Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference

Combining Feature Selection and Ensemble Learning
for Software Quality Estimation

Kehan Gao
Eastern Connecticut State University
83 Windham St., Willimantic, CT 06226
gaok @easternct.edu

Abstract

High dimensionality is a major problem that affects the
quality of training datasets and therefore classification
models. Feature selection is frequently used to deal
with this problem. The goal of feature selection is to
choose the most relevant and important attributes from
the raw dataset. Another major challenge to building
effective classification models from binary datasets is
class imbalance, where the minority class has far fewer
instances than the majority class. Data sampling (al-
tering the dataset to change its balance level) and boost-
ing (building multiple models, with each model tuned to
work better on instances misclassified by previous mod-
els) are common techniques for resolving this problem.
In particular, ensemble boosting, which integrates sam-
pling with AdaBoost, has been shown to improve classi-
fication performance, especially for imbalanced training
datasets. In this paper, we investigate approaches for
combining feature selection with this ensemble learn-
ing (boosting) process. Six feature selection techniques
and two forms of the ensemble learning method are ex-
amined. We focus on two different scenarios: feature
selection performed prior to the ensemble learning pro-
cess and feature selection performed inside the ensem-
ble learning process. The experimental results demon-
strate that performing feature selection inside of ensem-
ble boosting generally performs better than using fea-
ture selection prior to ensemble boosting.

Introduction

The quality of training datasets can have a significant im-
pact on the prediction accuracy of classification models in
data mining and machine learning projects. Data collection
is frequently a loosely controlled process, resulting in many
data quality problems such as feature irrelevance and redun-
dancy, data instance conflict and abnormality, and missing
values. Data preprocessing is a critical initial step to im-
prove the quality of training datasets.

In this study, we are particularly interested in investigat-
ing feature selection in the context of software quality pre-
diction. Software quality prediction is a process of utilizing
software metrics such as code-level measurements and de-
fect data to build classification models that are able to es-

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

47

Taghi Khoshgoftaar and Randall Wald
Florida Atlantic University
777 Glades Rd., Boca Raton, FL 33431
khoshgof @fau.edu; rwald1 @fau.edu

timate the quality of program modules (e.g., classify pro-
gram modules as either fault-prone (fp) or not-fault-prone
(nfp)) (Song et al. 2011). These kind of estimations can help
practitioners effectively allocate limited project resources,
forcing them to focus on program modules that are of poor
quality or likely to have a high number of faults. How-
ever, it is often found in the modeling process that not all
collected software metrics are useful or have the same con-
tributions to classification results. The objective of feature
selection is to choose the most relevant and important at-
tributes from the raw dataset so that prediction performance
will be improved, or at least maintained, while learning time
is significantly reduced. Recent research (Van Hulse et al.
2012) has shown that filter-based feature ranking techniques
are simple, fast, and effective methods for dealing with this
problem. In this paper, we examine six filter-based feature
ranking techniques to select subsets of features.

Another common classification challenge is class imbal-
ance, which refers to datasets where one class has far fewer
instances than the other class(es). Unfortunately, usually
the minority class is the class of interest. In the context of
software quality modeling, class imbalance manifests as nfp
modules outnumbering fp modules. The main disadvantage
of such an imbalanced training dataset is that a traditional
classification algorithm would tend to classify minority class
members (e.g., fp modules) as majority class (e.g., nfp mod-
ules) in order to improve overall prediction accuracy. This
type of misclassification implies lost opportunities for cor-
recting faulty modules before the software operation and de-
ployment, resulting in serious consequences and high repair
Ccosts.

To alleviate the adverse impacts of imbalanced data on the
prediction models, two techniques have been discussed: data
sampling and boosting. Although boosting is not specifi-
cally developed to handle the class imbalance problem, it
has been shown to be very effective in this regard (Seiffert
et al. 2010). Data sampling is another effective method to
cope with the class imbalance problem. Instances from the
majority (or minority) class are selected and discarded (or
added) until a certain balance (ratio) between the two classes
is met. In this study, we use an ensemble boosting approach,
in which data sampling is integrated into AdaBoost (Freund
& Schapire 1996). As we study two sampling techniques,
random undersampling (RUS) and synthetic minority over-

sampling (SMOTE), correspondingly we have two forms of
the ensemble boosting technique: RUSBoost and SMOTE-
Boost.

To deal with both high dimensionality and class imbal-
ance, we study approaches which combine feature selection
with an ensemble learning (boosting) method. We inves-
tigate two different scenarios: feature selection performed
right before the ensemble learning process (external feature
selection) and feature selection performed inside the ensem-
ble learning process (internal feature selection). As ensem-
ble learning (boosting) is an iterative process (the number of
repetitions is set to 10), internal feature selection performed
after sampling inside the process naturally inherits the rep-
etition. To avoid a biased assessment, for external feature
selection we use an iterative process too. We first use a data
sampling technique to alter the class ratio (balance). Then,
we apply a feature ranking technique to the sampled data
and rank the features according to their predictive power.
We repeat these two steps 10 times, and then combine the
rankings using mean (average) aggregation and choose the
best set of features. The selected features are sent to the
ensemble learning process thereafter.

In the experiments, we use six filter-based feature rank-
ing techniques (chi-squared, information gain, gain ratio,
two forms of ReliefF, and symmetrical uncertainty), five
base learners (naive Bayes, multilayer perceptron, k nearest
neighbors, support vector machine, and logistic regression),
and two sampling approaches (RUS and SMOTE). The ex-
perimental results demonstrate that feature selection per-
formed inside the ensemble learning process provides bet-
ter classification performance than when it is applied prior
to the ensemble learning process. In addition, between the
two ensemble learning approaches RUSBoost generally out-
performs SMOTEBoost; among the six ranking techniques,
two forms of ReliefF are the best; and of the five learners,
support vector machine and logistic regression results in the
best prediction.

Related Work

Feature selection is often used to resolve the high dimen-
sionality problem found in many datasets. Significant re-
search has been dedicated towards feature selection (Liu et
al. 2010), and applied to a range of fields. Van Hulse et al.
propose 11 new threshold-based feature selection techniques
and apply them to 17 different bioinformatics datasets. The
similarities of the feature selection techniques are analyzed
using the Frobenius norm (Van Hulse ef al. 2012). Yu
et al. apply feature selection to gene expression microarray
data and study the stability of feature selection via sample
weighting (Yu, Han, & Berens 2012). In the context of text
classification, Basu and Murthy propose a supervised fea-
ture selection approach that develops a similarity between a
term and a class (Basu & Murthy 2012).

In addition to excess number of features, many datasets
are plagued with the class imbalance problem. Two tech-
niques that have been discussed for alleviating this problem
are data sampling and boosting. The simplest form of sam-
pling is random sampling. In addition, a few more intelligent
algorithms for sampling data have been proposed (Chawla et

48

al. 2002). Another technique for alleviating class imbalance
is boosting. The most commonly used boosting algorithm
is AdaBoost (Freund & Schapire 1996). Several variations
have been proposed to improve AdaBoost’s performance on
imbalanced data. Two promising techniques are SMOTE-
Boost (Chawla et al. 2003) and RUSBoost (Seiffert et al.
2010). Each combines a sampling technique (SMOTE or
RUS) with AdaBoost, resulting in a highly effective hybrid
approach to learning from imbalanced data.

While a great deal of work has been done for feature se-
lection and data sampling separately, research working on
both together is starting to receive more attention. Yang
et al. propose an ensemble-based wrapper approach for fea-
ture selection from data with highly imbalanced class distri-
bution (Yang ef al. 2013). They create multiple balanced
datasets from the original imbalanced data via sampling,
and then evaluate feature subsets using an ensemble of base
classifiers each trained on a balanced dataset. Khoshgoftaar
et al. use data sampling along with feature ranking tech-
niques to deal with the high dimensionality and class imbal-
ance problems in the context of software quality classifica-
tion (Khoshgoftaar ef al. 2013). The experimental results
demonstrate that using feature ranking along with data sam-
pling is more effective than using each technique individu-
ally for improving software defect prediction.

Methodology
Filter-Based Feature Ranking Techniques

The goal of feature ranking is to score each feature accord-
ing to a particular method, allowing the selection of the
best features. The six filter-based feature ranking techniques
used in this work include: Chi-Squared (CS), Information
Gain (IG), Gain Ratio (GR), two types of ReliefF (RF and
RFW), and Symmetrical Uncertainty (SU).

The chi-squared (CS) test is used to examine whether the
two variables are independent. CS is more likely to find
significance to the extent that (1) the relationship is strong,
(2) the sample size is large, and/or (3) the number of val-
ues of the two associated features is large. Information gain,
gain ratio, and symmetrical uncertainty are measures based
on the concept of entropy from information theory (Witten
& Frank 2011). Information gain (IG) is the information
provided about the target class attribute Y, given the value
of another attribute X. IG measures the decrease of the
weighted average impurity of the partitions, compared with
the impurity of the complete set of data. A drawback of IG
is that it tends to prefer attributes with a larger number of
possible values, i.e., if one attribute has a larger number of
values, it will appear to gain more information than those
with fewer values, even if it is actually no more informative.
One strategy to counter this problem is to use the gain ratio
(GR), which penalizes multiple-valued attributes. Symmet-
rical uncertainty (SU) is another way to overcome the prob-
lem of IG’s bias toward attributes with more values, doing so
by dividing by the sum of the entropies of X and Y. Relief
is an instance-based feature ranking technique introduced by
Kira and Rendell (Kira & Rendell 1992). ReliefF is an ex-
tension of the Relief algorithm that can handle noise and

multiclass datasets, and is implemented in the WEKA tool
(Witten & Frank 2011). When the WeightByDistance
(weight nearest neighbors by their distance) parameter is set
as default (false), the algorithm is referred to as RF; when the
parameter is set to true, the algorithm is referred to as RFW.
The number of the features selected in the feature subsets is
set to [log,] (Khoshgoftaar er al. 2013), where n is the
number of independent attributes in the original dataset.

Sampling Techniques

The two data sampling techniques used in this study are
Random UnderSampling (RUS) and Synthetic Minority
Oversampling TEchnique (SMOTE). RUS alleviates the
problem with class imbalance in a dataset by randomly
discarding instances from the majority class. SMOTE is
an intelligent oversampling method proposed by Chawla et
al. (Chawla et al. 2003). It adds new, artificial minority
examples by extrapolating between preexisting minority in-
stances rather than simply duplicating original examples.
The newly created instances cause the minority regions of
the feature-space to become fuller and more general.

The Iterative Feature Selection Technique

The iterative feature selection method is designed to deal
with feature selection for imbalanced data. It consists of
two basic steps: (1) using a technique to balance data, and
(2) applying a filter-based feature ranking technique to the
balanced data and ranking all the features according to their
predictive powers (scores). In order to avoid biased results
generated due to the sampling process, we repeat the two
steps k times (K = 10 in this study) and aggregate k rank-
ings using the average (mean) ranks. Finally, the best set of
attributes is selected. More detailed information about this
technique can be found in (Khoshgoftaar et al. 2013).

RUSBoost & SMOOTEBoost

RUSBoost combines random undersampling (RUS) and
boosting for improving classification performance. Boost-
ing is a meta-learning technique designed to improve the
classification performance of weak learners by iteratively
creating an ensemble of weak hypotheses which are com-
bined to predict the class of unlabeled examples. This study
uses AdaBoost (Freund & Schapire 1996), a well-known
boosting algorithm shown to improve the classification per-
formance of weak classifiers. Initially, all examples in the
training dataset are assigned equal weights. During each it-
eration of AdaBoost, a weak hypothesis is formed by the
base learner. The error associated with the hypothesis is cal-
culated and the weight of each example is adjusted such that
misclassified examples have their weights increased while
correctly classified examples have their weights decreased.
Therefore, subsequent iterations of boosting will generate
hypotheses that are more likely to correctly classify the pre-
viously mislabeled examples. After all iterations are com-
pleted a weighted vote of all hypotheses are used to assign
a class to unlabeled examples. In this study, the boosting al-
gorithm is performed using 10 iterations. RUSBoost applies

49

the same steps as the regular boosting, but prior to construct-
ing the weak hypothesis during each round of boosting, ran-
dom undersampling is applied to the training data to achieve
a more balanced class distribution. The weak learners used
in this work are NB, MLP, KNN, SVM, and LR, and these
will be discussed in the next section. The procedure of RUS-
Boost is described in part of Figure 1. More details about the
algorithm can be found in (Seiffert et al. 2010).

SMOTEBoost has the same mechanism as RUSBoost. In-
stead of using RUS, SMOTEBoost combines synthetic mi-
nority oversampling (SMOTE) with boosting in order to im-
prove classification performance on imbalanced data. For
the complete SMOTEBoost algorithm, one can refer to the
RUSBoost algorithm (Seiffert er al. 2010), replacing RUS
with SMOTE.

Learners

The software defect prediction models in this study are
built using five different classification algorithms, includ-
ing Naive Bayes (NB) (Witten & Frank 2011), MultiLayer
Perceptron (MLP) (Haykin 1998), K Nearest Neighbors
(KNN) (Witten & Frank 2011), Support Vector Machine
(SVM) (Shawe-Taylor & Cristianini 2000), and Logistic Re-
gression (LR) (Witten & Frank 2011). Due to space limita-
tions, we refer interested readers to these references to un-
derstand how these commonly-used learners function. The
WEKA tool is used to instantiate the different classifiers.
Generally, the default parameter settings for the different
learners are used (for NB and LR), except for the below-
mentioned changes. A preliminary investigation in the con-
text of this study indicated that the modified parameter set-
tings are appropriate.

In the case of MLP, the hiddenLayers parameter was
changed to ‘3’ to define a network with one hidden layer
containing three nodes, and the validationSetSize
parameter was changed to ‘10’ to cause the classifier to
leave 10% of the training data aside for use as a validation
set to determine when to stop the iterative training process.
For the KNN learner, the distanceWeighting param-
eter was set to ‘Weight by 1/distance’, the kNN parameter
was set to ‘5, and the crossValidate parameter was
turned on (set to ‘true’).In the case of SVM, two changes
were made: the complexity constant c was set to
‘5.0, and build Logistic Models was set to ‘true’.
A linear kernel was used by default.

Performance Metric

One of the most popular methods for evaluating the perfor-
mance of learners built using imbalanced data is the receiver
operating characteristic (Fawcett 2006), or ROC, curve.
ROC curves graph true positive rate on the y-axis versus the
false positive rate on the z-axis. The ROC curve illustrates
the performance of a classifier across the complete range
of possible decision thresholds, and accordingly does not
assume any particular misclassification costs or class prior
probabilities. The area under the ROC curve (AUC) is used
to provide a single numerical metric for comparing model
performances. The AUC value ranges from 0 to 1. A model

Table 1: Data characteristics

Data | #Attri. | Total Inst. | fp Inst. nfp Inst.
% # %
SP1 42 3649 229 | 6 | 3420 | 94
SP2 42 3981 189 | 5| 3792| 95
SP3 42 3541 47 1] 3494 | 99
SP4 42 3978 92 | 2| 3886 | 98

with more predictive power results in an AUC value closer
to 1.

Datasets

Experiments conducted in this study used software metrics
and defect data collected from a very large telecommunica-
tions software system (denoted as LLTS). The software mea-
surement datasets of LLTS consist of 42 software metrics,
including 24 product metrics, 14 process metrics, and four
execution metrics. More details about these software met-
rics can be found in (Khoshgoftaar, Bullard, & Gao 2009).
The dependent variable is the class of the program module.
A module with one or more faults is considered fp, and nfp
otherwise. The LLTS software system consists of four suc-
cessive releases labeled SP1, SP2, SP3, and SP4. Table 1
shows the characteristics of the LLTS datasets.

Experiments
Design

The main objective of this study is to evaluate the two dif-
ferent scenarios of feature selection combined with the en-
semble learning approach on the classification models in the
context of software defect prediction. The procedure of the
approach is shown in Figure 1. Two different scenarios are
presented.

e Scenario 1: feature selection performed prior to the en-
semble learning process (external feature selection)

e Scenario 2: feature selection performed inside the en-
semble learning process (internal feature selection)

For the second scenario (internal feature selection), fea-
ture selection is applied inside of the iterative process of the
ensemble boosting method. The number of repetitions is
set to 10 in the experiment. For the first scenario (exter-
nal feature selection), feature selection is performed outside
the iterative process. In order to avoid biased evaluation of
the two different scenarios, we apply the iterative process as
discussed previously to the external feature selection. The
number of repetitions is also set to 10. When used inter-
nally, feature selection is applied once per iteration of the
boosting process (so, 10 times in total).

In the experiment, six feature selection methods (CS, IG,
GR, RF, RFW, and SU) and two data sampling approaches
(RUS and SMOTE) are applied. The post-sampling class
ratio is set to 50:50 between fp and nfp modules throughout
the experiment. In addition, the weak learners adopted in the
boosting process are NB, MLP, KNN, SVM and LR.

For all experiments, we employ ten runs of five-fold
cross-validation. That is, for each run the data is randomly

50

Table 2: Classification performance

Learner Ranker RUSBoost SMOTEBoost
EFS IFS p EFS IFS p
CS 0.7617 0.7672 0.43 | 0.7855 0.7883 0.56
GR 0.7498 0.7497 0.99 | 0.7321 0.7432 0.08
NB 1G 0.7602 0.7664 0.36 | 0.7853 0.7862 0.84
RF 0.7951 0.8007 0.13 | 0.7962 0.8068 0.02
RFW 0.7858 0.8028 0.00 | 0.7949 0.8020 0.12
SU 0.7490 0.7606 0.06 | 0.7640 0.7723 0.13
CS 0.7919 0.8090 0.00 | 0.7918 0.7906 0.79
GR 0.7868 0.8028 0.00 | 0.7377 0.7736 0.00
MLP 1G 0.7907 0.8069 0.00 | 0.7911 0.7894 0.76
RF 0.8148 0.8183 0.25 | 0.7922 0.7965 0.33
RFW 0.8081 0.8188 0.00 | 0.7913 0.7983 0.07
SU 0.7842 0.8043 0.00 | 0.7619 0.7886 0.01
CS 0.7722 0.8088 0.00 | 0.7420 0.7452 0.65
GR 0.7804 0.8088 0.00 | 0.6231 0.7447 0.00
1G 0.7724 0.8099 0.00 | 0.7394 0.7502 0.12
KNN RF 0.7948 0.8095 0.00 | 0.7361 0.7715 0.00
RFW 0.7928 0.8111 0.00 | 0.7328 0.7644 0.00
SU 0.7727 0.8077 0.00 | 0.7045 0.7517 0.00
CS 0.8054 0.8250 0.00 | 0.8177 0.8248 0.02
GR 0.8040 0.8256 0.00 | 0.7697 0.8042 0.00
SVM 1G 0.8059 0.8257 0.00 | 0.8176 0.8244 0.04
RF 0.8290 0.8308 0.39 | 0.8233 0.8274 0.09
RFW 0.8222 0.8322 0.00 | 0.8216 0.8268 0.05
SU 0.8002 0.8247 0.00 | 0.7903 0.8171 0.00
CS 0.8034 0.8226 0.00 | 0.8179 0.8250 0.01
GR 0.7998 0.8255 0.00 | 0.7643 0.8041 0.00
IR 1G 0.8022 0.8231 0.00 | 0.8179 0.8238 0.07
RF 0.8265 0.8300 0.18 | 0.8226 0.8266 0.08
RFW 0.8188 0.8282 0.00 | 0.8208 0.8260 0.03
SU 0.7970 0.8229 0.00 | 0.7883 0.8168 0.00

divided into five folds, one of which is used as the test data
while the other four folds are used as training data. All the
preprocessing steps (feature selection and data sampling) are
done on the training dataset. The processed training data is
then used to build the classification model and the resulting
model is applied to the test fold. This cross-validation is
repeated five times (the folds), with each fold used exactly
once as the test data. The five results from the five folds then
are collected to produce a single estimation.

Results and Analysis

The results of two forms of ensemble learning method
(RUSBoost and SMOTEBoost) are presented in Table 2,
each containing the results for all five learners. Note that
Although ten runs of five-fold cross validation were used on
each dataset separately, the results present the average AUCs
over the four datasets. The table shows the classification
performance of two different scenarios: EFS (External Fea-
ture Selection) and IFS (Internal Feature Selection) across
all six feature ranking techniques. For each combination
of learner, ranker, and ensemble boosting method, we com-
pared the classification performance of EFS and IFS using
the Student’s ¢-test. The t-test examines the null hypothesis
that the population means related to two independent group
samples are equal against the alternative hypothesis that the

Scenario 1

External Feature
Selection

| Data | l

Sample Data with
RUS/SMOTE using Weightsfl smpl data and Weights

Scenario 2
Internal Feature

Selection

Build model using

Repeat
N times

)

Initialize Weights

Smpl Data

After N iterations,

combine all Models

(vector of instance

| weighted with their

weights) with each value
starting as 1/(# instances)

Weight

Parameters

Calculate Weight Parameter
(weighted error of model)

Weight Parameters

Update and normalize
Weights based on
misclassifications and
Weight Parameter

Figure 1: Two scenarios of feature selection combined with the ensemble learning approach

Table 3: ANOVA results

Source Sum Sq. d.f. Mean Sq. F p
Learning process 0.6750 3 0.2250 287.35 0.000
Ranker 0.7215 5 0.1443 184.28 0.000
Learner 2.0693 4 0.5173 660.66 0.000
Error 3.7484 4787 0.0008

Total 7.2142 4799

population means are different. All ¢-test results are pre-
sented in the list table, with the p-value provided for each
pairwise comparison. The significance level is set to 0.05.
When the p-value is less than 0.05, the two group means are
significantly different from each other. The better performer
is highlighted with bold in the table. The results demon-
strate that feature selection performed inside the ensemble
learning approach displays better or similar prediction qual-
ity than when it is performed outside the ensemble learn-
ing process. This phenomena is observed for both ensemble
learning methods and across all five learners and six ranking
techniques.

We further conducted a three-way analysis of variance
(ANOVA) test on the classification performance for the
datasets to examine if the performance difference is statis-
tically significant. The three factors are A: the two types of
ensemble learning approach (RUSBoost (RB) and SMOTE-
Boost (SB)), each along with two scenarios (EFS and IFS),
B: the six feature ranking techniques, and C: the five learn-
ers. The null hypothesis for the ANOVA test is that all the
group population means are the same, while the alternate hy-
pothesis is that at least one pair of means is different. Table 3
shows the ANOVA results. All the p-values are less than the
cutoff 0.05 for all factors, meaning that for each main factor
the alternate hypothesis is accepted.

We continued carrying out a multiple comparison test on
each main factor with Tukey’s honestly significant differ-

51

ence (HSD) criterion. Figure 2 shows the multiple compar-
isons for all three factors. The figures display graphs with
each group mean represented by a symbol (o) and 95% con-
fidence interval as a line around the symbol. Two means are
significantly different if their intervals are disjoint, and are
not significantly different if their intervals overlap. The mul-
tiple comparison results demonstrate that for both ensem-
ble learning methods, feature selection performed inside the
boosting process results in better classification performance
than the situation when it is applied prior to the boosting
process. In addition, the RUSBoost method presents better
prediction behavior than its counterpart (SMOTEBoost) in
both scenarios. As to the six rankers, two forms of ReliefF
(RF and RFW) show the best performance, followed by CS
and IG, then SU, and finally GR. For the five learners, SVM
and LR exhibit significantly better prediction performance
than the other three learners. For these three inferior learn-
ers, the order from best to worst in terms of their classifica-
tion performance is MLP, NB, and KNN. In the experiment,
all statistical analysis was performed using Matlab. The as-
sumptions for constructing ANOVA and Tukey’s HSD mod-
els were validated.

Conclusion

This paper presents feature selection working along with an
ensemble learning approach, in which AdaBoost incorpo-
rates data sampling. We examine two sampling methods,
random undersampling (RUS) and synthetic minority over-
sampling (SMOTE), which gives us two forms of the en-
semble boosting technique: RUSBoost and SMOTEBoost.
We investigate two different scenarios: feature selection per-
formed right before the ensemble learning process and fea-
ture selection performed inside the ensemble learning pro-
cess. In the experiments, the proposed method is applied to
a group of datasets from a real-world software system by us-
ing six filter-based feature ranking techniques and five base

RB-EFS -

RB-IFS| -

SB-EFS| -

SB-IFS -

0.77 0.78

(a) Learning process

0.79

(b) Ranker

0.8 0.81 0.82 076 077 078 079 0.8 081 082 083

(c) Learner

Figure 2: Multiple comparison

learners. The results demonstrate that feature selection per-
formed inside the ensemble learning approach results in bet-
ter classification performance than when it is applied prior to
the ensemble learning approach. As to two ensemble learn-
ing approaches, RUSBoost performs better than or similarly
to SMOTEBoost. In addition, of the six ranking techniques
two forms of ReliefF (RF and RFW) provide the best perfor-
mance, and among the fiver learners, support vector machine
and logistic regression perform much better than the multi-
layer perceptron, naive Bayes, and k nearest neighbor algo-
rithms. Future work will involve conducting additional em-
pirical studies with software measurement and defect data
from other software projects. More comparative study using
other sampling approaches and rankers will also be consid-
ered in the future.

References

Basu, T., and Murthy, C. 2012. Effective text classification
by a supervised feature selection approach. In Proceedings
of the 12th International Conference on Data Mining Work-
shops (ICDMW), 918-925.

Chawla, N. V;; Bowyer, K. W.; Hall, L. O.; and Kegelmeyer,
P. W. 2002. SMOTE: Synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research
16:321-357.

Chawla, N. V.; Lazarevic, A.; Hall, L. O.; and Bowyer, K.
2003. SMOTEBoost: Improving prediction of the minority
class in boosting. In Proceedings of Principles of Knowledge
Discovery in Databases, 107-119.

Fawcett, T. 2006. An introduction to ROC analysis. Pattern
Recognition Letters 27(8):861-874.

Freund, Y., and Schapire, R. E. 1996. Experiments with a
new boosting algorithm. In Proceedings of the 13th Interna-
tional Conference on Machine Learning, 148—156.

Haykin, S. 1998. Neural Networks: A Comprehensive Foun-
dation. Prentice-Hall, 2 edition.

Khoshgoftaar, T. M.; Gao, K.; Napolitano, A.; and Wald,
R. 2013. A comparative study of iterative and non-iterative
feature selection techniques for software defect prediction.
Information Systems Frontiers 1-22.

Khoshgoftaar, T. M.; Bullard, L. A.; and Gao, K. 2009.
Attribute selection using rough sets in software quality clas-

52

sification. International Journal of Reliability, Quality and
Safty Engineering 16(1):73-89.

Kira, K., and Rendell, L. A. 1992. A practical approach to
feature selection. In Proceedings of 9th International Work-
shop on Machine Learning, 249-256.

Liu, H.; Motoda, H.; Setiono, R.; and Zhao, Z. 2010. Fea-
ture selection: An ever evolving frontier in data mining. In
Proceedings of the 4th International Workshop on Feature
Selection in Data Mining, 4—13.

Seiffert, C.; Khoshgoftaar, T. M.; Van Hulse, J.; and Napoli-
tano, A. 2010. Rusboost: A hybrid approach to alleviating
class imbalance. IEEE Trans. on Systems, Man and Cyber-
netics, Part A: Systems and Humans 40(1):185-197.

Shawe-Taylor, J., and Cristianini, N. 2000. Support Vector
Machines. Cambridge University Press, 2 edition.

Song, Q.; Jia, Z.; Shepperd, M.; Ying, S.; and Liu, J. 2011.
A general software defect-proneness prediction framework.
IEEFE Trans. on Software Engineering 37(3):356-370.

Van Hulse, J.; Khoshgoftaar, T. M.; Napolitano, A.; and
Wald, R. 2012. Threshold-based feature selection tech-
niques for high-dimensional bioinformatics data. Network
Modeling Analysis in Health Informatics and Bioinformat-
ics 1(1-2):47-61.

Witten, 1. H., and Frank, E. 2011. Data Mining: Practical
Machine Learning Tools and Techniques. Burlington, MA:
Morgan Kaufmann, 3 edition.

Yang, P.; Liu, W.; Zhou, B. B.; Chawla, S.; and Zomaya,
A. Y. 2013. Ensemble-based wrapper methods for feature
selection and class imbalance learning. In Proceedings of the
17th Pacific-Asia Conference, PAKDD 2013, Gold Coast,
Australia, Part I, Lecture Notes in Computer Science 7818,
544-555. Springer-Verlag.

Yu, L.; Han, Y.; and Berens, M. E. 2012. Stable gene selec-
tion from microarray data via sample weighting. IEEE/ACM
Transactions On Computational Biology and Bioinformatics
9(1):262-272.

