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Abstract

Class imbalance is a frequent problem found in bioin-
formatics datasets. Unfortunately, the minority class
is usually also the class of interest. One of the meth-
ods to improve this situation is data sampling. There
are a number of different data sampling methods, each
with their own strengths and weaknesses, which makes
choosing one a difficult prospect. In our work we com-
pare three data sampling techniques (Random Under-
sampling, Random Oversampling, and SMOTE) on six
bioinformatics datasets with varying levels of class im-
balance. Additionally, we apply two different classi-
fiers to the problem (5-NN and SVM), and use fea-
ture selection to reduce our datasets to 25 features prior
to applying sampling. Our results show that there is
very little difference between the data sampling tech-
niques, although Random Undersampling is the most
frequent top performing data sampling technique for
both of our classifiers. We also performed statistical
analysis which confirms that there is no statistical dif-
ference between the techniques. Therefore, our rec-
ommendation is to use Random Undersampling when
choosing a data sampling technique, because it is less
computationally expensive to implement than SMOTE
and it also reduces the size of the dataset, which will
improve subsequent computational costs without sacri-
ficing classification performance.

Introduction
Class imbalance is a problem that is prevalent among bioin-
formatics datasets and occurs when there is not an even
distribution of instances between the classes. Addition-
ally, in binary classification, it is frequently the minority
class which is the class of interest. There are a number of
problems associated with class imbalance, including: bias
towards the majority class, reduced classification perfor-
mance, and increased number of false negatives.

One of the potential ways of alleviating this issue is
through data sampling. Data sampling transforms the
dataset by either adding or removing instances in order to
achieve a more balanced class ratio. There are a number of
different forms that data sampling can take, including under-
sampling (removing instances of the majority class in either
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a directed or random manner) and oversampling (adding in-
stances to the minority class in either a directed or random
manner).

However, the variety of techniques raises the question of
which technique to choose. In this work we compare the
classification results when applying one of three data sam-
pling techniques (Random Undersampling, Random Over-
sampling, and the Synthetic Minority Oversampling TEch-
nique or SMOTE) to bring the class ratio to 50:50. We
test these techniques on a series of six high-dimensional
bioinformatics datasets which contain various levels of class
imbalance (although even the most balanced still has only
33.55% of instances in its minority class). Additionally, we
also use two classifiers (5-Nearest Neighbors and Support
Vector Machines) as well as the threshold-based feature se-
lection technique Area Under the ROC Curve to reduce the
number of features to twenty-five prior to applying the sam-
pling techniques.

Our results show that there is little difference between the
three data sampling techniques, although Random Under-
sampling is the most frequent top performer. In order to
confirm our results we performed an ANalysis Of VAriance
test as well as a multiple comparison test using Tukey’s Hon-
estly Significant Difference criterion, both of which confirm
that there is no statistically significant difference among the
three techniques. Due to the results gathered we recom-
mend using Random Undersampling over Random Over-
sampling and SMOTE for the purposes of data sampling,
because its reduced computational costs to implement (com-
pared to SMOTE) and its end result of reducing the size of
the dataset (compared to the oversampling techniques) both
help to decrease the computational costs of the classification
experiments while not reducing performance.

The rest of the paper is organized as follows. The Related
Works section contains previous research which relates to
our experiment. The Data Sampling section introduces the
specifics of the three data sampling techniques used in our
work. The Methodology section outline the methodology
of our experiment. The Results section presents the results
of our work. Lastly, the Conclusion section presents our
conclusions and topics for future work.
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Related Works
Perhaps the root of the trouble with class imbalance is in
how classification algorithms are designed. A majority of
classification algorithms assume that the classes involved
will have an equal presence in the dataset (He & Garcia
2009). This assumption can lead to some serious prob-
lems. For example, feature selection with certain classifiers
is known to focus on accuracy and so will focus on the ma-
jority class (Al-Shahib, Breitling, & Gilbert 2005). Some
recommendations for combating some of these issues in-
clude applying data sampling methods. These methods work
by either adding instances to the minority class (oversam-
pling) or removing instances from the majority class (under-
sampling).

However, despite the frequency of imbalanced datasets,
there has been little work on data sampling in the domain
of bioinformatics, even if the work that does exists shows
potential. In 2005, Al-Shahib et al. (Al-Shahib, Breitling,
& Gilbert 2005) performed experiments to determine if the
addition of a data sampling technique would improve classi-
fication results when singling out a single functional group
from a set of thirteen. This study showed that applying data
sampling to improve the class ratio to 50:50 (with or without
feature selection) gave significantly better results than most
other combinations of sampling and feature selection.

In 2012, Blagus et al. (Blagus & Lusa 2012) performed
a study using data sampling on high-dimensional class-
imbalanced DNA microarray data. They used two data sam-
pling techniques, Random Undersampling and SMOTE, on
a series of six datasets and a series of classifiers. Their re-
sults found that only the k-NN classifiers seem to benefit
substantially from SMOTE and a number of the other classi-
fiers seem to prefer Random Undersampling. One downside
of this work however, was in the selection of the datasets.
Some of the datasets chosen were not particularly imbal-
anced, with the minority class being as high as 45% of the
instances. In these cases, data sampling will have little effect
as the classes are fairly balanced to begin with.

Data Sampling
In this work we use three different data sampling
techniques: Random Undersampling, Random Oversam-
pling, and Synthetic Minority Oversampling TEchnique or
SMOTE (Abu Shanab et al. 2012). Random Undersam-
pling (RUS) seeks to create balance between the two classes
by reducing the size of the majority class. This is accom-
plished by randomly removing instances from the majority
class until the desired class ratio has been achieved. Al-
ternatively, Random Oversampling (ROS) seeks to improve
the class balance by increasing the size of the minority class.
The increase is performed through randomly duplicating in-
stances from the minority class until the desired class ratio
is achieved.

SMOTE is another form of oversampling which seeks to
improve the balance between the two classes through in-
creasing the size of the minority class. However, unlike Ran-
dom Oversampling, SMOTE does not duplicate instances.
Instead SMOTE creates new minority instances which are

interpolated between existing minority-class instances, thus
creating a denser minority class. For all three sampling tech-
niques, sampling was performed to create a 50:50 class ratio.

Methodology
Datasets
Table 1 contains the list of datasets used in our experiment
along with their characteristics. The datasets are all DNA
microarray datasets acquired from a number of different real
world bioinformatics, genetics, and medical projects. As
the gene selection technique used in this paper requires that
there be only two classes, we can only use datasets with two
classes (in particular, either cancerous/noncancerous or re-
lapse/no relapse following cancer treatment). The datasets
in Table 1 show a large variety of different characteristics
such as number of total instances (samples or patients) and
number of features. We chose these datasets because they
have a variety of different levels of class imbalance but are
not considered balanced, as the largest minority percentage
is 33.55%.

Gene Selection Technique and Feature Subset Size
Based on previous research (Abu Shanab et al. 2012), fea-
ture selection was applied prior to data sampling, in order
to select the top 25 features. We chose one form of fea-
ture selection, Threshold-Based Feature Selection (TBFS)
used in conjunction the Area Under the Receiver Operating
Characteristic (ROC) Curve metric. TBFS treats feature val-
ues as ersatz posterior probabilities and classifies instances
based on these probabilities, allowing us to use performance
metrics as filter-based feature selection techniques. The
TBFS technique which uses ROC as its performance met-
ric has been shown to be a strong ranker. For details on
TBFS and the ROC metric please refer to Abu Shanab et
al. (Abu Shanab et al. 2012).

Classification, Cross-Validation, and Performance
Metric
We used two different classifiers (learners) to create induc-
tive models using the sampled data and the chosen fea-
tures (genes). 5 Nearest Neighbor (5-NN) and Support
Vector Machines (SVM), implemented using the WEKA
toolkit (Witten & Frank 2011). Due to space limitations
(and because these two classifiers are commonly used) we
will not go into the details of these techniques. We do note
that our implementation of SVM uses a complexity constant
of 5.0 and the buildLogisticModels parameter set to
true, instead of their default values in WEKA. For more in-
formation on these learners, please refer to (Witten & Frank
2011).

Cross-validation refers to a technique used to allow for
the training and testing of inductive models without resort-
ing to using the same dataset. In this paper we use five-fold
cross-validation. Additionally, we perform four runs of the
five-fold cross validation so as to reduce any bias due to a
lucky or unlucky split. The classification performance of
each model is evaluated using the Area Under the Receiver
Operating Characteristic Curve (AUC) (Abu Shanab et al.
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Table 1: Details of the Datasets

Name
# Minority Total # % Minority # of
Instances of Instances Instances Attributes

Brain Tumor (Dittman et al. 2013b) 23 90 25.56% 27680
Chanrion 2008 (Dittman et al. 2013a) 52 155 33.55% 22657

GSE20271 (Tabchy et al. 2010) 26 178 14.61% 22284
GSE3494-GPL96-ER (Pittman et al. 2004) 34 247 13.77% 22284

Mulligan R-PD (Dittman et al. 2013a) 41 126 32.54% 22284
Ovarian MAT (Dittman et al. 2013b) 16 66 24.24% 6001

Table 2: Classification Results for the Three Data Sampling Methods

Dataset
5-NN SVM

RUS ROS SMOTE Range RUS ROS SMOTE Range
Brain Tumor 0.88615 0.85475 0.86423 0.03140 0.91157 0.92761 0.92910 0.01753

Chanrion 2008 0.79379 0.79887 0.79545 0.00508 0.80959 0.80494 0.80759 0.00465
GSE20271 0.64423 0.58349 0.59863 0.06074 0.67583 0.66453 0.65059 0.02524

GSE3494-GPL96-ER 0.86873 0.84695 0.86392 0.02178 0.89342 0.89065 0.88848 0.00494
Mulligan R-PD 0.65502 0.65739 0.63783 0.01956 0.65372 0.65417 0.65364 0.00053
Ovarian MAT 0.93792 0.93125 0.93792 0.00667 0.92792 0.90833 0.90958 0.01959

2012). Mathematically, this is the same metric as described
above in the Gene Selection Technique and Feature Subset
Size section, but there is a major distinction: for gene selec-
tion (denoted as ROC), we an ersatz posterior probability to
calculate the metric, but when used for evaluating classifi-
cation models (denoted as AUC), the actual posterior proba-
bility from the model is used.

Results
In this study, we compare the classification results of three
data sampling techniques on a series of six high-dimensional
bioinformatics datasets whose feature set has been reduced
to twenty-five features using the filter-based feature selec-
tion technique ROC. We test the performance using two clas-
sifiers: 5-NN and SVM. Table 2 contains the results of our
experiment. In each row (which is a combination of learner
and dataset) the top performing data sampling technique is
in boldface and the worst performing data sampling tech-
nique is in italics. The final column represents the differ-
ence between the top and worst performing data sampling
techniques in order to show the range of values.

Looking at the results using 5-NN (The first section of Ta-
ble 2), we see that for four of the datasets, Random Under-
sampling outperforms SMOTE and Random Oversampling.
It should be noted however, that Ovarian MAT’s Random
Undersampling and SMOTE scores are effectively the same
(though they are not identical, differing in the eighth decimal
place). The remaining two datasets have Random Oversam-
pling outperforming Random Undersampling and SMOTE.
In terms of the worst performing data sampling technique,
we see that Random Oversampling is the worst performer
for four of the datasets. As for the remaining two datasets,
Random Undersampling and SMOTE each have a dataset
in which they are the worst performing data sampling tech-
nique.

When using SVM (the second section of Table 2), we
see that like 5-NN, four of the six datasets show Random

Undersampling outperforming Random Oversampling and
SMOTE. However, unlike 5-NN, for the remaining two
datasets Random Oversampling and SMOTE each have a
dataset in which they are the top performing data sampling
technique. When we look at the worst performing data sam-
pling techniques, we see that SMOTE has three datasets in
which it is the worst performing technique. Random Over-
sampling and Random Undersampling are the worst per-
forming techniques for two and one datasets respectively.

When we look across the data sampling techniques we see
that classification results are very similar between the three
data sampling techniques. Looking at the “Range” columns
in Table 2, we see that for most of the datasets the differ-
ence between the top performing data sampling technique
and the worst performing technique are relatively small, al-
though the differences in general are larger in 5-NN than
SVM. In fact, for five of the dataset/learner combinations
the difference between the best and worst performing tech-
niques is ≤ 0.01 AUC. It should also be noted though that
Random Undersampling is the most frequent top perform-
ing data sampling technique, by being the top performing
technique for eight of the possible twelve combinations of
learner and dataset.

In order to further validate the results in our classification
experiments, we performed two sets of one-factor ANaly-
sis Of VAriance (ANOVA) tests (Berenson, Goldstein, &
Levine 1983) (one per classification learner) across the six
datasets to determine if the choice of data sampling tech-
nique has any significant effect on the AUC levels. The ta-
ble itself cannot be presented due to space limitations, but
the results show that there are no significant differences be-
tween the three techniques for either classifier. This result
is different from Blagus et al.’s (Blagus & Lusa 2012) find-
ings that SMOTE is significantly better than RUS for k-NN
classifiers. We believe this difference may come from the
fact that our datasets (unlike Blagus et al.’s) are all clearly
imbalanced.
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Conclusion
Class imbalance is one of the most frequent problems when
working with bioinformatics datasets because often the class
of interest is the minority class and a number of classifiers
seek to maximize accuracy which is biased towards the ma-
jority class. One method to alleviate this problem is data
sampling, a process of adding or removing instances in or-
der to improve the class ratio. In our work we compare
the classification performance (using two classifiers, 5-NN
and SVM) of three data sampling techniques, Random Un-
dersampling, Random Oversampling, and SMOTE, on a se-
ries of six high-dimensional class-imbalanced bioinformat-
ics datasets which have had their features reduced with the
ROC feature ranking technique.

Our results show that there is little difference among the
three data sampling techniques, although Random Under-
sampling frequently is the best performing of the three tech-
niques. To confirm our results we include a one factor
ANOVA test and a test of Tukey’s HSD criterion (using the
choice of data sampling technique as the factor being exam-
ined) and found that there is no statistically significant dif-
ference among the three techniques. Notably, this observa-
tion is contrary to previous research (Blagus & Lusa 2012).
We believe this is due to our selection of dataset which were
all clearly imbalanced dataset. Based on our results we rec-
ommend using Random Undersampling over Random Over-
sampling and SMOTE as the data sampling technique due to
the smaller computational cost over SMOTE and the cre-
ation of a smaller dataset (compared to either oversampling
technique), which will reduce computational costs in sub-
sequent analysis with no sacrifice to classification perfor-
mance.

Future work will consist of increasing the number of
datasets used both generally and for focusing on a particular
type of dataset (tumor classification, patient response pre-
diction, etc.). Additionally, future work will look into other
final class distributions beyond being perfectly balanced.
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