
Implementation of a Transformation System for Relational Probabilistic
Knowledge Bases Simplifying the Maximum Entropy Model Computation

Christoph Beierle, Markus Höhnerbach, Marcus Marto
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Abstract

The maximum entropy (ME) model of a knowledge base R
consisting of relational probabilistic conditionals can be de-
fined referring to the set of all ground instances of the con-
ditionals. The logic FO-PCL employs the notion of para-
metric uniformity for avoiding the full grounding of R. We
present an implementation of a rule system transforming R
into a knowledge base that is parametrically uniform and has
the same ME model, simplifying the ME model computation.
The implementation provides different execution and evalua-
tion modes, including the generation of all possible solutions.

1 Introduction
While there are several developments to extend probabilis-
tic logic to the first-order case (Getoor and Taskar 2007),
a few recent approaches employ the principle of maximum
entropy (ME) (Paris 1994; Kern-Isberner 1998). One of
these approaches is the logic FO-PCL (Fisseler 2010), an
extension of propositional probabilistic conditional logic
which combines first-order logic with probability theory
to model uncertain knowledge. An example of a condi-
tional in FO-PCL is “If V likes U, then U likes V with
probability 0.9, for different U, V”, formally denoted by
〈(likes(U, V ) | likes(V,U)) [0.9] , U 6= V 〉.

The models of an FO-PCL knowledge base R consist-
ing of a set of such conditionals are probability distributions
over possible worlds satisfying each conditional in R, and
the ME principle is used to select the uniquely determined
model ME (R) having maximum entropy. The computation
of ME (R) leads to an optimization problem with one op-
timization parameter to be determined for each admissible
ground instance of every conditional in R. However, if the
knowledge base is parametrically uniform, i.e. all ground in-
stances of a conditional share the same optimization param-
eter value, for each conditional in R just one optimization
parameter has to be determined (Fisseler 2010). Thus, para-
metric uniformity significantly simplifies the task of com-
puting ME (R) (Finthammer and Beierle 2012).

In (Krämer and Beierle 2012), a set of of transformation
rules PU is presented allowing to transform any consistent
knowledge base into a parametrically uniform knowledge
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base with the same maximum entropy model. In this pa-
per, we introduce the system PUsys implementing PU and
automatically generating PU(R) for any consistentR. This
allows for a simpler ME model computation by computing
ME (PU(R)) instead of ME (R).

We very briefly sketch the basics of PU (Sec. 2), describe
its implementation (Sec. 3), present the reasons for multiple
solutions (Sec. 4) and their optimized generation (Sec. 5),
give some first evaluation results and conclude (Sec. 6).

2 Interactions and Transformation Rules
In (Krämer and Beierle 2012), the reasons causing R to be
not parametrically uniform are investigated in detail and the
syntactic criterion of inter-rule and intra-rule interactions is
introduced. For each of the different types of interactions,
there is a corresponding interaction removing transforma-
tion rule in PU (cf. Figure 1). For instance, the transfor-
mation rule (TE 1) removes an inter-rule interaction of type
1 by replacing a conditional R with two new conditionals
ν(σ(R)) and ν(σ̄(R)), where σ(R) is the result of applying
the variable substitution σ = {V/c} to R, and σ̄(R) is the
result of adding the constraint V 6= c to the constraint for-
mula of R. The operator ν transforms a conditional in con-
straint normal form. Similarly, (TE 2) and (TE 3) remove
inter-rule interactions of type 2 and 3. The three different
types of intra-rule interactions occur within a single con-
ditional and are removed by one of the three rules (TA1),
(TA2), (TA3) in PU (Krämer and Beierle 2012).

Example 1 (Application of PU) Among the conditionals
R1 : 〈(likes(U, V ) | likes(V,U)) [0.9] , U 6= V 〉
R2 : 〈(likes(a, V )) [0.05] , V 6= a〉 �

there is an inter-rule interaction denoted by R2 ←
〈likes〉U,a → R1. (TE 1) removes it by replacing R1 with
R1 1 : 〈(likes(a, V ) | likes(V, a)) [0.9] , V 6= a〉
R1 2 : 〈(likes(U, V ) | likes(V,U)) [0.9] , U 6=V ∧ U 6=a〉.

Proposition 1 (Krämer and Beierle 2012) Applying PU
to a knowledge base R terminates and yields a knowledge
base PU(R) having the same maximum-entropy model and
PU(R) is parametrically uniform.

Due to lack of space, we refer to (Krämer and Beierle
2012; Beierle and Krämer 2014) for further details of PU ,
including many examples, formal definitions and full proofs.
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(TE1)
R∪ {R1, R2}

R ∪ {R1} ∪ ν{σ(R2), σ(R2)}
R1←〈P 〉V,c→R2,
σ = {V/c}

(TE2)
R∪ {R1, R2}

R ∪ {R1} ∪ ν{σ(R2), σ(R2)}
R1←〈P 〉V,Z→R2,
σ = {V/Z}

(TE3)
R∪ {R1, R2}

R ∪ {R1} ∪ ν{σ(R2), σ(R2)}
R1←〈P,Q〉V,Z→R2,
σ = {V/Z}

(TA1)
R∪ {R}

R ∪ ν{σ(R), σ(R)}
〈Q〉V,c→R,
σ = {V/c}

(TA2)
R∪ {R}

R ∪ ν{σ(R), σ(R)}
〈Q〉V,Z→R,
σ = {V/Z}

(TA3)
R∪ {R}

R ∪ ν{σ(R), σ(R)}
〈Q,S〉V,Z→R,
σ = {V/Z}

Figure 1: Transformation rules PU (Krämer and Beierle
2012)

3 Implementation
The software system PUsys implements the transformation
system PU . PUsys has been designed as a plug-in for
KREATOR1 (Finthammer and Thimm 2012), which is an in-
tegrated development environment for relational probabilis-
tic logic. The input knowledge base is parsed into an abstract
syntax tree from which an object structure is created. The
recognition of interactions and the application of the trans-
formation rules operate directly on this structure. A trans-
formation process can be started by executing a KREATOR
script (Finthammer and Thimm 2012). All transformation
parameters (e.g. transformation mode) can be set either by
using a graphical user interface or within the script itself.

Transformation Modes PUsys ensures that all condi-
tionals of the initial knowledge base are transformed into
constraint-normal form. If more than one interaction is
found, one of these interactions has to be selected for the
application of the corresponding transformation rule. There-
fore, PUsys offers different transformation modes for differ-
ent rule application strategies.

The Interactive mode allows to control, monitor and trace
single steps of a transformation process through a graphical
user interface. In the Automatic mode, an applicable trans-
formation rule is selected automatically and applied until
a parametrically uniform knowledge base is reached. The
All Solutions transformation mode creates all results that are
obtainable by applying different orders of rule applications.
Thereby, it avoids the multiple generation of the same para-
metrically uniform knowledge base, and moreover, it avoids
the generation of knowledge bases that are just variants of
each other with respect to variable renamings. As this mode
is of particular interest when investigating properties of PU
related e.g. to minimal solutions or confluence properties,
this mode will be described in more detail in Sec. 5.

1Source code of KREATOR and PU sys can be found at
http://kreator-ide.sourceforge.net/

4 Multiple Solutions
The application of different transformation rules form PU
to a knowledge base R may lead to different paramet-
ric uniform knowledge bases (though still having the same
maximum entropy model due to Proposition 1), i.e. PU is
not confluent. The following knowledge base presented in
(Krämer 2011) illustrates this.

Example 2 LetR = {R1, R2} be the knowledge base with:
R1 : 〈(p(U,U) | q(V )) [0.2] , U 6= V 〉
R2 : 〈(p(X,Y ) | q(W )) [0.3] ,>〉

There are three interactions inR:
Ia : R1 ← pX,Y → R2

Ib : R1 ← 〈p, q〉X,W → R2

Ic : R1 ← 〈p, q〉Y,W → R2

Choosing first the interaction Ia and applying PU exhaus-
tively yields the parametrically uniform knowledge baseRa

with the following four conditionals:
R1 : 〈(p(U,U) | q(V )) [0.2] , U 6= V 〉
Ra2 : 〈(p(X,Y ) | q(W )) [0.3] , X 6= Y 〉
Ra3 : 〈(p(Y, Y ) | q(Y )) [0.3] ,>〉
Ra4 : 〈(p(Y, Y ) | q(W )) [0.3] , Y 6= W 〉

Choosing first the interaction Ib and applying PU exhaus-
tively yieldsRb with six conditionals:
R1 : 〈(p(U,U) | q(V )) [0.2] , U 6= V 〉
Rb2 : 〈(p(Y, Y ) | q(Y )) [0.3] ,>〉
Rb3 : 〈(p(X,Y ) | q(X)) [0.3] , X 6= Y 〉
Rb4 : 〈(p(X,Y ) | q(Y )) [0.3] , X 6= Y 〉
Rb5 : 〈(p(Y, Y ) | q(W )) [0.3] ,W 6= Y 〉
Rb6 : 〈(p(X,Y ) | q(W )) [0.3] ,W 6=X ∧W 6=Y ∧X 6=Y 〉
Choosing first the interaction Ic and applying PU exhaus-
tively yields a knowledge baseRc also with six conditionals;
in fact,Rc differs fromRb only by a renaming of variables.

Thus, even when taking variable renamings into account,
in Example 2, PU can transform R into two different para-
metrically uniform knowledge bases, Ra and Rb. Here, the
choice of the interaction that gets removed first determines
the solution, while in general, the splitting in different solu-
tions may occur at any stage of the transformation process.

5 Generation of all Solutions
Enumerating all solutions in a simple way by branching out
every time there is more than one option which interaction to
remove first, is not feasible even for small knowledge bases.
It would also give no information about the number of solu-
tions that differ in more than a variable naming. Knowledge
bases obtained byPU whose conditionals differ only in vari-
able naming are equivalent. The source for this ambiguity in
the transformation process is that an equivalence constraint
A = B can be realized in a substitutionA/B as well asB/A
if A and B are both variables.

Definition 1 (pt-equivalent conditionals) Let R be a
knowledge base, R ∈ R, and let σ = σn ◦ . . . ◦ σ1 and
σ′ = σ′

m ◦ . . . ◦ σ′
1 be substitutions obtained from applying

two sequences of PU transformations to R. Then the
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conditionals σ(R) and σ′(R) are equivalent with respect
to PU transformations (or just pt-equivalent) iff there is a
variable renaming ρ such that ρ(σ(R)) = σ′(R).

Note that this notion is relative to the root conditional R.
For instance, in Example 2, the two conditionals

R′
2 : 〈(p(X,X) | q(X)) [0.3] ,>〉

R′′
2 : 〈(p(Y, Y ) | q(Y )) [0.3] ,>〉

originating from R2 with the substitutions W/X and Y/X
respectively W/Y and X/Y are pt-equivalent as there is
ρ = X/Y such that ρ(R′

2) = R′′
2 .

An algorithm to find the solutions has to make two choices
during the process:

Q1 : What conditionals should be checked for interactions?

Q2 : Which transformations should be executed on these
conditionals ensuring that all solutions are generated?

The algorithm introduced in this paper to answer Q1 and
Q2 uses an auxiliary graph which is essentially a represen-
tation for the set of knowledge bases reachable through the
transformation process. It is a directed graph with two types
of nodes: conditional nodes representing a single condi-
tional, and substitution nodes representing a substitution act-
ing on a conditional. The nodes are connected such that con-
ditional nodes are connected to their respective interaction-
removing substitution nodes, and substitution nodes are con-
nected to the conditional nodes that are the result of applying
said substitution to the parent conditional.

Example 3 Fig. 2(a) is is an auxiliary graph representing
the solution knowledge baseRb from Example 2. On the top
level there are the conditionals of the original knowledge
base (rectangles). Below these there are the interaction-
removing substitutions σ (ellipses) connected to the condi-
tional node R they apply to, and to the two resulting condi-
tional nodes σ(R) and σ̄(R). Thus, each substitution node
has exactly one incoming and two outgoing edges. The con-
ditionals inRb are precisely the six leaf nodes in the graph.

Such an auxiliary graph can also be constructed for the
whole transformation process behind PU . The algorithm
starts with the empty graph and adds a conditional node for
each conditional in the initial knowledge base. Then we suc-
cessively pick one conditional node, compute the set of con-
ditional nodes in the graph that it can possibly interact with,
check for interactions with said nodes and add the corre-
sponding substitution nodes for the found interactions.

When the substitution node gets added, we also have
to connect its outgoing edges. At this point we use the
equivalence between conditionals from Definition 1 to check
whether a pt-equivalent conditional is already contained in
the graph. If this is the fact, then it suffices to connect the
substitution node to said conditional node, and we do not
have to add a new conditional node to the graph.

Example 4 Fig. 2(b) is the auxiliary graph corresponding
to the knowledge base R from Example 2. In the first row,
there are the conditionals of the original knowledge baseR,
and the second row contains the substitution nodes corre-
sponding to the three interactions Ia, Ib, Ic in R. The third

row contains the six conditionals obtained by applying the
corresponding interaction removing transformations. The
fourth row contains the substitution nodes corresponding
to the interactions among the conditionals in the third row.
Note that three of the resulting conditionals in the fifth row
have multiple incoming edges since, up to pt-equivalence,
they can be generated in different ways.

This operation effectively transforms the graph from a
tree to a directed acyclic graph. This graph can now an-
swer the question Q1 posed before: The substitution nodes
denote exactly the substitutions that can be applied to its par-
ent conditional node during the interaction removal process.

In order to answer question Q2, the auxiliary graph is re-
duced by identifying and removing redundancies caused by
substitution nodes. For instance, let R ∈ R be a conditional
that has two interactions inRwith interaction removing sub-
stitutions σ1, σ2. Assume that those are independent, i.e.
removing one interaction changes nothing about the other
interaction. Then the graph will contain both σ1 and σ2 as
substitution nodes below R. As these are independent from
each other, σ2 is also a substitution child node of σ1(R) as
well as σ̄1(R) and vice-versa. Thus, both substitution nodes
σ1 and σ2 below R lead to the same conditionals below, and
we can fuse the two substitution child nodes ofR to one sub-
stitution node {σ1, σ2} and pick an arbitrary representative
determining the edges. Removing all such redundancies in
a bottom-up manner yields the reduced auxiliary graph.

Example 5 Fig. 2(c) shows the reduced graph for R from
Example 2. Note how there is just one conditional node with
more than one substitution child node, corresponding to R2.

The reduced graph can be used to determine which
interaction-removing substitutions on a given conditional
are sufficient for generating all solutions. Starting with the
setM containing the conditional nodes in the first row of the
graph (i.e., the set of conditionals in the original knowledge
base), do the following: While there is a conditional node C
in M that is not a leaf node, choose (non-deterministically)
one of C’s child substitution nodes and replace C in M by
the two child nodes of the chosen substitution node.

Example 6 As there is only one conditional node in the re-
duced graph in Fig. 2(c) (i.e. R2), there is only one (non-
deterministic) choice to be made. Thus, the graph repre-
sents exactly the two parametrically uniform solutions Ra

andRb (cf. Example 2) which correspond to the leave nodes
obtained by choosing either the left substitution child node
X/Y or the right substitution child node X/W of R2.

6 First Evaluation Results and Further Work
PUsys has been applied successfully to many different
knowledge bases, including all examples given in (Fisseler
2010; Krämer and Beierle 2012; Finthammer and Beierle
2012) and a series of randomly generated examples, cover-
ing all types of interactions. The optimized generation of
all solutions is much more efficient than the naive approach,
e.g., generating exactly the two solutions for R as in Ex. 2,
compared to 28 solutions in the naive approach, or yielding
all non-redundant solutions within seconds where the naive
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(a) R1 : 〈(p(U,U) | q(V )) [0.2] , U 6= V 〉 R2 : 〈(p(X,Y ) | q(W )) [0.3] ,>〉

X/W

〈(p(X,Y ) | q(X)) [0.3] ,>〉 〈(p(X,Y ) | q(W )) [0.3] ,W 6= X〉

X/Y W/Y

Rb3 : 〈(p(X,Y ) | q(X)) [0.3] , X 6= Y 〉Rb2 : 〈(p(Y, Y ) | q(Y )) [0.3] ,>〉 Rb4 : 〈(p(X,Y ) | q(Y )) [0.3] , X 6= Y 〉 〈(p(X,Y ) | q(W )) [0.3] ,W 6= X ∧W 6= Y 〉

X/Y

Rb5 : 〈(p(Y, Y ) | q(W )) [0.3] ,W 6= Y 〉 Rb6 : 〈(p(X,Y ) | q(W )) [0.3] ,W 6= X ∧W 6= Y ∧X 6= Y 〉

(b) 〈(p(X,Y ) | q(W )) [0.3] ,>〉 〈(p(U,U) | q(V )) [0.2] , U 6= V 〉

Y/WX/Y X/W

〈(p(Y, Y ) | q(W )) [0.3] ,>〉〈(p(X,Y ) | q(W )) [0.3] , X 6= Y 〉 〈(p(X,Y ) | q(Y )) [0.3] ,>〉 〈(p(X,Y ) | q(X)) [0.3] ,>〉 〈(p(X,Y ) | q(W )) [0.3] ,W 6= X〉 〈(p(X,Y ) | q(W )) [0.3] ,W 6= Y 〉

Y/W X/Y X/Y X/Y Y/W X/Y X/W

〈(p(Y, Y ) | q(Y )) [0.3] ,>〉 〈(p(X,Y ) | q(W )) [0.3] ,W 6= X ∧X 6= Y 〉 〈(p(X,Y ) | q(W )) [0.3] ,W 6= Y ∧W 6= X〉 〈(p(X,Y ) | q(W )) [0.3] ,W 6= Y ∧X 6= Y 〉

Y/WY/X X/W

〈(p(X,Y ) | q(Y )) [0.3] , X 6= Y 〉〈(p(Y, Y ) | q(W )) [0.3] ,W 6= Y 〉 〈(p(X,Y ) | q(W )) [0.3] ,W 6= Y ∧X 6= Y ∧W 6= X〉 〈(p(X,Y ) | q(X)) [0.3] , X 6= Y 〉

(c) 〈(p(X,Y ) | q(W )) [0.3] ,>〉 〈(p(U,U) | q(V )) [0.2] , U 6= V 〉

X/Y X/W ; (Y/W )

〈(p(Y, Y ) | q(W )) [0.3] ,>〉〈(p(X,Y ) | q(W )) [0.3] , X 6= Y 〉 〈(p(X,Y ) | q(X)) [0.3] ,>〉 〈(p(X,Y ) | q(W )) [0.3] ,W 6= X〉

X/Y Y/W X/Y ; (Y/W )

〈(p(X,Y ) | q(X)) [0.3] , X 6= Y 〉 〈(p(Y, Y ) | q(Y )) [0.3] ,>〉 〈(p(Y, Y ) | q(W )) [0.3] ,W 6= Y 〉 〈(p(X,Y ) | q(W )) [0.3] ,W 6= X ∧X 6= Y 〉

Y/W

〈(p(X,Y ) | q(Y )) [0.3] , X 6= Y 〉 〈(p(X,Y ) | q(W )) [0.3] ,W 6= Y ∧X 6= Y ∧W 6= X〉

Figure 2: (a) Auxiliary graph forRb, (b) auxiliary graph forR, and (c) reduced auxiliary graph forR from Example 2

approach does not terminate within four hours. Our current
work also includes the question whetherPU can be modified
such that a confluent set of transformation rules is obtained.
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