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Abstract 

Many statistical and data mining techniques have been used to 
analyze the deluge of data generated by computerized, sensing 
devices.  Behavioral psychologists traditionally have relied on 
"low-tech" methodologies for observing animal behavior in the 
wild and the laboratory.  These methods are time intensive and 
laborious.  When the observed animal is a colony animal, with 
many individuals to observe, traditional methods fail  We inject 
RFID passive transponders under the skin of our study animal, 
the Naked Mole-rat (NMR).  RFID readers are placed throughout 
the housing environment, allowing us to track animal movements 
as they move through these areas, with sub-second resolution for 
long periods of time.  This methodology generates huge amounts 
of data requiring Big Data analytical techniques.  In this paper, 
we investigate equivalence metrics, specifically the Pearson Cor-
relation Coefficient and Hamming Distance, to analyze behavior 
changes in the social network structure of a naked mole rat colo-
ny.  Our results showed that a Pearson Correlation was sufficient 
to detect equipment error and Hamming Distance could detect 
changes in colony behavior. 

Background  and Motivation     
Traditional tools used to measure behavior of laboratory 
animals become problematic when large groups of animals 
need to be measured simultaneously.  Our recent work has 
examined social behavior using network tools in a highly 
specialized laboratory-housed rodent, the African naked 
mole-rat (Heterocephalus Glaber).  African mole-rats are 
unique among rodents, indeed among all mammals, be-
cause they participate in a cooperative breeding eusocial 
lifestyle.  Naked mole-rats rely on a queen to be solely 
responsible for breeding the entire colony.  The lack of 
reproductive ability, and close kin relationships among 
colony members, allows the naked mole-rat to maintain the 
largest colony size of any mammal with up to 300 mem-
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bers in wild colonies, and up to 100 animals in captive 
colonies.  
Naked mole-rats are quickly becoming an important model 
in biomedical research.  The naked mole-rat genome has 
more genes in common to humans than traditional labora-
tory rodents (rats and mice; Kim, et al. 2011), yet they 
demonstrate cancer and stroke resistance (Larson & Park, 
2009) and extreme longevity, living over 30 years (Buffen-
stein, et al. 2008). These animals thrive in captivity and 
allow for the study of their cooperative and social behav-
ior.  Understanding the brain mechanisms driving the so-
cial behavior in the naked mole-rat may help us to further 
understand human social behavior and social behavior dis-
orders such as autism and schizophrenia. 
 We have presented the first colony-wide analysis of ac-
tivity patterns and social behaviors of naked mole-rats us-
ing customized radio frequency identification (RFID) 
based tracking system (McCloskey et al. 2011).  Using this 
system, we can track all movements of all animals as they 
move through all areas of their laboratory habitat with sub-
second resolution for long periods of time.  The event-
based dataset generated by this type of system allows for 
the simultaneous study of individual, sub group, and whole 
group characteristics.  Our initial studies in this area were 
focused on identifying social behaviors of animals in a 
colony based on the premise that animal interaction can be 
determined by measuring how much time is spent in the 
same area of the housing environment.  We found that us-
ing a combination of data mining approaches, including 
adjacency matrix sampling, principal component analysis, 
and frequent pattern mining, we can successfully identify 
characteristics of the social network (McCloskey et al. 
2011).  
 We have also used the RFID data to demonstrate that 
naked mole-rats, like all animals, have a periodicity to their 
behavior.  The circadian cycle of activity is roughly 24 
hours in the presence of external cues such as light and 
interaction with experimenters and animal care staff.  
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When adjacency matrix sampling and frequent pattern 
mining were analyzed, in relation to time of day, we found 
that the density of social networks and the complexity of 
behavior patterns varied across the circadian rhythm (Im-
berman et al. 2012).   
 Our current goal is to establish a long-term recording 
system so that the state of social behavior can be measured 
continually, and any deviation form the baseline level of 
behavior can be readily detected.  In order for long-term 
recording to be successful, it would be helpful to have an 
“on-the-fly” monitoring system to detect deviations in the 
behavior pattern of one animal, a small group of animals, 
or the entire colony, while monitoring the entire network in 
real time.  The present study simulates this deviation by 
analyzing data generated by our RFID sensors.  Our first 
study looks at a synthetic perturbation of a 1 hour time 
window by keeping some subset of RFID transponders in a 
single location for one hourly time window.  This was ana-
lyzed in multiple simulated datasets ranging from one ani-
mal to the entire colony, and measured in three time win-
dows of different baseline activity. Two approaches were 
compared for their ability to detect changes in the resulting 
adjacency matrices of network activity.  The first, approach 
was to perform Monte Carlo simulations of the perturbed 
dataset and conduct a Pearson Correlation between the 
original and the perturbed network data.  The second, ap-
proach was to perform a Quadratic Assignment Procedure 
(QAP) and measure changes in the Pearson Correlation 
Coefficient when comparing the original and perturbed 
datasets.   In our second study we looked at multiple win-
dows of activity and compared an active window with all 
other windows over a 27 hour period.  The thesis here was 
to try to detect different behavior, such as sleep, from other 
activity.  These approaches are promising for incorporation 
of an "on the fly" monitoring system into the laboratory 
setup.   

Methods and Technical Solutions 
For our initial study, 33 NMRs were housed in standard 
mouse tub cages connected by over 7 meters of clear poly-
carbonate tubing (50.8 mm inner diameter).  Each NMR 
was implanted subcutaneously with a Trovan Unique radio 
frequency identification transponder, referred to henceforth 
as a “chip” (transponder size 11.5 x 2.2mm; MicrochipID 
Lake Zurich, IL).  Stationary circular RFID reader anten-
nae, (Trovan LID 650 readers (MicrochipID, Lake Zurich, 
100 mm inner diameter) were placed around the polycar-
bonate tubing at multiple locations and connected to a 
computer so as to facilitate data collection.   Each time a 
tagged NMR passed through a reader, a text file was up-
dated with the animal ID (unique 10 digit alphanumeric 
code), time of entry, and reader number (1-14). Data pre-

processing of 24 hours of data entries was organized into a 
state matrix identifying the last known location for each 
animal, for each event.  This methodology produces a large 
amount of data, with approximately 4 events per second or 
15,000 events recorded per hour.   
 From the state matrix we calculate a Total Adjacency 
Matrix, which shows the total number of times each dyad 
(pair) of animals collocated in that time window (Table 1). 
Hence in Table 1, NMR 2 collocated with NMR4 five 
times in this time window.   
 

Table 1 Sample Total Adjacency Matrix 
 NMR1 NMR2 NMR3 NMR4 NMR5 NMR6 
NMR1 0 0 0 0 0 0 
NMR2 0 0 0 5 2 0 
NMR3 0 0 0 0 0 2 
NMR4 0 5 0 0 0 0 
NMR5 0 2 0 0 0 0 
NMR6 0 0 2 0 0 0 

 
Previously, we were able to identify, using cluster analysis, 
graphical models, and frequent pattern mining, colony 
wide behavior patterns. Using traditional social network 
central graph analysis and frequent pattern mining with 
Apriori at 50% support, (Agrawal et. al. 1994), we were 
able to find equivalent sociograms.  In (Imberman et. 
al.2012) we showed that by using these methods, in addi-
tion to principal components analysis, activity level over a 
24 hour period can be quantified and visualized.  High lev-
els of activity showed a different picture than low levels of 
activity.   Using these methods, we can identify time win-
dows of one hour long duration showing different levels of 
activity.  For example, in the initial data set, Window 1 
exhibited low activity, window 7 moderate activity, and 
window 14 high activity.   Figure 1 shows histograms of 
these windows, visualizing the various activity levels as a 
function of animal frequency at a reader.  

Simulated Chip Failure 
Given the methods described, the question becomes, "How 
large are the changes in network behavior, and thus chang-
es in social behavior, before we can reliably detect them?"  
Changes in network behavior can be attributed to several 
factors.  One is that an event occurs within the colony to 
warrant a change in behavior.  An example of this can be 
the birth of pups or the death of a queen.  Changes in net-
work behavior can also be attributed to equipment errors, 
which in our case would be either a reader failure or a chip 
failure causing one, the other, or both to go offline. 
For the initial study, we focused on equipment errors.  In 
our laboratory setup, readers were arranged linearly.  To 
create the state matrix, and from that the total adjacency 
matrix, we assume an animal has not moved from its last  
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Figure 1 Histograms showing frequency of localization for a 
given reader in a given location. for each NMR 

position until it triggers a new reader.   A reader failure 
results in an NMR being counted as not having changed 
position until another reader, further along in the sequence, 
is triggered.  The behavior of interest is animal interaction, 
and whether groups of animals remain together.  As long 
as the readers are spaced close enough together, reader 
failure would have a minimal impact on these results.  
 On the other hand, should an RFID chip fail, the animal 
interaction data can be affected.  The ability to detect such 
an event is the basis for our first empirical study.    This 
type of change in behavioral data would occur in the case 
where the implanted chip becomes nonfunctional or falls 
out.  In addition, a chip can appear to be nonfunctional if 
the animal itself suddenly becomes stationary.  This could 
occur, for example, if the animal becomes either sick or 
deceased, or if a queen is giving birth.  A nonfunctional 
picture in the data means that the animal appears to stay at 
a particular location (reader) for an extended period of 
time, or for this study, a full hour.   The question remains, 
how sensitive is our network, and hence our data analysis, 
to failure in RFID chips, which we will refer to as chip 
error.  By partitioning our data into windows of hour long 
time periods, we can look at colony activity at different 
time periods during the day.  We chose one day's worth of 
data, gathered early in our collection process for this initial 
study.  As previously mentioned, windows 1, 7, and 14 
respectively represent low, medium and high amounts of 
colony activity (Figure 1).  Hence, another question arises:  
"Is there a delta in which chip failure has a minimal effect 
on how we categorize colony behavior?"   
 Our initial analysis involved a Monte Carlo simulation 
of chip error.  NMR were randomly selected for chip fail-
ure, with the assumption that this failure happened at the 
start of a time window.    A base case was created (no er-
ror) for each of the time windows 1, 7 and 14.    Error cas-
es were created for failure of one chip/NMR up to all 33 
chips.  Each error case was done for 600 replications and 
the Pearson Correlation Coefficient was calculated for the 
comparison between the no error case to the case for each 
replication.  Figure  2 is a graph of the results over the 3 
windows, W1, W7 and W14, with the results of the Pear-
son Correlation averaged over the 600 trials.   
 As expected, the base run case has a Pearson Correlation 
equal to 1 and the case of 33 (max number of animals) is a 
number between 0 and 1 for each of the windows.  From 
the graph one can see that the curve of Pearson Correlation 
Coefficient versus the number of chip errors is monotonic.   
The rate at which the curves degrade differs with colony 
activity.  Chip failure seems to show a more marked differ-
ence as the activity level of the colony increases.  This is 
not surprising since a chip failure is tantamount to an NMR 
remaining stationary.  When comparing to the base case, 
which is an active state, one would expect to see a larger 
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difference between a "totally stationary" set of animals 
versus an active set.   
 Looking at the results another way, we want to make 
sure that the difference in correlation due to chip error is 
not the same difference we would see in a randomly gener-
ated sample.     The relationships between mole-rats seen in 
the total adjacency matrix are not independent.  Therefore 
there is a dependency between values within a row, and 
values within a column.  When this is the case, a Quadratic 
Assignment Procedure (QAP) is run to obtain a random 
matrix where the dependencies   

 

 
Figure 2 Results of Monte Carlo Simulation  

within a row and column are preserved, but the dependen-
cies between compared networks are broken.  (Krackhardt, 
D. 1987; Krackhardt, D. 1988, Borgatti et. al.).  If we run 
Pearson's Correlation on each of these permuted matrices, 
we can determine the significance of the correlation be-
tween the model (chip error) and the base run due to ran-
dom effects.   Figure 3 shows a graph of the results of the 
QAP Correlation Procedure in UCINET1 for Chip Error of 
1 to 10 chips.   

Detecting Behavior Changes 
Histogram analysis has shown that the colony has periods 
of varying levels of activity.  As mentioned, we can cate-
gorize these as high levels of activity, medium levels of 
activity and low levels of activity.  Low activity levels are 
usually when the NMR sleep.  The purpose of our second 
related study was to determine if we can use an equiva-
lence metric to quantify these behavior periods, or, in es-
sence, when do animals sleep? The data used for this study 
was a 28 hour period broken into 1 hour windows.  The 
first hour was an active period.  Figure 4 shows histograms 
of three time windows in this 28 hour period.  As you can 
see the activity changes from high to low (most animals 
stay at readers 19 and 20) and back to high.  Window 17 is 
an example of a sleep period.   

                                                
1 https://sites.google.com/site/ucinetsoftware/home 

 Total adjacency matrices were calculated for each win-
dow.  Since each window can have a different number of 
readings, the matrices were normalized using a threshold. 
The threshold matrix was created by entering a 1 if the 
dyad existed at least the calculated percentage of total 
readings in that time window.  Thresholds were set at 50 
percent and 75 percent. 
 There are several equivalence measures used in social 
network analysis, the Pearson Correlation Coefficient be-
ing one of them.  Buoyed by our success with the synthetic 
dad, we applied the Pearson Correlation coefficient to the 
threshold matrices.  The matrix for Window 1 was com-
pared to each successive matrix for Windows 2 – 28.  One 
would expect some difference between an active matrix 
and a “sleepy” one.  Figure 5 is a graph of the results of the 
Pearson Correlation. 
 

 
Figure 3 Results of QAP Simulation  

 As we can see, the sleep behavior is not picked up by the 
Pearson correlation metric.  According to Hanneman, “The 
correlation measure of similarity is particularly useful 
when the data on ties are "valued," that is, tell us about the 
strength and direction of association, rather than simple 
presence or absence.”  Since our threshold matrix indicates 
presence or absence of a significant dyadic collocation, the 
Pearson is not a good metric to indicate similari-
ty/dissimilarity of the underlying social network for these 
matrices.   
 Hamming distance is another equivalence metric used to 
show dissimilarity between networks.  The Hamming dis-
tance calculates the number of dyads that differ.  Hence the 
larger the number, the more the matrices differ.  Figure 6 
shows the results of Hamming Distance applied to both the 
50 percent thresholded matrix and the 75 percent 
thresholded matrix.  The Hamming distance metric is able 
to distinguish between active behavior and sleep behavior.  
The values peak around window 17 which corresponds to 
the picture painted by the histograms.  In comparing the 50 
percent threshold matrix’s results with the 75 percent ma-
trix, one sees less variation.  This can be due to the fact 
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that animals that collocate frequently, do this consistently.  
Interestingly, the results also show that the some animals 
tend to sleep less than others.  This behavior was not pre-
viously known. 

 

 

 
Figure 4 Histograms of Windows 1, 17 and 28 
 

Figure 5  Results of Pearson Correlation 
 

 
Figure 6 - Results of Hamming Distance 

Significance and Impact 
In this study we looked at two equivalence measures, the 
Pearson Correlation Coefficient and Hamming Distance.  
The Pearson measured the ability to detect a change in the 
network by analyzing the correlation between simulated 
perturbed datasets and the original dataset using two ap-
proaches.  Both the Monte Carlo simulation and the Quad-
ratic Assignment Procedure approach were capable of 
showing changes in the network pattern, and in both cases 
the sensitivity was directly related to the time of day and 
the number of animals affected.  Hamming Distance was 
better than the Pearson Correlation Coefficient at differen-
tiating between behavior patterns from different time peri-
ods. 
 Our previous analysis (Imberman, et al.  2012) demon-
strated that time of day is a key factor in determining net-
work behavior in the naked mole-rat.  During the night 
period animals tend to sleep together in the nest area and 
stay huddled for warmth, which results in a high density 
social network.  In the morning and evening hours net-
works remain relatively dense although sleeping has sub-
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sided in most animals and movement around the colony 
has increased.  
 In the current study, time of day was an important factor 
in the ability to detect network change.  In the chip error 
study, it is clear from both the Monte Carlo and QAP anal-
yses that animals remaining still during window 14 (when 
most animals are moving around) are more easily detected 
than during window 1 (when most animals are sleeping). 
Of course, we would predict the opposite result if the per-
turbation of the dataset was the simulated movement of an 
animal through the colony.  Therefore, a useful monitoring 
system will need to detect erratic behavior patterns relative 
to the baseline pattern for the colony at that time. 
 As predicted, the analyses were also sensitive to the 
number of animals displaying an altered behavior pattern.  
When the simulated chip loss was limited to one animal, 
the correlation to the original adjacency matrix remained 
near 1, independent of the time of day or method used.  
However, as the number of animals simulated as remaining 
still (or losing chips) increased, the correlation coefficient 
dropped off quickly.  These data suggest that when a moni-
toring system is used on an hourly basis, there is a critical 
mass of animals required with changed behavior patterns to 
reliably detect a change in the overall network. 
 Pearson Correlation Coefficient did not work well to 
capture the differences in time of day behavior.  Hamming 
distance was a much better measure of this.  An important 
question was what equivalence measure can be used as an 
“on-the-fly” method for detecting colony behavior chang-
es.  Our findings show that in detecting equipment errors 
the Monte Carlo simulation approach provides an accurate 
reflection of the effects of network change, by virtue of the 
smoothness of the curve in all scenarios.  One would ex-
pect nearly linear reductions in correlation coefficients 
with incremental increases in network perturbations, such 
as the number of animals simulated to remain still.  How-
ever, the QAP analysis, which requires significantly less 
computation, seems adequate in approximating the net-
work changes shown with the Monte Carlo approach.  
Hamming Distance may prove more useful in detecting 
global behavior changes.  In our goal to monitor whole 
colonies of naked mole-rats over long periods of time, 
network comparisons using all three approaches may pro-
vide different kinds of feedback on colony behavior.  This 
can mean that researchers can be notified in a timely man-
ner as to possible significant events in colony behavior.   
 In summary, this study of a network equivalence metrics 
shows several viable options for flagging behavioral 
events.  While it appears unlikely that we would be able to 
detect subtle changes in the behavior pattern of one animal 
during one hour of analysis, it is possible to identify 
changes in the behavior of a small group of animals, and 
even the colony as a whole.  Our sensitivity is directly in-
fluenced by the baseline behavior pattern of the entire col-

ony. Therefore, an accurate monitoring system should be 
able to adjust the sensitivity based on the variability in the 
baseline behavior. We find the Quadratic Assignment Pro-
cedure with Pearson Correlation to be nearly as sensitive as 
Monte Carlo simulation with Pearson Correlation.  Also, 
Hamming Distance is a better metric than the Pearson Cor-
relation Coefficient for identifying changes in colony be-
havior.   
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