Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference

A Multiple-Play Bandit Algorithm Applied to Recommender Systems

Jonathan Louédec
Institut de Mathématiques de Toulouse

Institut de Recherche en Informatique de Toulouse

UMRS5505 CNRS, Université de Toulouse

118 route de Narbonne 31062 Toulouse, France

jonathan.louedec @irit.fr

Max Chevalier and Josiane Mothe

Institut de Recherche en Informatique de Toulouse

UMRS5505 CNRS, Université de Toulouse
118 route de Narbonne 31062 Toulouse, France
max.chevalier @irit.fr, josiane.mothe @irit.fr

Aurélien Garivier and Sébastien Gerchinovitz
Institut de Mathématiques de Toulouse
118 route de Narbonne 31062 Toulouse, France
aurelien.garivier @math.univ-toulouse.fr, sebastien.gerchinovitz@math.univ-toulouse.fr

Abstract

For several web tasks such as ad placement or e-commerce,
recommender systems must recommend multiple items to
their users—such problems can be modeled as bandits with
multiple plays. State-of-the-art methods require running as
many single-play bandit algorithms as there are items to rec-
ommend. On the contrary, some recent theoretical work in the
machine learning literature designed new algorithms to ad-
dress the multiple-play case directly. These algorithms were
proved to have strong theoretical guarantees. In this paper
we compare one such multiple-play algorithm with previ-
ous methods. We show on two real-world datasets that the
multiple-play algorithm we use converges to equivalent val-
ues but learns about three times faster than state-of-the-art
methods. We also show that carefully adapting these earlier
methods can improve their performance.

1 Introduction

When a user interacts with a recommender system (RS),
several items, such as ads, movies, news or songs, are rec-
ommended to him. The user can select recommended items,
or not. The click-through rate allows to estimate the perfor-
mance of a RS (Ricci, Rokach, and Shapira 2011).

In this paper we make the hypothesis that a recommended
item selected by a user is relevant to her and that abandon-
ment occurs when none of the recommended items is clicked
through. In order to optimize RS, we thus consider the prob-
lem of minimizing abandonment.

To be as adaptive as possible, a RS should consider pre-
vious interactions with different users before providing rec-
ommendations to the current user. The problem is then to
set up a strategy allowing to learn from item relevance while
continuing to recommend relevant items to users. When the
whole dataset is available at once, we can estimate all items’
relevance : this is a supervised learning environment (Hastie,
Tibshirani, and Friedman 2009). This is usually not the case
in real RS: new users and new items occur continuously;

Copyright © 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

67

moreover, the choice of the items to be recommended at each
interaction must be decided with the information from past
interactions only. Such an environment is called reinforce-
ment learning” (Sutton and Barto 1999). It requires imple-
menting a strategy to gain information on the relevance of
each item (exploration) while ensuring that the RS will con-
tinue to recommend relevant items (exploitation). This prob-
lem is known as the exploration/exploitation dilemma. Ban-
dit algorithms are known to offer solutions to this dilemma
(Bubeck and Cesa-Bianchi 2012).

Related work falls into two groups of models. The first
one gathers feature-based models which deduce new infor-
mation on unseen items or users from user-feedback. Some
of them are designed to recommend a single item, such
as the linear stochastic bandit approaches (Li et al. 2010)
and (Chu et al. 2011), while others deliver several recom-
mendations. In this sense, Yue and Guestrin (2011) propose
the LSBGreedy, using upper confidence bounds on the es-
timated gain in utility, with a linear bandit approach. The
second groups of models are feature-free models which de-
duce no information on unseen items or users. In this di-
rection, Radlinski, Kleinberg, and Joachims (2008) devel-
oped the Ranked Bandit Algorithm (RBA) using as many
single-play bandit algorithms as the number of recommen-
dations to be supplied. UCB-type algorithms (Auer, Cesa-
Bianchi, and Fischer 2002), the e-greedy algorithm (Sutton
and Barto 1999) or the Exp3 algorithm (Auer et al. 2002) can
be used as subroutine for RBA. More recently Kohli, Salek,
and Stoddard (2013) created the Independent Bandit Algo-
rithm(IBA). RBA and IBA are described in Section 3.

By using as many bandits as items to recommend, RBA
and /BA do not fully exploit the combinatorial aspect of the
problem, because single-play bandit algorithms are indepen-
dent of each other. As a result, at each time, each single-play
bandit algorithm learns about one item only. We argue that
learning on all recommended items at the same time using
a single algorithm is better; this addresses the multiple case
directly.

Some recent theoretical works in the machine learning
literature designed new algorithms to address this prob-

lem. Bubeck and Cesa-Bianchi (2012) proposed an algo-
rithm capable of exploiting the combinatorial aspect of
the bandit problem with multiple plays: Exp3.M (see also
(Uchiya, Nakamura, and Kudo 2010)). While this algorithm
has strong theoretical guarantees, it is a general algorithm
for a wide class of complex bandit problems. For the con-
venience of the reader, we detail in Section 3.3 how we
suggest to implement the algorithm of Bubeck and Cesa-
Bianchi (2012) (Sections 5.3 and 5.4) in an efficient fashion.
Our work takes place in the feature-free context, because at
each time #, we consider the actual user as a new user and all
items are independent.

The three approaches mentioned above (RBA, IBA,
Exp3.M) do not exactly target the same solution. Ideally we
would like to minimize abandonment. RBA aims at deliver-
ing a solution based on the diversity principle. Exp3.M and
IBA aim at maximizing the sum of the clicks at each time.
These solutions are suboptimal with respect to abandonment
but are easier to find than the optimal solution.

In this paper, we briefly describe RBA, IBA and Exp3.M
and their theoretical guarantees. Furthermore, we evaluate
the Exp3.M algorithm on MovieLens and Jester collections.
We show that the Exp3.M learns faster than the RBA and
IBA approaches. Additionally, we show that using Exp3 as a
subroutine for RBA improves significantly the performance
of the latter, but has no effect on /BA results.

This paper is organized as follows: in Section 2, we for-
malize the recommendation problem and define several sub-
optimal solutions that algorithms should target to solve it.
In Section 3, we first detail the RBA and IBA algorithms,
then the Exp3.M algorithm and the implementation that we
propose, and compare the theoretical guarantees of each al-
gorithm. In Section 4, we present the experiment frame-
work and results. Finally we conclude this paper and indi-
cate some directions for future work.

2 Problem Formalization

We consider a collection of K items noted I; with 7 €
{1,...,K}. At each time t, m items are recommended to
the user. If the user clicks through at least one item, we get
a global payoff of 1, otherwise the payoff is 0. The objective
is to minimize the fraction of 0’s, i.e., to minimize abandon-
ment. PX is the set of all the combinations of m items that
it is possible to get with K items. A user can be represented
by a relevance vector X = {0, 1}* where X; = 1 if the user
selects the item i. At each time ¢, the user is represented by
X;. A set of m items A; € PX is submitted to this user.

Z, is the reward obtained for the set A; with the relevance
vector X;. It is defined by :

Zy = X,
t 12,161235 it
Each component i € {1,..., K} of the vector X follows a
Bernoulli distribution of unknown parameter p,. The proba-
bility p; can be estimated at time ¢ by :

0=y, 2 X

€Ay

68

with
Ni(t)= > 1
t:icAy

The fraction of users who consider at least one item of
A; as relevant is F[Z;], the expectation of the variable Z;.
Maximizing E[Z;] is equivalent to minimizing the aban-
donment. In this case an optimal set A* is a set that leads
to at least one click for a majority of users. A* is defined as

A" = argmax E[7]
AePK

The purpose of RS in an online context can be defined
as the minimization of the difference between Y1, Z* (the
sum of obtained rewards if we use the optimal set A*) and
23;1 Z; (the sum of the rewards obtained with the algo-
rithm). This difference is called the cumulative expected re-
gret, denoted by R(7T') and is defined as :

R(T)-Tx E[2°]- Y EZ]

Finding an optimal set A* is a NP-hard problem (Radlin-
ski, Kleinberg, and Joachims 2008). A suboptimal solution,
but easier to find, could be more appropriate. In this context
Kohli, Salek, and Stoddard (2013) used two others solutions
: the greedy solution and the independent solution.

The independent solution is based on the probability rank-
ing principle (Robertson 1977). It is defined as the set con-
sisting of the m items with the highest CTR.

Azndependent = argmax Z E[Xl]
A€P7Irf 1€ A

This solution is targeted by the IBA and Exp3.M algo-
rithms, both of them are designed to maximize :

Ztindependent _ Z Xi,t
€A,

The diversity principle is essential in recommendation, but
it is not taken into account with the independent solution
(Chen and Karger 2006). Let us take the example of movie
recommendation : the most popular movies are those of the
hexalogy ”Star Wars”. In this context, the most popular 6
items can be liked by users who have similar taste, represent-
ing the majority of users. But if a user has different tastes,
none of the proposals will satisfy him. The optimal set A* is
based on the diversity principle, because it is composed of m
items such that at least one of them is relevant to a majority
of users.

The greedy solution is defined as the solution which
ranks the most popular item at the first position and most
popular items in the following positions given that the user
has not selected previous items in the recommendation list.
More formally, this solution can be defined as:

AW — argmax B[X,]
e K

and for & > 2,

AW = argmax B[Xi[X; =0 vje{Af e]
iekc/{Agrecty) o

By taking most popular items given that the user has not
clicked through any earlier items, the greedy solution takes
into account the principle of diversity. As the greedy solution
chooses in the first position the most popular item, this item
does not necessarily occur in the optimal solution A*, that is
why A97¢4 ig a suboptimal solution.

3 Algorithms

In this section, we first present the two methods that will
serve as benchmarks: RBA and /BA. The RBA approach tar-
gets the greedy solution while /BA targets the independent
solution. Both methods use as a subroutine a single-play
bandit algorithm; we detail the case when the subroutine
is Exp3 (Auer et al. 2002). This will enable a fair compar-
ison with the multiple-play algorithm, Exp3.M, which de-
tailed description is given in Section 3.3 in order to allow
the reader to efficiently implement the algorithm of Bubeck
and Cesa-Bianchi (2012). This algorithm targets the inde-
pendent solution.

3.1 Ranked Bandits Algorithm (RBA)

RBA (Algorithm 1) was developed by Radlinski, Kleinberg,
and Joachims (2008) and requires running m single-play K-
arm bandit algorithms in parallel. At each time ¢, the m items
chosen by the m bandits are recommended to the user. The
way the bandits’ information is updated works as follows
: the bandit corresponding to the first clicked item gets a
reward of 1, while all the remaining bandits get a reward
of 0. This way, the first bandit tends to recommend the item
with the highest CTR. Besides, since the second bandit can
only get a reward when the first item is not clicked, it tends
to recommend the item with the highest CTR when the first
item is not relevant. And so on for the 3rd,. .., m'" bandits.

As shown by Radlinski, Kleinberg, and Joachims (2008),
RBA combined with the subroutine Exp3 has a regret of
O(m~\/TKlogK) with respect to the greedy solution and
the rewards Z; = maxXjea, X .

3.2 Independent Bandits Algorithm (/BA)

IBA (Algorithm 2) was later developed by Kohli, Salek, and
Stoddard (2013). Similarly to RBA, it requires to run m
single-play K -arm bandit algorithms in parallel. The main
difference between the two algorithms is how user clicks
are taken into account: while for RBA only the first clicked
item is considered as relevant, all clicked items are consid-
ered relevant by IBA. As a consequence, the k'" single-plaZ
bandit of IBA tends to recommend the item with the k!

highest CTR. The IBA approach thus targets the indepen-
dent solution. Adapting the proof of Kohli, Salek, and Stod-
dard (2013), one can show that /BA combined with the Exp3

subroutine has a regret of O(m+/T Klog(K)) with respect
to the independent solution and the rewards Z; = 3,4, X ¢

(sum of clicks).)

69

Algorithm 1: Ranked Bandit Algorithm

1 SPB; : single-play bandit algorithm for
recommendation %
fort=1,...,7 do
fori=1,...,mdo
a; < selectltem(SPB;, K)
if a; € {al, ey ai_l} then
| a; < arbitrary unselected item
end
end
At <« U;a;
Display A; to user, receive feedback vector X,
fori=1,...,mdo

Feedback:
1 if item a; was the first clicked on
Zi = .
0 otherwise
end update(SPB;, z;)

o NN R W N

e <
N =S

13
14 end

Algorithm 2: Independent Bandit Algorithm

1 SPB; : single-play bandit algorithm for
recommendation %
2 fort=1,...,7 do

3 for:=1,...,mdo
4 a; < selectltem(SPB;, K\A; ;_1)

A< A1 Uay
5 end
6 Display A; to user, receive feedback vector X,
7 fori=1,...,mdo
8 Feedback:

_ [1 ifitem a; was clicked on
%= { 0 otherwise

0 end update(SPB;, z;)
10 end

11 —

Usually!, the fraction of users who select at least one item
is smaller for the independent solution than for the greedy
solution. Thus, in the long run, RBA is usually better than
IBA. However Kohli, Salek, and Stoddard (2013) showed in
their simulations that /BA learns faster at the beginning (the
fraction of abandonment decreases faster than with RBA),
which is an important feature for RS.

In both approaches all m single-play bandit algorithms
are (almost) independent from one another. At each time ¢,
each bandit learns about one item only. Thus, we can only
expect that the overall method converges when all m single-
play bandit algorithms have converged, which might yield
an unnecessary large regret. On the contrary, the multiple-
play bandit algorithm presented below manages all m items

'This is generally true, in some cases counter-examples can be
cooked where the probability of click on the independent solution
is higher.

Algorithm 3: Exp3.M

Subalgorithm 1: Dependent Rounding

1 Init:py = (%,..., %) eRX

2 for each time t > 1 do

e draw A; c {1,..., K} at random such that
Plie A]=p;sforalli=1,... . K

* submit A; to the user and receive rewards X; ;
for all 7 € A,
e compute g1 € RE as -
Pi,t exp(nXit) (1
Yicj<r Pt exp(n X 1)

- <,
where X ; = ﬁliEAt

Git+1 =M

« update: compute p;,; € R¥ by

pit+1 = min{Cg 11,1} (2)
where C'is such that ¥, min{Cgq; ;;1,1} =m

3 end

simultaneously, hence it should reach a solution much faster.

3.3 Exp3.M

The Exp3.M algorithm, which we state as Algorithm 3 be-
low, is a recent bandit algorithm specifically designed to ad-
dress the multiple-play case. Its target is the independent so-
lution defined in Section 2. It was first proposed and theoret-
ically studied by Uchiya, Nakamura, and Kudo (2010). More
recently Bubeck and Cesa-Bianchi (2012) analyzed a gener-
alization of this algorithm for a wide class of complex bandit
problems known as combinatorial bandits. In this section we
describe the Exp3.M algorithm and our adaptation of some
components in order to allow the readers to implement effi-
ciently this algorithm.

Main mathematical intuitions. The Algorithm 3 relies
on the online mirror descent principle, a general methodol-
ogy to minimize regret in online convex optimization. More
precisely, Algorithm 3 can be seen as a particular case of the
Online Stochastic Mirror Descent algorithm of (Bubeck and
Cesa-Bianchi 2012, Sections 5.3 and 5.4) used with the neg-
ative entropy function F(p) = Y5 (p; log(p;) - p;) on the
convex set C,,, = {p € [0,1]% : ¥, p; = m}. Indeed, steps
(1) and (2) of Algorithm 3 are equivalent to the two online
mirror descent updates:

VF(qu1) =VF(pe) + UXt

Pe+1 = argmin Dp(p, ge1)
peCm

where D (p,q) = £, (pilog(pi/¢:) + qi - ps) is the Breg-
man divergence associated to the function F'. In other words,
to compute the new vector p;.1, the Exp3.M algorithm starts
from p;, then moves along the direction of the estimated re-
ward vector X; = (X;)1<i<k, and finally projects it back
onto the convex set C,,.

70

1 Input : Vector p € R of probabilities with Zfil pi=m
2 Output : Subset of [K] with m items
3 while there is an it with 0 < p; < 1 do

— Choose distinct ¢, j with0 < p; <1,0<p; <1

- Set o =min{1 - p;,p;} and § = min{p;, 1 - p;}
- Update p; and p; as

(pi,15) ={

4 end
sreturn {i:p;=1,1<i< K}

(pi + . p; — @) with probability -2
(pi — B, pj + B) with probability P

Efficient implementation. As explained below, the pro-
posed implementation requires only O(K log K') elemen-
tary operations (flops) at each time t. Two points can be
highlighted:

* There are several ways to draw a set A; c {1,..., K} at
random in order that P[i € A;] =p; foralli=1,..., K.
A naive approach consists in noting that p, € C,, can
be decomposed as a convex combination of the form
Y aaaly (where the subsets A c {1,..., K} have car-
dinality m), so that it is enough to draw a set A at random
with probability a 4. Unfortunately, the computational
complexity of this step would be at least of the order of
(ffl) flops. Instead we use the Dependent Rounding func-
tion(Subalgorithm 1) designed by Gandhi et al. (2006)
and Uchiya, Nakamura, and Kudo (2010) since it only re-
quires O(K) flops.

e The second issue is how to compute the numeri-
cal constant C' defined implicitly by the equation
YK min{Cq; 1,1} = m. It turns out that after sorting
the components ¢; .1, % = 1,..., K, in decreasing order,
this problem boils down to successively solving elemen-
tary one-variable linear equations of the form:

K
k+ Z Cv;=m, withC €[1/vg, 1/vgs1]

i=k+1

where v1 > v > ... > vk are the values g; ;.1 sorted
in decreasing order. The overall associated computational
complexity is thus only of order O(K log K).

Theoretical guarantees. Uchiya, Nakamura, and
Kudo (2010) proved that Exp3.M has a regret of
O(y/mTKlog(K[m))) if the rewards are defined by

+ = Yieat X (total number of clicks); see also Theo-
rem 5.8 of Bubeck and Cesa-Bianchi (2012). This regret
bound improves by a factor of \/m on the regret bound
we could derive for /BA combined with m instances of the
Exp3 algorithm.

4 Evaluation

Experimental framework. To evaluate the adapted im-
plementation of the Exp3.M algorithm and compare it to

o
©

o
@

Optimal solution
R Independent-optimal solution
Sl IBA e-greedy
RBA e-greedy
-=- IBAExp3
- RBAExp3
— EXP3_M

°
<

Fraction of Relevant Sets (1 - Abandonment)

0.6
1000 5000 10000 50000
Time Steps

100000

Figure 1: MovieLens dataset with relevance threshold = 2

state-of-the-art methods, we carried out several experiments
with the MovieLens-100 and the Jester datasets which are
studied in the paper of Kohli, Salek, and Stoddard (2013).

The first dataset, MovieLens-100, contains 943 users who
rated 100 movies. If a movie is not rated by a user, it is con-
sidered as not liked. A movie can be rated between 1 (bad)
and 5 (good). To translate these rates into user clicks, Kohli,
Salek, and Stoddard (2013) chose to set up a threshold of
relevance which can be set at different values. In their exper-
iments, they used two values: 4 and 2. When the threshold
is 4, for a given user, all the movies that have rates strictly
greater than 4 are considered as relevant. The same method
is applied when the threshold is set to 2.

The Jester dataset contains 25000 users who rated 100
jokes. If a joke is not rated, it is considered as not relevant.
A joke can be rated between -10 (not funny) and 10 (very
funny). Kohli, Salek, and Stoddard (2013) used the thresh-
old of relevance 7 to identify relevant recommendation.

To simulate the online aspect of RS, at time ¢, one user
is chosen randomly and m=5 documents are recommended
to him. Moreover, the chosen user is considered as a new
user. The user is said to have click through an item only if
the associated rate is strictly greater than the threshold. If
the user clicks on one document or more, we obtain Z; = 1,
otherwise Z; = 0. Our objective is to maximize the sum of
Z;, 1.e., minimize abandonment as described in Section 2.
Each experiment is carried out on a time interval of length
T = 100000. The final results are arithmetic averages of the
results of 200 Monte-Carlo experiments. Every 1000 steps,
the average of Z; on the past 1000 rounds is displayed.

To get a fair comparison of the multiple-play bandit algo-
rithm Exp3.M with RBA and IBA, we choose to implement
them with the Exp3 algorithm (Auer et al. 2002) and the e-
greedy algorithm (Auer et al. 2002).

With the Exp3 algorithm, a probability of 1/K is ini-
tially allocated to each item. According to these probabili-
ties, an item is randomly recommended. Based on the user-
feedback, probabilities are updated more or less aggressively
depending on a parameter 7). We chose to use the Exp3 algo-
rithm because it is the algorithm we used to compare theo-
retically Exp3.M with RBA and IBA. The value of the 7 pa-
rameter needs to be tuned. For this, we tested a grid of values
2" with i € [-7,-6,...,0] and we chose the value with the
best compromise between the learning rate and the average
value of abandonment at the end of experiments. The value

71

Fraction of Relevant Sets (1 - Abandonment)

Figure 2: MovieLens dataset with relevance threshold = 4

Fraction of Relevant Sets (1 - Abandonment)

o
o
o

o
=
&

»— Optimal solution
— Independent-optimal solution
IBA e-greedy
RBA e-greedy
-=- IBAExp3
- RBAExp3
— EXP3_M

0.55

5000

10000
Time Steps

0.5

0.45

0.35

»*— Optimal solution

— Independent-optimal solution

IBA e-greedy
RBA e-greedy
== IBAExp3
- RBAExp3
— EXP3_M

5000

10000

Time Steps

Figure 3: Jester dataset with relevance threshold = 7

of 1 has been tuned for RBA and /BA independently. We used
n = 275 for both approaches.

The second one, the e-greedy algorithm, adds a degree of
randomness for the chosen item. At time ¢, a uniformly ran-
dom item is recommended with a probability of € or, with
a probability of (1 — ¢), the item with best CTR is recom-
mended. This algorithm is the subroutine used in RBA and
IBA that gives the best results in the paper by (Kohli, Salek,
and Stoddard 2013). In their paper, the authors indicate that
€ = 0.05 give the best average during their initial tests.

The Exp3.M algorithm also needs to be tuned. Using the
same method as for the Exp3 algorithm, we chose) = 275.

Our experimental results are displayed in Figures 1, 2 and
3. In these Figures, we can observe the optimal solution and
the independent solution. The greedy solution is the same as
the optimal solution in our experimentation. So all RBA ap-
plications target the optimal solution. /BA applications and
the Exp3.M algorithm aim at the independent solution. The
difference between the independent solution and the opti-
mal solution is small (see Figures 2 and 3), and is about 1%.
However, in Figure 1, this difference is about 4%.

Results. Let us first compare the Exp3.M algorithm with
state-of-the-art methods. The Exp3.M converges to equiv-
alent values than the IBA-e-greedy approach, the state-of-
the-art method with the best learning rate. Furthermore,
the Exp3.M algorithm learns faster. To highlight the learn-
ing rate improvement, we use the one-sided version of the
Wilcoxon test (see Table 1). The Exp3.M algorithm learns
1.5 - 6 times faster than state-of-the-art methods. To assess
the improvement of the learning rate, we compare the num-

95 % 98 %

collection approach p-value p-value

IBA-Egreedy 0.054 0.0012
MovieLens IBA-Exp3 4.2e-09 <2.2e-16

threshold 2 | RBA-Egreedy 2.9e-13 2.9e-15
RBA-Exp3 <2.2e-16 || <2.2e-16

IBA-Egreedy 1.0e-08 0.0016

MovieLens IBA-Exp3 9.4e-15 7.6e-07

threshold 4 | RBA-Egreedy || <2.2e-16 1.0e-10

RBA-Exp3 <2.2e-16 1.1e-07

IBA-Egreedy 8.8e-06 8.7e-09

Jester IBA-Exp3 2.4e-14 1.9e-14
threshold 7 | RBA-Egreedy || <2.2e-16 || <2.2e-16
RBA-Exp3 <2.2e-16 || <2.2e-16

Table 1: Learning rate improvement: One-sided Wilcoxon
test. Alternative hypothesis: the Exp3.M algorithm learns
faster.

collection approach ratio (95%) | ratio (98%)
MovieLens | IBA-Egreedy 1 3
IBA-Exp3 1.5 2
threshold 2 | RBA-Egreedy 2 2
RBA-Exp3 2 1
MovieLens | IBA-Egreedy 7 —
IBA-Exp3 — —
threshold 4 | RBA-Egreedy — —
RBA-Exp3 2 —
Jester IBA-Egreedy 1.5 3
IBA-Exp3 1.5 2
threshold 7 | RBA-Egreedy 2.5 6
RBA-Exp3 3 4

Table 2: Approximate ratios between the number of steps re-
quired to reach 95% and 98% of the independent solution by
state-of-the-art methods and the number of steps required to
reach 95% and 98% of the independent solution by Exp3.M.

ber of steps required by curves in Figures 1, 2 and 3 to reach
95% and 98% (see Table 2).

On the other hand we compare the implementation of RBA
and /BA with the e-greedy algorithm, as implemented in the
paper by Kohli, Salek, and Stoddard, with our implemen-
tation with the Exp3 algorithm. The RBA-Exp3 has a pro-
portion of (1 - abandonment) greater than RBA-Egreedy but
only after approximately 4000 time steps for Movielens and
10000 time steps for Jester. Regarding the IBA-Exp3 ap-
proach and IBA-e-greedy approach, performances of both
implementations are very close in Figures 1, 2 and 3.

In a long run, the RBA-Exp3 approach is still the best. In
Figure 1, the RBA-Exp3 approach outperforms the indepen-
dent solution after 8000 time steps, and after approximately
50000 steps in Figure 3. In Figure 2 the RBA-Exp3 approach
does not outperform the independent solution, but it is the
only one approach capable of reaching 98% of the indepen-
dent solution on average. Nevertheless its learning rate is
slower than /BA approaches and the Exp3.M algorithm.

5 Conclusion

We have assessed a bandit algorithm designed specially for
the multiple-play context, such as in recommender systems:

72

Exp3.M. Usually state-of-the-art approaches use as many
bandits as items to recommend. By managing all items si-
multaneously, the Exp3.M algorithm converges to equivalent
values and learns significantly faster (about 3 times) than the
state-of-the-art method with the best learning rate, IBA. The
experiments were conducted on two benchmark datasets.

The Exp3.M is designed to maximize the sum of clicks.
So, when minimizing abandonment is expected, Exp3.M
looks for a suboptimal solution. We have shown that the RBA
approach with a careful adaptation we propose can be more
interesting in the long run. In future work we plan to investi-
gate about an adaptation of Exp3.M capable of targeting the
greedy solution, like RBA does.

References

Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E. 2002.
The nonstochastic multiarmed bandit problem. SIAM Journal on
Computing 32(1):48-77.

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time anal-
ysis of the multiarmed bandit problem. Machine learning 47(2-
3):235-256.

Bubeck, S., and Cesa-Bianchi, N. 2012. Regret analysis of
stochastic and nonstochastic multi-armed bandit problems. CoRR
abs/1204.5721.

Chen, H., and Karger, D. R. 2006. Less is more: probabilistic mod-
els for retrieving fewer relevant documents. In 29¢h international
ACM SIGIR conference on Research and development in informa-
tion retrieval, 429—436.

Chu, W.; Li, L.; Reyzin, L.; and Schapire, R. E. 2011. Contextual
bandits with linear payoff functions. In International Conference
on Artificial Intelligence and Statistics, 208-214.

Gandhi, R.; Khuller, S.; Parthasarathy, S.; and Srinivasan, A. 2006.
Dependent rounding and its applications to approximation algo-
rithms. J. ACM 53(3):324-360.

Hastie, T.; Tibshirani, R.; and Friedman, J. 2009. The Elements of
Statistical Learning. Springer, 2nd edition.

Kohli, P.; Salek, M.; and Stoddard, G. 2013. A fast bandit algo-
rithm for recommendation to users with heterogenous tastes. In
27th AAAI Conference on Artificial Intelligence, 1135-1141.

Li, L.; Chu, W.; Langford, J.; and E.Schapire, R. 2010. A
contextual-bandit approach to personalized news article recom-
mandation. In Proc. of 19th International World Wide Web Con-
ference, 661-670.

Radlinski, F.; Kleinberg, R.; and Joachims, T. 2008. Learning
diverse rankings with multi-armed bandits. In 25th International
Conference on Machine Learning, 784-791.

Ricci, F.; Rokach, L.; and Shapira, B. 2011. Introduction to recom-
mender systems handbook. In Recommender Systems Handbook.
Springer. 1-35.

Robertson, S. E. 1977. The probability ranking principle in ir.
Journal of documentation 33(4):294-304.

Sutton, R. S., and Barto, A. G. 1999. Reinforcement learning.
Journal of Cognitive Neuroscience 11(1):126-134.

Uchiya, T.; Nakamura, A.; and Kudo, M. 2010. Algorithms for
adversarial bandit problems with multiple plays. In Algorithmic
Learning Theory, LNCS Springer. 375-389.

Yue, Y., and Guestrin, C. 2011. Linear submodular bandits and
their application to diversified retrieval. In Advances in Neural
Information Processing Systems, 2483-2491.

