
An Improved Dataset and Extraction Process for Starcraft AI

Glen Robertson and Ian Watson
Department of Computer Science

University of Auckland
Auckland, New Zealand, 1010
{glen, ian}@cs.auckland.ac.nz

Abstract

In order to experiment with machine learning and data mining
techniques in the domain of Real-Time Strategy games such
as StarCraft, a dataset is required that captures the complex
detail of the interactions taking place between the players and
the game. This paper describes a new extraction process by
which game data is extracted both directly from game log
(replay) files, and indirectly through simulating the replays
within the StarCraft game engine. Data is then stored in a
compact, hierarchical, and easily accessible format. This pro-
cess is applied to a collection of expert replays, creating a
new standardised dataset. The data recorded is enough for al-
most the complete game state to be reconstructed, from either
player’s viewpoint, at any point in time (to the nearest sec-
ond). This process has revealed issues in some of the source
replay files, as well as discrepancies in prior datasets. Where
practical, these errors have been removed in order to produce
a higher-quality reusable dataset.

1 Introduction
Games are an ideal domain for exploring the capabilities of
Artificial Intelligence (AI) within a constrained environment
and a fixed set of rules, where problem-solving techniques
can be developed and evaluated before being applied to more
complex real-world problems (Schaeffer 2001). Ideally, in-
creasingly realistic games will also lead to more human-like
AI being developed (Laird and van Lent 2001). Board game
AI has historically received a lot of academic and public at-
tention, but over the past decade there has been increasing
interest in research based on video game AI.

Real-Time Strategy (RTS) is a genre of video games in
which players indirectly control many units in a simplified
military simulation, which usually includes gathering re-
sources, building infrastructure and armies, and managing
units in battle. RTS games present some of the toughest chal-
lenges for AI agents, making it a difficult area for developing
competent AI (Buro and Furtak 2004). It is a particularly at-
tractive area for AI research because of how human players
can quickly become adept at dealing with the complexity of
the game, with experienced humans outplaying even the best
academic agents (Buro and Churchill 2012).

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

RTS games have huge state spaces and delayed rewards,
so heuristic-based search techniques, which have proven ef-
fective in a range of board games (Schaeffer 2001), have
difficulty with anything but the most restricted subproblems
of RTS AI. Many researchers in the field have sought to deal
with this challenge by examining the actions taken by hu-
man players, using techniques based around keyhole plan
recognition (Dereszynski et al. 2011; Hsieh and Sun 2008;
Synnaeve and Bessière 2011) or learning from demonstra-
tion (Ontañón et al. 2008; Palma et al. 2011; Weber, Mateas,
and Jhala 2012). StarCraft1 is a very popular RTS game
which has recently been increasingly used as a platform for
AI research. Due to the popularity of StarCraft, there are
many expert players available to provide knowledge and
examples of play, producing plentiful information for re-
searchers.

Most RTS games can save a game log (replay) file when
a match ends, and expert players often upload their replays
to websites for others to watch. In StarCraft, a replay file
records the starting conditions and player actions in a match,
allowing the entire match to be played back as a determinis-
tic simulation within the game engine. This makes for very
compact replay files, but means that game state information
is not directly available. In order to apply machine learning
or data mining to StarCraft data, researchers usually need to
run a simulation and extract the relevant information. This
creates a time-consuming hurdle for each new researcher,
therefore a comprehensive and accessible dataset, suitable
for a wide range of applications, is needed.

This paper starts by outlining the existing work related to
extracting and using data from StarCraft replay files, demon-
strating the need for a better extraction method and dataset
than is currently available. Next it gives the main goals for
producing the dataset, followed by the design of the extrac-
tion process and data recording used to meet those goals.
This is followed by a detailed description of the dataset and
what is recorded. An evaluation of the resulting dataset is
carried out, comparing it to the previous best data available,
leading to a conclusion on whether the dataset meets the
specified goals and is an improvement on prior work. Fi-
nally, areas of future work and improvements are identified.

1Blizzard Entertainment: StarCraft:
blizzard.com/games/sc/

Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference

255

2 Related Work
A number of papers have focused on extracting informa-
tion from StarCraft replay files, even in the relatively short
time since interest began to grow in using StarCraft as a re-
search platform. Before then, the RTS games used for re-
search purposes, such as Wargus2 and ORTS3, lacked the
expert player base and wide availability of replays to make
the approach worthwhile. Information is usually extracted
for analysis, such as determining common strategies, and for
creating or evaluating computer-controlled players (bots). In
many cases, machine learning algorithms are applied to pre-
dict a player’s strategic choices given the (often incomplete)
information known at an earlier point in time. When applied
to a bot, this approach can be used to predict opponent ac-
tions and to select actions for the bot itself.

To the authors’ knowledge, the first published work focus-
ing on data extraction from player replays in StarCraft was
Hsieh and Sun (2008). They used an existing tool to convert
the player actions and their timings – stored in replay files
found on a popular StarCraft site – into readable textual log
files. Because the replay file does not store game states, ba-
sic state information was inferred based on the construction
actions taken by the players. A case base and state lattice
were created for each of the game’s three “races”, allowing
the prediction of strategies and analysis of the popularity and
effectiveness of build orders (the orders in which buildings
are constructed in a game).

Weber and Mateas (2009) followed a similar route, down-
loading a set of over 5400 replay files from popular StarCraft
sites, and using an existing tool to extract player actions into
textual log files. However, in this case each resultant log was
labeled with a strategy based on expert-defined rules for the
build order. This labeled data was used to train classifiers to
predict the labeled strategy with missing or noisy informa-
tion, as well as to train regression algorithms to predict the
timing of certain actions.

Later, a similar process was undertaken in Churchill and
Buro (2011), Dereszynski et al. (2011), and Hostetler et al.
(2012). Again, each went through the process of collect-
ing replay files from websites, however, this time the Brood
War Application Programming Interface (BWAPI) was used
to connect to StarCraft while playing back the replays as
a simulation, allowing for much more complete state in-
formation to be extracted. However, each still focused on
strategic-level build order information, recording numbers
of units and buildings in existence every 21 or 30 seconds.
In Churchill and Buro (2011) the information was used for
comparison with their own build order planner, while in
Dereszynski et al. (2011) and Hostetler et al. (2012) it was
used to train models for strategy analysis and prediction.
Wender, Cordier, and Watson (2013) also extracted replay
files through BWAPI, however this time focusing on low-
level unit control (micromanagement) and visualisation and
transformation of replay data.

The most similar work to our work is Synnaeve and
Bessiere (2012), as it focused on producing a reusable

2Wargus: wargus.sourceforge.net
3Open RTS: skatgame.net/mburo/orts

dataset and extraction process, as well as carrying out ex-
traction, analysis and machine learning processes like the
other work outlined here. They collected over 8000 replays
from popular StarCraft sites, and filtered out many prob-
lematic files to result in a set of 7649 replays. The replay
files were simulated within StarCraft and information was
recorded to three separate text files per replay. Although this
work was a useful contribution to the field, some issues re-
main. Firstly, it is tuned to high-level (strategic) informa-
tion, so it records only the position attributes of units from
over a hundred possible attributes, and stores this only ev-
ery hundred game frames – approximately every four sec-
onds – providing insufficiently fine-grained data for exam-
ining mid-level (tactical) or low-level (micromanagement)
activities. Secondly, due to a limitation of BWAPI, it cannot
record the actual actions taken by players, but instead must
watch for changes in in-game unit orders and try to filter out
changes which were not the result of player actions, result-
ing in discrepancies between the true actions and those seen
in output. Thirdly, the output format of three text files, two
of which store multiple different types of data in different
sections, makes parsing and using the data an arduous pro-
cess, particularly if searching the data for particular pieces
of information.

Recently, Cho, Kim, and Cho (2013) again followed a
very similar process of replay downloading and extraction
as in Weber and Mateas (2009), but this time used BWAPI to
additionally extract the unit visibility events. This provided
enough information to determine which opponent units and
buildings each player knew about throughout the game, tak-
ing into account the fact that the game limits player visibility
to an area surrounding their own units. Strategy and victory
prediction was then carried out both with and without the
limited information.

Extracting information from the immense quantities of
expert knowledge encoded in the form of StarCraft replay
files is clearly an area of high interest within the field of RTS
game AI, yet, until recently, each researcher was forced to
reinvent the wheel with a new extractor in order to glean the
data they require from the encoded replay files. Synnaeve
and Bessiere (2012) sought to move the field away from this
repetition and unnecessary work, but the dataset is not flex-
ible or fine-grained enough to be able to be used for ma-
chine learning at all of the different levels of granularity seen
within StarCraft. This work seeks to address these issues.

3 Goals and Approach
In order to create an improved standard StarCraft dataset
which builds on Synnaeve and Bessiere (2012) and yet is ap-
propriate for the full range of research in StarCraft AI, four
major goals were identified: completeness and accuracy of
the information stored, and accessibility and extensibility of
the dataset and extraction process itself.

For the information to be complete and accurate, the ex-
tractor will need to capture as much useful data about the
game state as possible, from a wide range of replays, to pro-
vide a much more complete rendering of the available in-
formation than other datasets. With this level of detail, the
user of the dataset should be able to reconstruct the complete

256

game state at any point in the game, from either player’s
viewpoint. The dataset should become usage agnostic, in-
stead of being aimed at just high- or low-level play, as the
fine-grained detail can be used, abstracted, or ignored as re-
quired.

Over 7500 professional-level matches were analysed, us-
ing the same set of replay files used in Synnaeve and
Bessiere (2012) for consistency and comparability. Player
actions in the matches were recorded by directly parsing re-
play files, allowing the true player actions to be extracted,
including unit groupings used. This approach simplifies the
action extraction (ignoring the complexity in the external
code used to parse replay files) and makes it simple to iden-
tify observers (non-player participants) in a match early in
the extraction process, because they have few actions. In a
separate process, game states throughout the matches were
recorded by simulating the matches within StarCraft and
reading the state using BWAPI (figure 1). All unit attributes
are recorded, making this a complete representation of the
state.

Replay File Parser Simulation in StarCraft

Adaptation to BWAPI Read State via BWAPI

Game
Players

Unit Groups
Actions

Terrain, Events
Unit Attributes
Unit Visibility

Player Resources

Database

Replay File

Figure 1: Overview of the extraction process.

To be accessible and extensible, the dataset must obvi-
ously be far easier to read than the StarCraft replay files, and
ideally should be easier to read than the text format used
in prior work. It should enable quick access to information
about states without requiring scanning of an entire match’s
information, so that a user can efficiently find states of in-
terest. It should also be able to be altered or updated easily,
and the extraction process re-run relatively quickly, so that a
user can modify the extraction process and update the result
instead of waiting for a (lengthy) full extraction run. Finally,
the output should be as compact as possible so that the ex-
tracted data from many replays may be stored and examined
or downloaded by new users.

A database-centred design was chosen to allow for struc-
tured data to be stored and accessed quickly with a well-

known query language. The hierarchical and referential data
inherent in RTS games – for example, each unit must belong
to a player – can be effectively represented using tables with
foreign keys. Databases also provide powerful indexing ca-
pability for fast lookup of information even in large datasets,
so that game state information about a particular subset of
features at a particular point in time can be retrieved easily
and efficiently. To reduce the recording size, only changes in
game state are recorded. Additionally, it is possible to skip
frames in order to trade off accuracy for accessibility (in file
size). Appropriate indices allow the most recent value of an
attribute to be retrieved efficiently even when the actual time
it changed is unknown, and they also facilitate updating of
entries, so the extraction process can be re-run quickly. Us-
ing the indices and relational information, the extractor can
check for unwanted entries and remove them during the ex-
traction process. If the process is to be altered to store more
data, it is simple to add additional rows, columns, or tables
as desired.

4 Extraction Method
The data stored represents interactions over time between
players and the game, recording static player and terrain
information, as well as dynamic player actions, resources,
events, unit attributes and visibility in a database. A careful
method was devised to process the replays consistently and
without introducing errors.

First, the replay name and duration (in game frames),
along with the names, actions, and in-game “races” of the
players are parsed from the replay file. Before the informa-
tion is stored in the database, the actions are processed as
follows.

1. Control groups – used by players to store and retrieve a se-
lection of units using number keys – are replaced with reg-
ular unit selection actions. A limitation here is that dead
units cannot be filtered out of the unit groups at this point,
as unit status is not stored in the replay, so some actions
will be incorrectly recorded as if issued to groups in which
some or all units are dead (not possible in the game).

2. Consecutive unit selection actions are removed except for
the final selection, since unit selection actions in StarCraft
have no effect on the state except when followed by a non-
selection action.

3. Players with the fewest actions are removed until only two
remain, as matches often have additional players who are
actually observing the match, but have to join as partici-
pants due to a limitation in StarCraft. An additional check
is made to ensure none of the excluded players performed
many actions compared to the included players.

4. A winner is determined if the recording shows one player
leaving the game before the other (not always).

At this point, the information can be stored in the database.
Selection actions are used only to identify the units that were
selected and the groups in which they were selected, so that
the non-selection actions performed with these unit groups
may be stored.

257

For the remaining information, the replay is loaded in
StarCraft and accessed through BWAPI. First, static map in-
formation is recorded, including the name and number of
player starting positions, as well as buildability, walkabil-
ity, ground height, and region identifier of each map tile.
This static information could equivalently be read from the
replay file, but is more easily accessible through BWAPI.
In order to ease spatial reasoning, instead of simply stor-
ing a list of narrow openings between two map areas (choke
points), base locations and start locations, a walking distance
measure to the nearest choke point, base location, and start
location is stored with each map tile.

Next, dynamic game information is recorded as the match
is simulated. By default, changes are recorded every in-game
second (24 frames) to limit the amount of space required
while still providing four times the resolution of prior work
– enough to capture in full detail everything except pre-
cise micromanagement reactions. If changes are recorded
every frame approximately eight times more space is re-
quired – this tradeoff is discussed further in the next two
sections. The extractor records changes to all unit attributes
accessible through BWAPI, changes in unit visibility from
each player’s perspective, and changes in resources and sup-
ply (population limit) held by each player, enabling a com-
plete view of the game state to be reconstructed from ei-
ther player’s perspective for any given second in the game.
Additional information is recorded for convenience, as it is
mostly derivable from the change information stored above.
This includes in-game events such as units being created
and destroyed, or changing type (redundant), players leav-
ing, and nuclear launches being detected (non-redundant). It
also includes a set of aggregate region values stored for each
player, summing the value of ground units, air units, build-
ings, and resources of which they are aware, for themselves
and the enemy, in that region.

Notably, the unit visibility information recorded is vital to
reconstructing a game state as a player would see it in-game,
as a player’s vision of the map is limited to areas near their
own units. Prior work has almost always ignored the visibil-
ity of units, as it cannot be extracted from the replay files
directly, making it impossible to tell which unit movements
(or other attribute changes) each player is aware of. Ignoring
visibility limitations makes strategy prediction challenges
vastly easier, as most of the hidden information in the game
derives from units and buildings which are hidden from a
player. Only Cho, Kim, and Cho (2013) and Hostetler et al.
(2012) address this issue, as they were specifically exam-
ining strategy inference with limited information. Synnaeve
and Bessiere (2012) records the first time a unit or building
is seen, but doesn’t record subsequent changes in visibility.

5 Adaptive Granularity
A challenge when recording information in a game as com-
plex as StarCraft is the tradeoff between information gran-
ularity and storage space. Storing all of the game state in-
formation every frame – even just the changes – is costly
in terms of space, yet fine-grained information can be im-
portant to playing the game. This is particularly true in the
realm of micromanagement, in which professional players

quickly and carefully control individual or small groups of
units to maximise their effectiveness, usually in combat. In
order to better handle this potential use of the dataset, ex-
perimentation was carried out to evaluate two potential new
ways to adapt the granularity, which we refer to as attack-
based adaptation and action-based adaptation.

Attack-based adaptation builds on the basic fixed inter-
val recording, by recording the game state at fixed intervals
but reducing the intervals during attacks. It uses the same
base frame-rate as the default recording method, but records
four times more frequently during combat (as determined
by any unit attacking or being attacked). This rate was cho-
sen because it equates to a very high rate of 240 effective
actions per minute, similar to that of the fastest players in
the world, and therefore should capture all of the detail seen
in player behavior. A potential drawback of this method is
that it cannot distinguish between attacks which require fast
player control, such as a large battle, from those that do not,
such as a turret automatically firing at nearby enemies. Like-
wise, it cannot detect other non-attack situations in which
fast control is needed.

With action-based adaptation, frame recording happens
each time a player makes an action instead of being time-
based. This means that fewer frames per second are recorded
when players don’t need to make many decisions, such as
at the start of the game, while more frames per second are
recorded when players are rapidly controlling many units
and buildings, such as during the intense later stages of the
game. Another benefit of this approach is that it stores the
exact state the game was in when a player made an action,
which could help to detect reactions to changes in state.
However, occasionally – particularly early in a match, when
few actions are being made – it could actually hinder detec-
tion of changes because non-action states are not recorded.
This drawback could potentially be mitigated by requiring a
minimum recording frame rate in situations where few ac-
tions are made.

6 Evaluation
In addition to the expected advantages of greatly increased
information accuracy and faster querying, the described
method of extracting and storing replay data yields some
unexpected findings when compared with prior methods.
Firstly, it is possible to identify corrupted replays which oc-
cur due to a replay being recorded in an older version of Star-
Craft. In these replays, the rules of the game have changed
between recording and playback, causing the simulation to
increasingly deviate from the correct state. By comparing
the units in the replay file with those seen in the game, 3751
of the 7660 replays were identified as containing invalid
units, although 668 of those replays had fewer than 1% in-
valid units. All replays with more than 1% invalid units were
removed from the final dataset.

Comparing the player actions recorded directly from re-
play files to those recorded in-game in previous work, the
higher fidelity of the new recording method becomes ev-
ident. By referring to the actual unit groupings used by
the player, far fewer orders are recorded, despite the orders
showing greater detail and better representing actual player

258

actions. Certain player actions that don’t correspond to unit
orders, such as setting an exit point for a factory, are now
recorded. Additionally, unit order changes that don’t corre-
spond to player actions, such as automatically attacking a
nearby enemy, are no longer recorded as if they were player
actions. This comparison has also helped to identify likely
errors in the previous action recording, as certain actions ap-
pear to be repeated multiple times in the recording.

The extraction method described in this paper and the
adaptive granularity alternatives were evaluated on a test
dataset consisting of the games in which both players chose
the “Protoss” race – one of the six possible race match-
ups. The unit attribute changes form the vast majority of the
data, averaging 96% of the total size of the test dataset, so
it is worthwhile to examine these attribute changes further.
Looking at the proportion of attribute changes per unit type
(figure 2), we see that originally, 61% of attribute change
records are related to “probe” worker units, which is by
far the highest proportion of any unit. Worker units move
around automatically and are fairly numerous, so their at-
tribute changes take up a substantial amount of space, yet
they are rarely involved in combat or other micromanage-
ment. Therefore, action-based adaptation was applied to in-
dividual workers, recording their attribute changes less fre-
quently unless they had recently been given an action. This
change reduced them to to 30% of attribute changes, and re-
duced the overall dataset size by a similar proportion.

Looking at attribute changes per attribute (figure 3), we
see that 15% of attribute changes record an order timer, and
a further 22% (total) record angle and velocity information.
Based on domain knowledge, these attributes are unlikely to
be important for most analysis and probably could be filtered
out completely, while the position attributes are much more
likely to be important. However, in the interests of keeping
the dataset as complete as possible, these attributes have re-
mained in the dataset.

0

10

20

30

40

50

60

70

Probe Zealot Dragoon High
Templar

Interceptor

%
 o

f
to

ta
l a

tt
ri

b
u

te
 c

h
an

ge
s

Changes per Unit Type

Before Worker Adaptation

After Worker Adaptation

Figure 2: Frequency of attribute changes grouped by unit
type, showing top 5. Using data from the test dataset
recorded at fixed intervals of 24 frames.

Finally, we may compare the effects of the adaptive granu-
larity methods (figure 4). There is clearly a tradeoff between

0

2

4

6

8

10

12

14

16

%
 o

f
to

ta
l a

tt
ri

b
u

te
 c

h
an

ge
s Changes per Attribute

Figure 3: Frequency of attribute changes grouped by at-
tribute, showing top 10. Using data from the test dataset
recorded at fixed intervals of 24 frames.

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

Prior Work Fixed Intervals
(24 frames)

Attack-based
Adaptation

Action-based
Adaptation

o

f
fr

am
e

s
e

xt
ra

ct
e

d
 (

lo
g

sc
al

e
)

Frames Extracted

Figure 4: Number of frames recorded by each extraction
method. Prior work refers to Synnaeve and Bessiere (2012).
Using data from the test dataset.

accuracy and size, but it is difficult to determine whether
this tradeoff is worthwhile for a general case. The fixed in-
terval extraction is able to capture sufficient information to
understand all but the most fast-paced decisions, and the
adaptive granularity methods should cover even those situa-
tions. However, the number of frames extracted increases by
over an order of magnitude when using either of the adaptive
granularity methods, and the storage space required approx-
imately doubles. Given the already large size of the dataset
– multiple gigabytes for just the fixed interval extraction of
the test dataset – the adaptive granularity methods will not
be used for the final dataset. However, because the dataset
can be relatively quickly modified by re-running the extrac-
tor, it can still easily be customised to particular needs.

7 Conclusions and Future Work
This paper has presented a new method for extracting Star-
Craft replay data for machine learning and data mining. The
method combines the strengths of two different information

259

sources: direct parsing of replay file data and simulation of
replay data within the StarCraft game engine. By directly
parsing replay files, we are able to accurately record the ac-
tual actions the players made, instead of watching for the
actions’ effects, and we can much more easily identify cor-
rupted replay files. By simulating the replays in the game,
we can record the complete set of unit attributes, including
visibility information, so that the game state at any point
can be reconstituted. This produces complete and accurate
data, especially compared with prior work, which recorded
at most one quarter of the frame rate and just a few of the
approximately one hundred unit attributes.

In addition, the paper describes an effective structure for
storing the data such that it is easily accessible and exten-
sible. The source code for the extractor is available4 so that
further extensions and modifications can be made.

Three methods were tested which varied the choice of
frames to extract: extracting frames at fixed intervals, ex-
tracting at fixed intervals but with a higher rate during at-
tacks, and extracting frames whenever players made actions.
For the full extraction process of a standardised dataset5, the
simplest, fixed interval extraction method was used, because
it provides a comprehensive recording, which should be suf-
ficient for anything except precise micromanagement anal-
ysis. If more fine-grained analysis is required, the standard
dataset is easily modified by reducing the interval or using
an adaptive granularity method.

Although not used in the full extraction process, the adap-
tive granularity extraction methods showed promise for data
of widely varying levels of abstraction, and may prove use-
ful in other fields. They could be better optimised by re-
stricting the fine-grained information recording spatially and
contextually, instead of just temporally. For example, when
using attack-based adaptation, the extra information could
be recorded only for units nearby to those involved in the
attack, and when using action-based adaption, the extra in-
formation could be recorded just for units that were included
in the action. However, these sorts of optimisations require
more domain knowledge to implement well, and are thus
difficult to generalise.

Acknowledgements
Special thanks to Stefan Wender for the original database
design built upon in this work.

References
Buro, M., and Churchill, D. 2012. Real-time strategy game
competitions. AI Magazine 33(3):106–108.
Buro, M., and Furtak, T. M. 2004. RTS games and real-time
AI research. In Proceedings of the Behavior Representation
in Modeling and Simulation Conference, 63–70. Citeseer.
Cho, H.-C.; Kim, K.-J.; and Cho, S.-B. 2013. Replay-based
strategy prediction and build order adaptation for StarCraft

4Data extractor code available at:
github.com/phoglenix/ScExtractor

5Dataset available at: www.cs.auckland.ac.nz/research/gameai/
projects.php

AI bots. In Proceedings of the IEEE Conference on Compu-
tational Intelligence in Games, 329–335.
Churchill, D., and Buro, M. 2011. Build order optimization
in StarCraft. In Proceedings of the Artificial Intelligence
and Interactive Digital Entertainment (AIIDE) Conference,
14–19.
Dereszynski, E.; Hostetler, J.; Fern, A.; Dietterich, T.;
Hoang, T.; and Udarbe, M. 2011. Learning probabilistic
behavior models in real-time strategy games. In Proceed-
ings of the AIIDE Conference, 20–25. AAAI Press.
Hostetler, J.; Dereszynski, E.; Dietterich, T.; and Fern, A.
2012. Inferring strategies from limited reconnaissance in
real-time strategy games. In Proceedings of the Annual Con-
ference on Uncertainty in Artificial Intelligence, 367–376.
Hsieh, J., and Sun, C. 2008. Building a player strategy
model by analyzing replays of real-time strategy games. In
Proceedings of the IEEE International Joint Conference on
Neural Networks, 3106–3111. Hong Kong, China: IEEE.
Laird, J., and van Lent, M. 2001. Human-level AI’s
killer application: Interactive computer games. AI Magazine
22(2):15–26.
Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2008.
Learning from demonstration and case-based planning for
real-time strategy games. In Prasad, B., ed., Soft Comput-
ing Applications in Industry, volume 226. Springer Berlin /
Heidelberg. 293–310.
Palma, R.; Sánchez-Ruiz, A.; Gómez-Martı́n, M.; Gómez-
Martı́n, P.; and González-Calero, P. 2011. Combining ex-
pert knowledge and learning from demonstration in real-
time strategy games. In Ram, A., and Wiratunga, N., eds.,
Case-Based Reasoning Research and Development, volume
6880 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg. 181–195.
Schaeffer, J. 2001. A gamut of games. AI Magazine
22(3):29–46.
Synnaeve, G., and Bessière, P. 2011. A bayesian model
for plan recognition in RTS games applied to StarCraft. In
Proceedings of the AIIDE Conference, 79–84. AAAI Press.
Synnaeve, G., and Bessiere, P. 2012. A dataset for StarCraft
AI and an example of armies clustering. In Proceedings of
the AIIDE Workshop on AI in Adversarial Real-Time Games.
Weber, B., and Mateas, M. 2009. A data mining approach to
strategy prediction. In Proceedings of the IEEE Symposium
on Computational Intelligence and Games, 140–147. IEEE.
Weber, B.; Mateas, M.; and Jhala, A. 2012. Learning from
demonstration for goal-driven autonomy. In Proceedings of
the AAAI Conference on AI, 1176–1182.
Wender, S.; Cordier, A.; and Watson, I. 2013. Building a
trace-based system for real-time strategy game traces. In
Proceedings of the International Conference on Case-Based
Reasoning (ICCBR) Workshop on Experience Reuse: Prove-
nance, Process-Orientation and Traces.

260

