing p; and g; is given by:
L e [ui(m) —uj(m)]?
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where u;(m) and u;(m) denote the M-bin normalized his-
togram at points p; and g;, respectively. Therefore, given a
sequence A and B of lengths a and b, we create a similarity
matrix D with size (axb). Then, using the adopted sequence
alignment LCSS (Equation 3), we calculate the overall sim-
ilarity between the two videos. Ideally, if the two videos
are very similar (e.g., same action and equivalent length)



the values of the diagonal elements in the matrix D will be
the smallest (close to zero). Therefore, LCSS will return the
maximum number of matches (in this case, it will be the
length of the diagonal) with respect to € divided by min(a,b)
for each matrix.

Matching cost using IDSC. Similarly to SC, we also use
IDSC (Ling and Jacobs 2007) to calculate the cost of match-
ing two silhouettes. IDSC is used as a replacement for the
Euclidean distance to build a proper descriptors for complex
shapes such as human shapes. IDSC calculates the length of
the shortest path within the shape boundary of a silhouette.
The computation of the IDSC consists of two steps:

1. Build a graph with sample points. All points are located
on the external boundary of the human shape and are
treated as nodes in a graph. Then, if there is an existing
line segment between p; and ¢ falling entirely withing an
object’s shape, an edge between these two points is added
to the graph. The weight of this edge is equivalent to the
Euclidean distance between the two points.

2. Apply a shortest-path algorithm to the graph (e.g., Floyd’s
algorithm).

The IDSC is robust to articulated objects, because it decom-
poses the shape into many rigid parts connected by junctions
(e.g., hands, heads, and torso). For more details on the imple-
mentation of IDSC, please refer to (Ling and Jacobs 2007).
The combination of IDSC and LCSS has proven to yield
good results, yet SC outperforms the IDSC as we demon-
strate in Section 3.

2.3 Similarity between sequences of silhouettes

Given a sequence A and B of lengths a and b, respectively,
the LCSS function is given by:

LCSS(i, j) =
0 i=0,
0 j=0,

1+LCCS(i—1,j—1) if D(i,j) <e,
max[LCSS(i—1,j),LCSS(i,j—1)] otherwise,
(2)

where 1 <i<aand 1< j<b.D(i,j) contains the similarity
between shapes of silhouettes i and j as calculated via SC or
by IDSC. The value of € is estimated for each type of action
from training sequences by taking the average cost of shape
context.

LCSS calculates the similarity between the two se-
quences. However, extracting the cost of matching sequence
A to B is accomplished as follows:

max(LCSS; 5(A,B))
min(a,b)

Cost(€,0,A,B) =1— , 3)
where LCSS; 5(.) returns a similarity matrix, A and B are the
compared videos with lengths a and b, respectively. In case
of LCSS, the maximum number in the similarity table is the
number of the similar points between the sequences.

We assume that € equals mean(D), where D is the ma-
trix that contains the cost of shape context when comparing

two videos. Also, we only accept a match when the differ-
ence in the indices between frames is at most §. This will
make the algorithm faster and decrease the time complexity
to O(3(a+b)). We set d to 3, which means that the algorithm
will allow matching up to three indices. Due to the size of
the videos, setting the & to more than 3 does not improve the
result.

2.4 Classification approach

Finally, the recognition of action is accomplished by means
of a nearest-neighbor classification scheme based on LCSS
score. The algorithm is summarized in Algorithm 1.

Algorithm 1:

Input: two videos A and B
Output: similarity between them
1 a < length of A // the number of frames in the video
2 b < length of B
3 nPoints < 100 // sample points generated on the
extracted human’s silhouette
4 fori< 1toado
5 for j < 1to bdo
6 L D(i, j) < Equation 1 //using the silhouette in

frame i and j from videos A and B,
respectively

7 € < equals mean(D)

8 O < 3// set to skip at most three frames

9 for i< 1toado

10 for j < 1to b do

1 L | LCSS(i,j,D(i, j),€,8) < Equation 2

12 maxLcss <+ max(LCSS)

13 similarity < maxLcss/min(a,b)

14 return similarity //range from O to 1, the output is
more similar if the value is small

3 Experimental Results
3.1 Datasets

In our experiments, we used two different datasets to eval-
uate our method (e.g., Weizmann (Gorelick et al. 2007)
and ViHASi (Ragheb et al. 2008)). The Weizmann dataset
contains 90 low-resolution video (180x144) sequences of
nine different subjects. Each subject performs 10 actions
classes. Figure 2 shows an example of subject and actions
used in our experiments. Each sequence of different action
contains between 40 and 120 frames. In our experiments,
we used all subjects and all actions from this dataset. The
ViHASI dataset contains nine virtual subjects preforming
20 action classes. The number of frames ranges from 20
to 80 frames. However, we evaluated our method on eight
subjects and seven action classes, namely, fall down (Col-
lapse), small bomb thrown by hand (Granade), hanging with
both hands on a bar (HangOnBar), opening door like a hero
(HeroDoorSlam), jump to get on bar (JumpGetOnBar), run,
and walk. Figure 2 shows sample frames from the actions



used from the ViHASI action dataset. From each video we
selected 10 frames to represent the actions and each se-
quence performed by different subjects. We noted that the
action “HangOnBar” has small variances in pose between
each frame, whereas in “Collapse” the variance in pose is
more noticeable.

ViHaSi dataset
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Figure 2: Sample frames from the Weizmann (Gorelick et al.
2007) and the ViHASI (Ragheb et al. 2008) action datasets.

3.2 Experimental setup

We used MATLAB to implement our method. The time to
process SC between two silhouettes took on average 46 x
10735, whereas, IDSC took about 67X 10~*s with resolution
of 61 x 20 pixels. The PC used to run our experiments was
equipped with an Intel 17-2600 CPU @ 3.40GHz and 6GB
memory.

We began by creating a database that contained the above
described cost matrix between every two videos from Weiz-
mann dataset, which resulted in ("erl) matrices, where n
is the number of videos in the dataset. For calculating the
LCSS, we set € = mean(D), where D is the calculated cost
matrix using SC and § is set to 3. All the experiments were
performed using leave-one-out validation (i.e., we used all
subjects except one for training and tested the learned model
for the missing subject). Then, using the LCSS to calculate
the overall cost of each matrix, we selected the smallest cost
and if the smallest cost had the same action of the tested mo-
tion for example, Denis (walk), then we counted a match.
However, for the purpose of comparison to our method, we
created duplicate cost matrices using inner-distance shape
context (IDSC) (Ling and Jacobs 2007). Both, IDSC and SC
required number points that can be spatial distributed on the
silhouette to calculate the similarity between shapes. We set
the number of points to 20 for both IDSC and SC.

3.3 Result

We performed our experiments on both datasets using IDSC
and SC for creating the cost matrix. Also, we used DTW
and LCSS for extracting the matching cost from the matrix.
Evaluations were computed using a leave-one-out cross-
validation. For instance, on the Weizmann dataset, one sub-
ject was used for testing. The rest of the subjects were used

for training. The test was then repeated over all the nine sub-
jects and the results were averaged. We achieved a classifi-
cation accuracy of 92.22% and 100% using Weizmann and
ViHASI, respectively. This result is slightly better than some
of the other approaches.

Table 1 shows brief results on the two datasets using IDSC
& SC for the cost matrix and DTW & LCSS for evaluating
the matrix. It shows that the use of SC outperforms IDSC.
Also, LCSS is more effective than DTW. Hence, the use of
the combination SC and LCSS is an effective way to rep-
resent and match the human-action patterns. Recent results
reported in the literature on the Weizmann dataset are shown
in Table 2.

Table 1: Classification rate on Weizmann and ViHASI
datasets using leave-one-out cross validation.

Exp. Dataset Method

Recognition rate (%)

Weizmann IDSC+DTW 73.30
IDSC+LCSS 75.56
SC+DTW 87.80
SC+LCSS 92.22
ViHASI IDSC+DTW 83.90
IDSC+LCSS 80.36
SC+DTW 100.00
SC+LCSS 100.00

The recognition accuracy in Figures 3 and 4 show the re-
sult using SC+LCSS on Weizmann and ViHASi datasets,
respectively. However, in the confusion matrix (Fig. 3),
we note that the action “skip” is confused with the ac-
tion “jump”. This confusion is normal because both actions
have a very similar pose movement. Therefore, by exclud-
ing the action “skip”, we achieved classification accuracy of
96.30%.

Table 2: Results reported using the Weizmann database.

Method Rate(%)
SC+LCSS (proposed) 92.22
Blackburn and Ribeiro (2007) 61.00
Niebles and Fei-Fei (2007) 72.80
Filipovych and Ribeiro (2007) 79.00
Thurau (2007) 86.66
Kellokumpu, Zhao, and Pietikinen (2011)  89.80
Liu, Ali, and Shah (2008) 90.40
Yao, Gall, and Van Gool (2010) 92.20
Kholgade and Savakis (2009) 90.00

Dhillon, Nowozin, and Lampert (2009) 88.50

In Table 2, we note that the recognition accuracy achieved
by (Blackburn and Ribeiro 2007) was 61%. However, this
result was achieved when we recreated the experiment by
using leave-one-out validation. Nevertheless, they report in
their work 95% accuracy by using identical subjects for both
training and testing with two-fold cross-validation while
we used leave-one-out cross-validation. Furthermore, their



method is sensitive to missing frames and requires a dense
data to produce meaningful manifolds while our method is
robust to missing or corrupted frames.
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Figure 3: Confusion matrix showing our result on the Weiz-
mann dataset using SC+LCSS. Note that the action “Skip”
are confused with the action “Jump” due to similarity in the
pose movement.
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Figure 4: Confusion matrix showing our result on the Vi-
HASI dataset using SC+LCSS.

Finally, Figure 5 shows the Receiver Operating Character-
istic (ROC) curves of action classification obtained by using
our algorithms. On ROC curves, the closer the curve for each
method follows the left-hand border and then the top border
of the ROC space, the more accurate the test. Therefore, the
shape of the ROC curves indicates that SC and LCSS surpass
the other methods. Also, we observe that the IDSC has sig-
nificantly less discrimination compared to SC. Equivalently,
the LCSS outperforms the DTW (Figure 6). Similarly, Fig-

ure 7 shows the performance of our method on the ViHASi
dataset.
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Figure 5: ROC curves of action classification on the Weiz-
mann dataset.
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Figure 6: Accuracy recognition representation using our four
classification algorithms on the Weizmann dataset.

4 Conclusions and Future Work

In this paper, we presented a method for recognizing human
actions. Our approach is simple yet provides promising re-
sults. It works by calculating a cost matrix of matching hu-
man silhouettes using SC or IDSC. Then, LCSS or DTW is
used to extract similarity by calculating the minimum cost
of the matching matrix. Experimental results show that our
method preforms well on different actions.

Our method suffers from potential limitations inherited
from the SC and IDSC. These limitations result in variance
of matching costs between two images due to the random
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Figure 7: Accuracy recognition representation using our four
classification algorithms on the ViHASi dataset.

spatial distribution of points on an object’s shape. However,
such limitation could be reduced by considering human parts
when calculating the cost of matching.

Our approach may be further improved by constraining
the shape-context matching to body parts.
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