
BTT-Go: An Agent for Go That Uses a Transposition Table to Reduce
the Simulations and the Supervision in the Monte-Carlo Tree Search

Eldane Vieira Junior and Rita Maria Silva Julia
Department of Computer Science

Federal University of Uberlandia - UFU
Uberlandia, Brazil

eldanevieira@gmail.com, rita@ufu.br

Abstract

This paper presents BTT-Go: an agent for Go whose ar-
chitecture is based on the well-known agent Fuego, that
is, its search process for the best move is based on sim-
ulations of games performed by means of Monte- Carlo
Tree Search (MCTS). In Fuego, these simulations are
guided by supervised heuristics called prior knowledge
and play-out policy. In this context, the goal behind the
BTT-Go proposal is to reduce the supervised character
of Fuego, granting it more autonomy. To cope with this
task, the BTT-Go counts on a Transposition Table (TT)
whose role is not to waste the history of the nodes that
have already been explored throughout the game. By
this way, the agent proposed here reduces the super-
vised character of Fuego by replacing, whenever pos-
sible, the prior knowledge and the play-out policy with
the information retrieved from the TT. Several evalua-
tive tournaments involving BTT-Go and Fuego confirm
that the former obtains satisfactory results in its purpose
of attenuating the supervision in Fuego without losing
its competitiveness, even in 19x19 game-boards.

1 Introduction
Games have been one of the main areas of research due to
the fact that they are in tune with real life problems, such as
those which arise from the interaction of man and machine,
as well as deal with unpredictable situations (Brügmann
1993).

The game Go has been a great challenge due to its com-
plexity in terms of strategy compared to other ones, as shown
in Table 1 (Campos and Langlois 2003). That is why it is an
important field for researchers in the Artificial Intelligence
area.

This paper presents the Go player agent BTT-Go, which
aims at reducing the supervised character of the player pro-
gram GO called Fuego (Enzenberger et al. 2010), without
compromising its competitiveness. It is interesting to point
out that a preliminary theoretical proposals of BTT-Go were
introduced by the authors in (Junior and Julia 2013). In the
present work, the authors detail the final architecture of the
system and the results obtained in evaluative tournaments
against other successful agents for Go.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Table 1: Ramification factor and space states of same games.
Game Branch States
Chess 30 – 40 105

Checkers 8 – 10 1017

Backgammon ±420 1020

Othello ±5 < 1030

Go 19x19 ±360 10160

Abalone ±80 < 361

The Fuego program uses the search algorithm based on
Monte-Carlo (MC) simulations (Brügmann 1993), the algo-
rithm UCT (Upper Confidence Trees) (Coulom 2007b) and
Rapid Action Value Estimation (RAVE) (Gelly and Silver
2011), besides using prior knowledge and opening book, for
the realization of the games. Every move is chosen after that
the execution of an arbitrary quantity of game simulations
has been performed. Each game simulation is comprised of
two phases: tree construction and play-out, which are based
on supervised heuristics called prior knowledge and play-out
policy, respectively.

During a game of Go, the same state can appear again in
different game sequences (transposition), thus, creating in-
terest in the use of a TT (Childs, Brodeur, and Kocsis 2008)
as a repository of states which have been previously evalu-
ated. In this manner, to reach its objective, the BTT-Go uses
a TT that allows the agent to store as information the up-
dated values of the nodes which represent the history of the
previous evaluations performed over the course of the cur-
rent game. Whenever such an information is available, it is
used to substitute the prior knowledge and the play-out pol-
icy supervisions. In particular, each time that a visited node
in the play-out phase has its evaluation available on the TT,
this value can be retrieved, which allows the interruption of
the current game simulation. Obviously, such a reduction on
the quantity of simulations also represents a reduction in the
supervising of Fuego.

It is important to highlight that other current agents for
Go, such as Migos (van der Werf, Van Den Herik, and Uiter-
wijk 2003) and Crazy Stone (Enzenberger and Müller 2010),
also take advantage of TT, however with a different ap-
proach, as summarized in the section 3. The results obtained
from evaluation matches against Fuego show that BTT-Go,

Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference

261



is able to maintain a good competitiveness against its adver-
sary (average victory rate of 42%, as black player, and of
32%, as white player), even on 19x19 boards, which proves
that the way in which it uses TT, as a tool for reducing Fuego
supervision heuristics, was extremely successful.

The results also point to a significant reduction in the
BTT-Go search time when compared to Fuego, once that it
performs fewer simulations. Besides this, the BTT-Go was
also tested in matches against Gnu Go (Bump 2003), which
shows a much superior performance (average victory rate of
96%, as black player, and 85% as white player).

For the purpose of interpreting such results it is important
to remember that the black player tends to have an ample
advantage over the white player, once that it executes the
first move of the game.

2 Theoretical Foundations
This section presents a short description of the game of Go.
Further, it resumes some techniques and tools used in BTT-
Go that are very suitable to the game problems.

2.1 The Game of Go
The game of Go is a board game that is disputed between
two players (black and white pieces), which was created
around 4000 years ago. The objective of the game is to con-
quer the largest area of board territory possible, along with
the capture of your opponent’s pieces. Both players try to
occupy the liberties of a piece or group of pieces, being that
liberties are free positions adjacent to a piece.

The game of Go can be played on different sized boards,
such as 9x9, 13x13 and 19x19. In general this means, the
bigger the board, the more complex the game.

2.2 MCTS Search Algorithm
The MCTS search (Chaslot et al. 2006) consists of an al-
gorithm based on a tree. The choice of the best move oc-
curs through a simulation sequence of complete games per-
formed from a current state. Each of these simulations is
called an episode. The quantity of episodes for a search is
determined in function of a pre-established time.

A search episode for the algorithm MCTS is realized
in four steps: selection, expansion, play-out and back-
propagation, being that selection and expansion are those
steps which compose the so called tree construction stage.
In the following there is a description of each step realized in
an episode of the MCTS algorithm (Gelly and Silver 2011).

• Selection: Path defined by the best tree nodes from the
root. The evaluation of the nodes is carried out through a
strategy known as tree policy. The selection phase is only
interrupted when a node that does not belong to the tree is
encountered.

• Expansion: At the end of the selection, the best leaf node
defined through selection is inserted onto the tree.

• Play-out: Successive simulations of moves from the node
inserted into the expansion until it reaches an end game
state. Such moves are indicated through heuristics called
play-out policy.

• Back-propagation: Once a game simulation is concluded,
the result (victory or defeat) is retro-propagated through
the path simulated on the tree and used as a parameter to
update the values of the nodes on that path. The general
equation that guides the updating of values for a tree node
s’ obtained from the simulation of the execution of an ac-
tion a from the state s (then here s’ is represented by (s,a))
is:

Qupdated
(s,a) = Qcurrent

(s,a) + V ict(s,a) + Simul(s,a) (1)

onde,

• Qupdated
(s,a) : New value of s’ after the updating of the back-

propagation.
• Qcurrent

(s,a) : Value of s’ before updating.

• V ict(s,a): Statistics for victories in play-outs that pass
through s’ in the current search.

• Simul(s,a): Statistics for play-outs that pass through s’ in
the current search.

The adjustment portion is made by the following term of
equation 1: V ict(s,a)+Simul(s,a). It aims at accounting for
the quantity of times that a node is visited and the quantity of
times that a victory was obtained passing through this self-
same node.

2.3 Transposition Table
A transposition is the new occurrence of a state previously
processed during the execution of the search algorithm.
Transpositions in Go can occur due to situations in which,
for example, pieces are captured and the board state returns
to a previous configuration. The objective of a TT is to avoid
that already processed data are reprocessed unnecessarily.
As it is possible in a game of Go the capture of a single
piece, as well as a group of pieces, after a capture move is
executed, the board state may return to a configuration that
is differentiated from the previous state, by one, two or many
more pieces.

The TT is implemented as a hash table which is a data
structure that associates keys to values. Each key represents
a state on the Go game-board and is associated with a given
piece of information such as, board evaluation and already
explored tree depth. The representation of the board state in
the form of hash key is carried out using a technique de-
scribed by Zobrist (Zobrist 1970).

2.4 Hash Table and Hash Function
The use of the hash table allows for rapid data access from
the TT, with average complexity per operation of O(1) and
in the worst case O(N) (N is the size of the TT) (Szwarcfiter
and Markenzon 1994), which may occur when it is not pos-
sible to conclude the data insertion operation, as all attempts
collide, albeit all the positions are already occupied.

A good hash function should be easily computable and
should produce a low number of collisions. One of the hash
operations functions in the following manner, divide the
hash key (x) by the size of the table (N ) and the rest of

262



the division (h) is used as an address for TT, as shown in
equation 2:

h = xmodN. (2)

2.5 Zobrist’s Method
The method described by Zobrist (Zobrist 1970) is a tech-
nique of creating hash keys that use the XOR operator (or
exclusive). The application of the XOR operator results in
true if, and only if, only one of the operands is also true.
Firstly, attribute a number pseudo-aleatory for each possi-
ble occupation for each position on the board. For example,
a white piece in position [0,0] possesses a value, where a
black piece in the same position possesses a different value.

The hash key created to represent each board state is the
result of the XOR operation realized among all the elements
associated with the board positions that contain pieces (Zo-
brist 1970).

3 Related Works
This section resumes some successful agents for Go (includ-
ing Fuego and Gnu Go, which were involved in evaluative
tournaments against BTT-Go).

The agent Fuego has its open source code available (En-
zenberger et al. 2010), and it is, currently, among the best
automatic player programs for Go. It operates in a strongly
supervised way, since its search algorithm is based on MCTS
simulations in which the construction of the tree is guided by
opening book and prior knowledge. The play-out is based on
hierarchical heuristic rules provided by expert human play-
out policy. It is interesting to point out that, differently to
BTT-Go, Fuego does not consider the archives of nodes’
evaluation that are obtained throughout the searches per-
formed in a game.

The Migos program (Mini Go Solver) is a player with su-
pervised learning that uses alpha-beta search algorithm and
search refining resources, such as symmetry research and
TT. The values of the nodes that have already been evalu-
ated and whose data is stored in the TT is used to release the
alpha-beta algorithm of the burden of having it re-evaluated
(van der Werf, Van Den Herik, and Uiterwijk 2003). For
comparative purposes, the agent BTT-Go presented here, in
addition to using the data from TT to reduce the number of
evaluations, also uses it to reduce the number of move simu-
lations in the play-out phase. The tests involving Migos pre-
sented in (van der Werf, Van Den Herik, and Uiterwijk 2003)
intend on evaluating the performance of the agent only with
respect to the reduction in the evaluation rate with the use of
the TT (superior to 90%). No results involving tournaments
against other agents were presented.

The MoGo player (Gelly et al. 2006) is based on MCTS
simulations (not constructed from Fuego). Different to BTT-
Go and Fuego, MoGo does not use a policy that balances
quality and simulation frequency for insertion of nodes in
the search tree (see equation 1). Instead, MoGo creates a
group which contains board positions, where each group is
filled in accordance with specialized knowledge from the
game Go. Such a group is used only at the tree construc-
tion phase, in such a way that the search is restricted to

moves that belong to this group (in the play-out phase this
restriction is not applied). The definition of the moves in
the play-out phase is orientated by standards established for
sub-regions with board dimension 3x3, which characterizes
a heuristic in the play-out phase. In tournaments against the
agent GNU Go 3.6 (Bump 2003) in 13x13 game-boards,
MoGo obtained a winning rate of 56%.

The Crazy Stone is a Go player program which makes
use of MCTS (also not based on Fuego). Different to BTT-
Go and Fuego, it does not use prior knowledge at the tree
construction phase in MCTS. Instead, it uses a Bayesian
technique, which defines the tree selection route based on
evaluations Bradley-Terry (BT) (Coulom 2007a). The BT
evaluator module operates together with a TT (Enzenberger
and Müller 2010) which serves as a repository for previ-
ously evaluated nodes. The states evaluated by BT module
are represented by features, which are mathematical func-
tions that express relevant information concerning the board
(Coulom 2007a). In (Coulom 2007a) the agent is evaluated
through comparisons between the best move indicated by
the Bayesian method and the move, which in the same sit-
uation would be indicated by human masters (available in
database). In this test, Crazy Stone compared to other re-
lated works, showed good prediction of moves from the mid
game stage. In other tests, Crazy Stone played against the
agent GNU Go 3.6, obtaining a winning rate of 90.6% and
57.1%, respectively, in 9x9 and 19x19 game-boards.

The player Gnu Go (Bump 2003) uses the MCTS al-
gorithm as in MoGo, that is, the player uses supervised
learning through board standards (Bump 2003). In matches
played on boards 19x19 against Fuego, the Gnu Go obtained
a 33.3% victory rate playing with black pieces and 20%
playing with white pieces.

4 BTT-Go

The system BTT-Go is inspired on the open source agent for
Go Fuego. It has as its main purpose to reduce the supervised
character of the latter by means of four strategies: first, to
replace the heuristic values of the nodes used by Fuego in the
tree construction phase (prior knowledge) with the values of
the TT that were obtained in previous evaluations; second,
to interrupt the play-out simulations whenever their paths
find a node whose value is stored on the TT; next, to use
the information of the TT to update the values of the search
tree nodes during the back-propagation phase; and, finally,
to use the new values obtained in the back-propagation to
update or to add new information into the TT (which allows
the TT to accumulate the history of each node evaluation).
In order to make a trade-off between the loss of performance
(due to the reduction in the supervision resources) and the
gain of autonomy (with the insertion of the TT) BTT-Go
will use the TT only from the point where more than 50%
of the positions of the game-board is filled in with a piece.
It is interesting to point out that the next section presents
the architecture of BTT-Go and the interactions among its
modules during the search process.

263



4.1 Architecture of BTT-Go
As presented before, BTT-Go tries to reduce the heuristic
supervision of Fuego by using the information related to the
history of the nodes’ evaluation retrieved from the TT. Fig-
ure 1 illustrates the architecture of this agent. In order to
choose a move, the current game-board sc is presented to
the search algorithm, #1 (link 1 of the figure). This algo-
rithm then constructs the MCTS tree by recursively execut-
ing the n possible episodes within the established interval
of time. For each node s involved in these episodes (either
during the construction of the tree or in the play-out phase),
the algorithm presents s to the hash-key module, #2. The
latter calculates the hash-key value corresponding to s and
checks whether this state belongs or not to the TT, #3. If it
does not (which means that it has not been evaluated yet), in
link #4, like Fuego, the following proceeding is executed:
if s is involved in the tree construction phase, the search
algorithm continues normally with the construction of the
tree considering that s has the value indicated by the prior
knowledge. Otherwise, if s is a play-out node, the simula-
tion of the current episode goes on normally according to
the play-out policy. As soon as the back-propagation phase
is concluded, the new values of all nodes involved in the cur-
rent episode that already belong to the TT (including selec-
tion nodes, expansion nodes and play-out nodes), are used
to update the TT. On the other hand, those which still do
not belong to the TT are introduced into it, increasing its in-
formation data. Then, as BTT-Go also inserts the play-out
nodes into the TT, it does not waste the history of their eval-
uations obtained throughout the execution of the episodes
(different to Fuego), which represents one of the contribu-
tions for the use of the TT. In link #5, which corresponds to
the situation where s belongs to the TT, the following pro-
cedure is executed: if s is a selection node or an expansion
node, the tree construction goes on taking into account its TT
value. This TT value keeps information about all the history
related to the evaluation of s that has been obtained through-
out the game. In a distinct way, Fuego, in the same situation,
uses the following values: if s is an expansion node, it uses
its heuristic prior knowledge value; otherwise, if s is a se-
lection node, Fuego uses its updated value that only keeps
information of the current search process. Then, by using
the TT values (whenever they are available) instead of using
the prior knowledge heuristics, BTT-Go reduces the super-
vised character of Fuego. On the other hand, if in link #5 s
is a play-out node, the BTT-Go search algorithm interrupts
the simulation of the current episode. As game simulations
correspond to a kind of supervision (since the results of the
simulated games will guide the agent in the choice of the ap-
propriate move to be executed), this reduction in the rate of
simulations represents a supervision reduction. Uniquely in
this case, the updating of the values of all nodes during the
back-propagation will be calculated based, exclusively, on
the following parameters: their current values and their cor-
responding play-out statistics (see section 2.2). This is due
to the fact that, as the play-out has been interrupted, there is
no new information concerning the rating of victories. Ob-
viously, these new values are also used to alter the TT, by
updating its values or by increasing its information data. Fi-

nally, as soon as the n episodes are concluded, the search al-
gorithm points out the best move to be executed from sc, #6.
The new game-board obtained with this execution becomes
the new current game-board, #7, from which n other new
episodes will be executed in order to choose the next move.
As aforementioned, the TT values are continously updated
during the backpropagation such that they keep the history
of all the node evaluations that were performed throughout a
game. Therefore, they are appropriate to substitute the prior-
knowledge heuristics without compromising the accuracy of
the move evaluations. That is why the TT is a reliable tool
for reducing the supervison in the player agent. The next sec-
tion resumes the generation of the hash keys and the struc-
ture of the TT in BTT-Go.

Figure 1: Architecture of BTT-Go.

4.2 Hash Keys and TT
The previous section presented the general architecture of
BTT-Go and described the interactions among them during
the search process. This section adds some relevant details
about the hash key generation and the TT module.

Hash key Generator Module In BTT-Go, the address of
every state s in the TT is referenced by means of two hash
keys (with 64 and 32 bits, respectively, considering the first
and the second hash keys). Both keys are generated by the
Hash key Generator Module as it follows: initially, an ar-
bitrary and distinct integer number is chosen to represent
every possibility of occupation (that is, with black or white
pieces) in each position of s. Next, the Zobrist method gener-

264



ates each hash key of s by executing XOR operations among
the integers that correspond to that key. The 32 bits hash key
is used to solve collision problems (Szwarcfiter and Marken-
zon 1994) that may occur when accessing the TT.

TT Module In the BTT-Go the TT Module uses the
TableEntry class to define the attributes which make up a
data entry in the TT, as shown in the following:

class TableEntry {
long long int keyHash1;
long int keyHash2;
int treeDepth;
double evaluation;

}

The attributes keyHash1 and keyHash2 represent the 64
and the 32 bits hash keys, respectively (which are used to
calculate the address in which a given state s is stored on
the TT). The treeDepth attribute indicates the depth of the
search in which s was explored. The evaluation attribute is
supplied to the search algorithm indicating the occurrence of
a transposition.

For each game-board s inserted into the TT, three other
additional registers containing symmetric configurations of
s are also inserted into it. These configurations are obtained
by applying to s rotations of 90◦, 180◦ e 270◦ degrees. This
strategy enriches still further the knowledge stored in the TT.

The existence of game cycles, which consist of Ko oc-
currence (consecutive repetition of two moves in cycle) is
avoided, as this impedes reaching an end game state.

In relation to the use of the TT, it is worth highlighting that
the values of the search algorithm recuperates from the TT
during the tree construction phase correspond to the portion
Qcurrent

(s,a) from equation 1. This represents a contribution in
relation to Fuego, once that the latter uses, for such a por-
tion, the prior knowledge heuristics for the expansion phase,
or the current value (which does not consider the evaluation
archive), in the selection phase. On the other hand, the por-
tion Simul(s,a) from the same equation is calculated analo-
gously to Fuego. When it comes to the portion V ict(s,a) of
the referred equation, relative to the play-out phase, if the
node s’ visited by BTT-Go (child of s obtained by the exe-
cution of action a from s) belongs to TT, the play-out phase
will be interrupted and such a portion will not be considered
(as described in the previous section). On the other hand, if
the visited node does not belong to TT, it will be calculated
such as in Fuego.

5 Experiments and Results
The quantitative impact of the supervision reduction in BTT-
Go is evaluated here through the reduction in the number of
play-out simulations (and consequently, in the search run-
time) observed in games against Fuego. The average number
of play-out simulations executed by BTT-Go in 20 moves
was 30% inferior to that of Fuego (obviously due to the use
of the TT). Consequentely, the BTT-Go search runtime is
also 30% less than that of Fuego. The qualitative impact
of the supervision reduction in BTT-Go is estimated in this

work by observing its winning rate in tournaments against
Gnu Go and Fuego. For the purpose of analyzing the rate of
victories, three test scenarios were performed. In all of them,
each agent plays half of the games with black pieces and the
remaining ones with white pieces, since the black player has
the significant advantage of executing the first move. In real
tournaments, in order to attenuate a little this advantage, nor-
mally, the white player receives a determined bonus (called
komi). Particularly here, this bonus corresponds to 6.5 points
(that tries to compensate the cited advantage). Further, with
the objective of focusing only in the effect of using the in-
formation retrieved from the TT instead of using the prior
knowledge and the play-out heuristics (whenever it is pos-
sible), in the evaluative tournaments executed here no agent
counts on opening book heuristics. All scenarios evaluate
the accomplishment of the agents in 9x9, 13x13 and 19x19
game-boards. The configuration of the computer used in the
experiments is: Intel Core 2 Quad 2.4 GHz with 8 GB of
RAM.

By this way, in scenario 1 BTT-Go faces Gnu Go in tour-
naments composed of 30 games for each game-board di-
mension. Table 2 shows the winning rate of BTT-Go against
its adversary (as black player, 100%, 100% and 86.7%, re-
spectively, for 9x9, 13x13 and 19x19 game-boards; as white
player, 100%, 93.3% and 60%, respectively, for 9x9, 13x13
and 19x19 game-boards) and confirms that its performance
is significantly superior in all situations.

Table 2: Scenario 1 – Winning Rate of BTT-Go X Gnu Go.
Board Size Black White

9x9 100% (± 0) 100% (± 0)
13x13 100% (± 0) 93.3% (± 6.4)
19x19 86.7% (± 8.8) 60% (± 12.6)

Scenario 2 involves BTT-Go and Fuego in tournaments of
100 games for each game-board dimension. Table 3 presents
the winning rate of BTT-Go against its adversary (as black
player, 44%, 42% and 42%, respectively, for 9x9, 13x13
and 19x19 game-boards; as white player, 34.7%, 34% and
26%, respectively, for 9x9, 13x13 and 19x19 game-boards).
The results show that BTT-Go, in spite of counting on much
less supervision than Fuego, it is still very competitive, even
playing on 19x19 game-boards, especially when playing
with black pieces. Obviously, as was predicted, the accom-
plishment of the agent is compromised when it plays with
white pieces, mainly in 19x19 game-boards. But consider-
ing the disadvantage of BTT-Go compared to Fuego in terms
of supervision level and the results obtained by other adver-
saries (as Gnu Go - see section 3) in the same difficult situa-
tion of facing Fuego in 19x19 game-boards, it is reasonable
to consider that BTT-Go was not completely “butchered”
playing against one of the best current agents of Go.

Finally, the main objective of scenario 3 is to check
whether the information retrieved from the TT in BTT-Go
is, in fact, a good alternative compared to the knowledge ex-
pressed in the play-out heuristic rules that BTT-Go inher-
ited from Fuego. To cope with this goal, scenario 3 uses a
modified version of BTT-Go. In the play-out phases of this

265



Table 3: Scenario 2 – Winning Rate of BTT-Go X Fuego.
Board size Black White

9x9 44% (± 7) 34.7% (± 6.8)
13x13 42% (± 7) 34% (± 6.7)
19x19 42% (± 7) 26% (± 6.2)

altered version, each time that a move M indicated by the
TT of BTT-Go is not the same as the one which would have
been pointed out by the play-out rules, the value of M re-
trieved from the TT is reduced by 30%. This corresponds
to a “punition” applied to BTT-Go for disagreeing with the
heuristics rules. The results presented in Table 4 show that
the TT values really present an accuracy that makes them re-
liable enough to replace the play-out heuristics. In fact, the
performance of the altered version of BTT- Go clearly de-
creases when it is compared to the original version of the
agent (as black player, 56%, 30% and 20%, respectively, for
9x9, 13x13 and 19x19 game-boards; as white player, 26%,
30% and 26%, respectively, for 9x9, 13x13 and 19x19 game-
boards). It is interesting to point out that in this third sce-
nario, playing in 9x9 game-board, BTT-Go, different to what
happened in the tournaments in 13x13 and 19x19 game-
boards, improved significantly its performance. It can be ex-
plained by the fact that in a dispute in small game-boards,
such as 9x9, there occur fewer simulations of moves than in
a dispute on larger game-boards, which reduces a little the
reliability of TT information.

Table 4: Scenario 3 – Winning Rate of Altered-BTT-Go X
Fuego.

Board size Black White
9x9 56% (± 7) 26% (± 6.2)

13x13 30% (± 6.5) 30% (± 6.5)
19x19 20% (± 5.7) 26% (± 6.2)

6 Conclusion and Future Works
This article presented the creation of an agent for Go, BTT-
Go, which has as its objective to reduce the supervision of
the very successful automatic player Fuego with the incorpo-
ration of a TT, which operated with MCTS. Such a TT serves
as tools used to store and update the state values throughout
a match, as they reappear by transposition. Therefore, the
values of the nodes stored in TT accumulates the whole his-
tory of the evaluations in the context of the game, by means
of successive updates (and not only the informative content
of the current search or heuristic content of the simulations
that are used by Fuego). The MCTS algorithm in Fuego has
its good performance tied up in the quantity of simulations
of realized games (the greater the perceptiveness of the state
evaluations during the search) and the use of prior knowl-
edge and play-out heuristics as auxiliary tools in the search
for the best move. Following this direction, the BTT-Go
agent will, always when possible, substitute the use of Fuego
heuristics for information provided in TT, which provides a

good perceptiveness in the node evaluation, even with the
reduction in supervising recourses of Fuego. As presented
in the results section, the good performance associated with
BTT-Go in tournaments against Fuego and Gnu Go, includ-
ing those on 19x19 boards, proves that the technique used
herein permitted a greater autonomy to the agent in terms of
supervision, without significantly compromising its perfor-
mance. As future works the authors will continue to work
on adapting the agent search system to a high performance
environment, which should improve greatly its operational
capacity, mainly in the play-out phase.

References
Brügmann, B. 1993. Monte carlo go.
Bump, D. 2003. Gnugo home page.
Campos, P., and Langlois, T. 2003. Abalearn: Efficient self-
play learning of the game abalone. In INESC-ID, Neural
Networks and Signal Processing Group.
Chaslot, G.; Saito, J.-T.; Bouzy, B.; Uiterwijk, J.; and Van
Den Herik, H. J. 2006. Monte-carlo strategies for computer
go. In Proceedings of the 18th BeNeLux Conference on Ar-
tificial Intelligence, Namur, Belgium, 83–91.
Childs, B. E.; Brodeur, J. H.; and Kocsis, L. 2008. Transpo-
sitions and move groups in monte carlo tree search. In Com-
putational Intelligence and Games, 2008. CIG’08. IEEE
Symposium On, 389–395. IEEE.
Coulom, R. 2007a. Computing elo ratings of move patterns
in the game of go. In Computer games workshop.
Coulom, R. 2007b. Efficient selectivity and backup oper-
ators in monte-carlo tree search. In Computers and games.
Springer. 72–83.
Enzenberger, M., and Müller, M. 2010. A lock-free multi-
threaded monte-carlo tree search algorithm. In Advances in
Computer Games. Springer. 14–20.
Enzenberger, M.; Muller, M.; Arneson, B.; and Segal, R.
2010. Fuego – an open-source framework for board games
and go engine based on monte carlo tree search. Computa-
tional Intelligence and AI in Games, IEEE Transactions on
2(4):259–270.
Gelly, S., and Silver, D. 2011. Monte-carlo tree search and
rapid action value estimation in computer go. Artificial In-
telligence 175(11):1856–1875.
Gelly, S.; Wang, Y.; Munos, R.; Teytaud, O.; et al. 2006.
Modification of uct with patterns in monte-carlo go.
Junior, E. V., and Julia, R. M. S. 2013. Btt-go: Um agente
para go baseado em simulacoes, tabela de transposicao e
modelo bradley-terry. Not published, oral presentation in
a local event held at Federal University of Uberlandia.
Szwarcfiter, J. L., and Markenzon, L. 1994. Estruturas
de Dados e seus Algoritmos, volume 2. Livros Técnicos
e Cientı́ficos.
van der Werf, E. C.; Van Den Herik, H. J.; and Uiterwijk,
J. W. 2003. Solving go on small boards. ICGA Journal
26(2):92–107.
Zobrist, A. L. 1970. A new hashing method with application
for game playing. ICCA journal 13(2):69–73.

266




