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Abstract
Ensemble learning (process of combining multiple
models into a single decision) is an effective tool for
improving the classification performance of inductive
models. While ideal for domains like bioinformatics
with many challenging datasets, many ensemble meth-
ods, such as Bagging and Boosting, do not take into
account the high-dimensionality (large number of fea-
tures per instance) that is commonly found in bioin-
formatics datasets. This work seeks to observe the ef-
fects of two relatively new ensemble learning meth-
ods (Select-Bagging and Select-Boosting: the Bagging
and Boosting approaches with feature selection imple-
mented within each iteration of their algorithms) on a
series of seven balanced (greater than a 43.50% mi-
nority class distribution) bioinformatics datasets. Ad-
ditionally, we included the results when no ensemble
approach is implemented (denoted as No-Ensemble) so
that we can observe the full effects of ensemble learn-
ing. In order to test the three approaches we use three
feature rankers, four feature subset sizes, and two clas-
sifiers. The results show that Select-Bagging is the top
performing ensemble approach and statistical analysis
confirms that Select-Bagging is significantly better than
No-Ensemble and better (though not significantly) than
Select-Boosting. Our recommendation is that Select-
Bagging is an excellent choice for improving classifi-
cation performance for bioinformatics datasets. To our
knowledge, this work is the first empirical study focused
exclusively on balanced bioinformatics datasets that in-
vestigated the effects of ensemble learning and utilizes
Select-Bagging and introduces Select-Boosting.

Introduction
As a result of complications, such as high-dimensionality
(having a large number of features (genes) per instance) and
difficult to learn class boundaries, that are common in bioin-
formatics datasets, researchers have utilized techniques from
domains such as data mining and machine learning to assist
in the effective analysis of said data. Applications of this
partnership may include reducing the computational costs of
analysis, the removal of irrelevant or redundant features, and
the building of inductive models for use in analyzing future
data.
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

One powerful tool from the domain of data mining that
has potential benefit for bioinformatics analysis is ensemble
learning. Ensemble learning seeks to improve performance
by combining the power of multiple models into a single de-
cision. Potential benefits of ensemble learning in addition
to improved performance include: reduced bias towards any
particular class and reduced risk of overfitting. Addition-
ally, ensemble learning approaches are versatile due to their
ability to incorporate a variety of classifiers and data pre-
processing techniques into their algorithms (Khoshgoftaar
et al. 2013).

Two popular ensemble learning techniques are Bagging
and Boosting. Bagging takes a random sample of instances
with replacement from the training dataset so that it creates
a new dataset made up from instances of the training dataset.
This process is repeated multiple times and the classifiers are
trained using the new datasets and the final result is made of
a majority vote of the trained classifiers. Boosting begins
with the training dataset and gives an initial identical weight
to each instance. Upon the training and testing of the classi-
fier built, the misclassified instances are given more weight
and the correctly classified instances are given less weight.
These new weights are used to directly give more weight to
the instances in the new training data (Boosting by reweight-
ing) or they are used in a weighted sampling with replace-
ment process which creates a new training dataset where the
misclassified instances are more likely to show in the new
training dataset than the correctly classified ones (Boosting
by resampling). The process repeats using the new training
dataset and the overall process is repeated a predetermined
number of times. The final decision is a weighted majority
vote of all the trained classifiers. However, both the Bagging
and Boosting algorithms do not take into account the inher-
ent high-dimensionality commonly found in bioinformatics
dataset or any data pre-processing techniques such as feature
selection to combat said high-dimensionality.

Our work focuses on the application of two relatively new
ensemble approaches, Select-Bagging and Select-Boosting
(the Bagging and Boosting algorithms with feature selec-
tion incorporated into each iteration of their respective al-
gorithms), on balanced (no dataset has less than a 43.50%
minority class distribution) bioinformatics datasets. We test
these two approaches using a series of seven balanced bioin-
formatics datasets, three feature rankers, four subset sizes,
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and two classifiers. Additionally, to better observe the ab-
solute effect of ensemble learning, we also observed the
results when no ensemble approach is applied (denoted as
No-Ensemble in this work). The results show that Select-
Bagging is the top performing approach for both classifiers,
achieving the highest classification performance in a major-
ity of the scenarios. Alternatively, we find that not including
an ensemble approach generally results in the lowest per-
formance. Statistical analysis confirms that Select-Bagging
is significantly better than No-Ensemble and better, but not
significantly better, than Select-Boosting for both classifiers.
Therefore, we recommend the use of Select-Bagging, and by
extension the use of ensemble learning approaches, for im-
proving the classification performance for models built from
bioinformatics datasets. To our knowledge, this is the first
empirical study which focuses on balanced datasets and uti-
lizes Select-Bagging and introduces Select-Boosting.

The rest of the paper is organized as follows. The Related
Works section contains previous research which relates to
our experiment. The Ensemble Learning section introduces
the specifics of the two ensemble learning approaches used
in our work. The Methodology section outlines the method-
ology of our experiment. The Results section presents the
results of our work. Lastly, the Conclusion section presents
our conclusions and topics for future work.

Related Works
Ensemble learning is the process of combining decisions
of multiple classification models into a single final re-
sult (Koziol et al. 2009). The main objective of ensem-
ble methods is not only improving overall classification per-
formance (Dietterich 2000) but also more accurate gener-
alization capability in classifying unseen instances (Yang
et al. 2010). There are two key factors that affect en-
semble method performance: the accuracy and the diver-
sity of the base classifiers (Dietterich 2000). In this study,
our focus is on the two most popular ensemble techniques:
Bagging (Breiman 1996) and Boosting (Freund & Schapire
1996).

Several scholars have investigated both Bagging and
Boosting in their works. For example, Nagi et al. (Nagi
& Bhattacharyya 2013) conducted an empirical study using
nine high-dimensional cancer datasets and three classifiers.
The researchers proposed a new ensemble method and com-
pared class-specific accuracy of their method versus each
single classifier as well as Bagging and Boosting. Another
work by Tan et al. (Tan & Gilbert 2003) used seven cancer
gene expression datasets along with the C4.5 decision tree
classifier, and two ensemble methods: Bagging and Boost-
ing with decision trees as the classifier. Chen (Chen 2014)
conducted an experiment using eight microarray datasets
and one feature selection technique, Relief-F.

In 2014, our research group introduced the Select-
Bagging ensemble method (Dittman et al. 2014). In this
work we observed how Select-Bagging performed compared
to when no ensemble approach is applied. We used a single
classifier and two feature selection techniques in our case
study. Our results showed that Select-Bagging performs sig-
nificantly better than when no ensemble approach is applied.

However, there are a number of shortcomings found
within these studies. Nagi et al. (Nagi & Bhattacharyya
2013) did not employ feature selection and chose their
three learners based on classification results from a series
of datasets which are not high dimensional and are not rep-
resentative of bioinformatics datasets. Tan et al. (Tan &
Gilbert 2003) applied feature selection but it was deployed
outside 10-fold cross-validation. In addition, they applied
one run of 10-fold cross-validation to some datasets but not
all and they chose different feature subset sizes for different
datasets. Chen (Chen 2014) performed feature selection out-
side the ensemble methods (it causes overfitting of the clas-
sification models) and they did not provide any information
on the class distribution of those datasets or how many fea-
tures were selected for their experiment. As a result of these
shortcomings, the results provided may be called into ques-
tion. Even our own work can be considered preliminary, as
it only discusses Select-Bagging for ensemble approaches.

Contrary to these studies, our current work addresses
each of these concerns. We are comparing different ensem-
ble approaches in addition to no ensemble. We also used
seven high-dimensional and balanced datasets, three fea-
ture rankers from three different families of feature selection
methods along with four feature subset sizes, and two clas-
sifiers using four runs of five-fold cross validation. In ad-
dition, we performed feature selection within each run and
each fold of the cross-validation process (as well as within
each iteration of the ensemble approaches) to avoid overfit-
ting of the built classification models. Lastly, all our results
are validated by statistical analysis.

Select-Bagging and Select-Boosting
In this work we utilize two different ensemble learning ap-
proaches: Select-Bagging and Select-Boosting. Both of
these techniques incorporate the feature selection process
into their respective algorithms. This is an important distinc-
tion because both Bagging and Boosting (when using Boost-
ing by resampling discussed later in this section) creates
new training datasets with each iteration of their algorithms.
Therefore, any feature selection performed before the en-
semble approach will not be as valid with the new training
datasets. Despite this, studies have performed the feature
selection process either before the ensemble methods (Chen
2014) or even before the cross-validation process (if one is
applied) (Tan & Gilbert 2003). As a result we developed
Select-Bagging and Select-Boosting to apply the feature se-
lection process on each new training dataset generated by
their algorithms. However, as both Bagging and Boosting
are well known ensemble learning techniques, we will fo-
cus on the particulars for the Select-Boosting and Select-
Bagging processes. Both the Select-Bagging and Select-
Boosting processes were implemented by our research group
in the WEKA data mining toolset (Witten & Frank 2011).
Each ensemble approach uses 10 iterations. For more in-
formation on the basic techniques please refer to (Breiman
1996) for Bagging and (Freund & Schapire 1996) for Boost-
ing.

Select-Bagging (Dittman et al. 2014) (see Figure 1a) in-
corporates feature selection into the process of Bagging by
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performing feature selection after the sampling with replace-
ment for every iteration of the Bagging algorithm. After
feature selection, a classifier is trained and the process is
repeated the predetermined number of times. The final deci-
sion for Select-Bagging like with the Bagging algorithm is
decided by taking the average of the posterior probabilities
of the membership of the instance for the positive class from
the collection of classifiers and using that average to make
the final decision.

Select-Boosting (see Figure 1b), like Select-Bagging, in-
corporates the process of feature selection into the algorithm
after the new training datasets are generated. However, in
order to vary the training datasets for the feature selection
process we used the Boosting by resampling option of the
AdaBoost algorithm implemented in the WEKA data mining
toolset. Boosting by resampling (activated by the “useRe-
sampling” option in WEKA being set to true), as opposed to
Boosting by reweighting, resamples the training data based
on the instance weights generated by that iteration. It should
be noted, that the first iteration resamples based on the ini-
tial weights. As a result, a new training dataset is generated
that is the same size as the original training dataset, with
instances with high weights occurring more frequently than
those with low weights. It is through this overrepresentation
of the high weight instances and under representation of the
low weight instances that the new weights are reflected. Af-
ter feature selection is performed, a classifier is trained and
is given a weight parameter and the process repeats for the
predetermined number of iterations. The final decision of
the Select-Boosting algorithm is the same as that of the Ad-
aBoost algorithm: a weighted average of the posterior prob-
abilities.

However, to truly observe the effects of ensemble learn-
ing, we need to compare the classification performance of
Select-Bagging and Select-Boosting to that of a model built
from feature selection on the training dataset followed by
training a classifier (No-Ensemble). If the classification per-
formance of the ensemble approaches are decisively better
than that of No-Ensemble, then the implementation of the
ensemble approaches are worth the effort.

Methodology
Datasets

Table 1 contains the list of datasets used in our experiment
along with their characteristics. The datasets are all DNA
microarray datasets acquired from a number of different real
world bioinformatics, genetics, and medical projects. As
the gene selection techniques used in this paper require that
there be only two classes, we can only use datasets with two
classes (in particular, either cancerous/noncancerous or re-
lapse/no relapse following cancer treatment). The datasets
in Table 1 show a large variety of different characteristics,
such as number of total instances (samples or patients) and
number of features. We chose these datasets because they
have a variety of different levels of class imbalance but are
all relatively balanced, as the smallest minority percentage
is 42.50%.

(a) Select-Bagging

(b) Select-Boosting

Figure 1: Ensemble Approaches

Gene Selection Techniques and Feature Subset Size
We chose three forms of filter-based gene selection: a com-
monly used feature ranker, Information Gain; Threshold-
Based Feature Selection (TBFS) used in conjunction with
the Area Under the Receiver Operating Characteristic
(ROC) Curve metric; and a first-order statistics based fea-
ture selection technique called Signal-to-Noise Ratio. For
all three feature rankers we used four feature subset sizes:
25, 50, 100, and 200. These sizes were chosen because
based on previous research, they are reasonable numbers of
features (Khoshgoftaar et al. 2012).

Information Gain (Hall & Holmes 2003) is one of the
simplest and fastest feature ranking techniques, and is thus
popular in bioinformatics where high dimensionality makes
some of the more complex techniques infeasible. Informa-
tion Gain determines the significance of a feature based on
the amount by which the entropy of the class decreases when
considering that feature. Area Under the ROC Curve is a
TBFS technique which treats feature values as ersatz pos-
terior probabilities and classifies instances based on these
probabilities, allowing us to use performance metrics as

331



Name
# Minority Total # % Minority # of
Instances of Instances Instances Attributes

DLBCL 23 47 48.94% 4027
Prostate 59 136 43.38% 12601

Breast Cancer 46 97 47.42% 24482
DLBCL NIH 102 240 42.50% 7400
BCancer50k 200 400 50.00% 54614
Spira2007 90 192 46.88% 22216

SotiriouMatrixData-Grade 45 99 45.45% 7651

Table 1: Details of the Datasets

filter-based feature selection techniques. The TBFS tech-
nique which uses Area Under the ROC Curve as its perfor-
mance metric has been shown to be a strong ranker. For
details on TBFS and the Area Under the ROC Curve metric
please refer to (Abu Shanab et al. 2012). Signal-to-Noise
Ratio is a measure of how well a feature separate the two
classes. The ratio is defined as the difference between the
mean value of that feature for the positive class instances
and the mean value of that feature for the negative class in-
stances over the sum of the standard deviation of that feature
for the positive class and the standard deviation of that fea-
ture for the negative class. The larger the Signal-to-Noise
Ratio, the more relevant a feature is to the dataset (Khosh-
goftaar et al. 2012).

Classification, Cross-Validation, and Performance
Metric
We used two different classifiers to create inductive mod-
els using the sampled data and the chosen features (genes).
5 Nearest Neighbor (k-nearest neighbors classifier with a
k of five; denoted as 5-NN in this work) and Logistic Re-
gression (LR), implemented using the WEKA toolkit (Witten
& Frank 2011) using default values unless otherwise noted.
Due to space limitations (and because these two classifiers
are commonly used) we will not go into the details of these
techniques. However it should be noted that for 5-NN the
choice of a k of five and the weight by distance parameter
being set to “Weight by 1

distance” was chosen based on pre-
liminary research. For more information on these learners,
please refer to (Witten & Frank 2011).

Cross-validation refers to a technique used to allow for
the training and testing of inductive models without resort-
ing to using the same dataset. In this paper we use five-
fold cross-validation. Additionally, we perform four runs of
the five-fold cross validation so as to reduce any bias due
to a chance split. However, it should be noted that the pro-
cess of Select-Bagging, Select-Boosting, and No-Ensemble
(including feature selection) is performed on every train-
ing dataset generated by the four runs of five-fold cross-
validation. Therefore, we train 200 classifiers with feature
selection for both Select-Bagging and Select-Boosting, as
well as 20 classifiers with feature selection for No-Ensemble
for every iteration of four runs of five-fold cross validation.
The classification performance of each model is evaluated
using the Area Under the Receiver Operating Characteris-
tic Curve (AUC) (Abu Shanab et al. 2012). Mathematically,
this is the same metric as described above in the Gene Selec-

tion Technique and Feature Subset Size section, but there is
a major distinction: for gene selection, we use an ersatz pos-
terior probability to calculate the metric, but when used for
evaluating classification models, the actual posterior proba-
bility from the model is used. To reduce confusion, we use
AUC when referring to the performance metric. It should
be noted that each datasets are separate from each other and
none of the experiments combine any of the datasets though
we do present the average classification results across the re-
sults from each dataset to to highlight more general trends.

Results
In this work, we seek to determine whether Select-
Bagging or Select-Boosting is better suited for bioinformat-
ics datasets using a series of seven balanced bioinformatics
datasets. Additionally, we compare the two approaches to
classification models built with no ensemble approach (No-
Ensemble). In order to test these three approaches, we use
three feature rankers, two classifiers, and four subset sizes.
Table 2 contains the results of our experiment. Each en-
try in the table is the average AUC value across all seven
datasets for every combination of ensemble approach, clas-
sifier, feature ranker, and feature subset size. The best en-
semble approach for each combination of classifier, feature
ranker, and feature subset size will be in boldface and the
worst performing approach in italics.

Looking at 5-NN (top portion of Table 2), we see that
Select-Bagging is the top performing ensemble approach
for 12 out of 12 scenarios. It should also be noted that
the approach of No-Ensemble is the worst performing ap-
proach for the ROC feature ranker. In the case of Informa-
tion Gain and Signal-to-Noise, No-Ensemble is the worst
performing approach in 50% of the scenarios. Specifically,
No-Ensemble is the worst performing approach for subset
sizes 25 and 200 with Information Gain and subset sizes 50
and 200 with Signal-to-Noise.

For Logistic Regression (bottom portion of Table 2), we
see that unlike 5-NN, Select-Bagging is the top performing
ensemble approach in 9 out of 12 scenarios. In terms of
the three exceptions, Select-Boosting is the top performing
approach, followed by Select-Bagging. Once again we see
that No-Ensemble is the most frequent worst performing ap-
proach for the classifier for all 12 scenarios for Logistic Re-
gression.

In order to further validate the results in our classifica-
tion experiments, we performed two one-factor ANalysis Of
VAriance (ANOVA) tests (Berenson, Goldstein, & Levine
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Classifier
Subset Information Gain Area Under the ROC Curve Signal-to-Noise
Size No-Ensemble S.Boosting S.Bagging No-Ensemble S.Boosting S.Bagging No-Ensemble S.Boosting S.Bagging

5-NN

25 0.82121 0.82375 0.84697 0.80937 0.82276 0.83415 0.81288 0.82486 0.82842
50 0.82789 0.82569 0.84477 0.81275 0.82319 0.82822 0.81767 0.81341 0.82512
100 0.83130 0.83110 0.84523 0.81859 0.82791 0.83168 0.82446 0.82518 0.83114
200 0.82857 0.82939 0.84125 0.81538 0.82907 0.83397 0.82805 0.82256 0.83175

LR

25 0.79156 0.80923 0.82071 0.79248 0.81611 0.83131 0.79787 0.81141 0.82803
50 0.75411 0.79538 0.81517 0.76495 0.80321 0.82003 0.75487 0.80897 0.81702
100 0.73920 0.79938 0.81375 0.75136 0.80988 0.81659 0.74286 0.81199 0.80987
200 0.73927 0.81779 0.81197 0.75384 0.82442 0.82668 0.73874 0.82238 0.80826

Table 2: Classification Results - Ensemble Approaches

Classifier Source Sum Sq. d.f. Mean Sq. F Prob>F

5-NN
Approach 0.188 2 0.09407 3.84 0.0215

Error 123.374 5037 0.02449
Total 123.563 5039

LR
Approach 3.37 2 1.68492 64.39 2.43E-28

Error 131.798 5037 0.02617
Total 135.168 5039

Table 3: ANOVA Results: Ensemble Approaches

1983) (one for each classifier) with the choice of ensemble
learning approach being the factor, across the seven datasets
to determine if it has any statistically significant effect on
the AUC levels. The results of the ANOVA tests (as seen in
Table 3) show that the choice of ensemble approach is a sig-
nificant factor for both classifiers. This is indicated by the
Prob>F value being less than 0.05. Additionally, we per-
formed a multiple comparison test using Tukey’s Honestly
Significant Difference (HSD) test (Berenson, Goldstein, &
Levine 1983). Figure 2 contains the results of the Tukey’s
HSD tests. The results show that for 5-Nearest Neighbor,
Select-Bagging is significantly better than No-Ensemble and
better than Select-Boosting (but not to a statistically signif-
icant degree). In terms of Logistic Regression, both Select-
Boosting and Select-Bagging are significantly better than
No-Ensemble but are not significantly better than each other,
with Select-Bagging being the top performing approach.
Thus, we can recommend that the inclusion of an ensem-
ble approach is beneficial and that we recommend using
Select-Bagging as it is always significantly better than No-
Ensemble and better than Select-Boosting for both classi-
fiers.

Conclusion
Ensemble learning combines the power of multiple mod-
els into a single decision. Benefits from ensemble learn-
ing can include reduced overfitting and increased classifica-
tion performance which makes ensemble learning a poten-
tial useful tool for bioinformatics. However, many ensem-
ble approaches, such as Bagging and Boosting, do not take
into account the inherent high-dimensionality found in these
datasets. Thus we developed two new ensemble approaches,
Select-Bagging and Select-Boosting, which incorporate the
feature selection process into each iteration of their algo-
rithms. In this work, we seek to determine whether Select-

Bagging or Select-Boosting is best suited for bioinformatics
datasets. Additionally, we include the results of the same
experiments but with no ensemble approach applied in or-
der to determine if the utilization of the ensemble learning
approach is beneficial. We test the techniques using a series
of seven balanced bioinformatics datasets along with three
feature rankers, two classifiers, and four subset sizes.

Our results show that Select-Bagging is the most fre-
quent top performing ensemble approach for both classi-
fiers. Of the possible 24 scenarios, only three do not have
Select-Bagging as the top performing approach, with Select-
Boosting being the top performing approach for those sce-
narios. Additionally, the most frequent worst performing
approach is No-Ensemble producing the worst performance
for 20 out of the 24 scenarios. Statistical analysis shows that
Select-Bagging is significantly better than No-Ensemble and
better (though not significantly better) than Select-Boosting
for both classifiers. Thus, it is our recommendation that
Select-Bagging significantly improves the classification per-
formance for balanced bioinformatics datasets. Future work
may include the inclusion of more datasets, especially those
for more specific purposes (tumor classification, patient re-
sponse prediction, etc), to see if our findings remain valid.
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