
Keyphrase Extraction and Grouping
Based on Association Rules

Xin Li and Fei Song
School of Computer Science, University of Guelph

Guelph, ON, Canada N1G 2W1
xli01@uoguelph.ca and fsong@uoguelph.ca

Abstract

Keyphrases are important in capturing the content
of a document and thus useful for many natural
language processing tasks such as Information Re-
trieval, Document Classification, and Text Summariza-
tion. Keyphrase extraction aims to identify multi-word
sequences from a collection of documents that more or
less correspond to keyphrases. In this paper, we propose
a new method for keyphrase extraction based on asso-
ciation rule mining. Redundant multi-word sequences
or synonymous phrases inevitably make up a big part
of the keyphrases extracted. With association rules, we
can also reduce the redundancy by grouping the related
keyphrases that have strong co-occurrence frequencies.
We further apply our keyphrase extraction and grouping
solution to Information Retrieval. By both distinguish-
ing and grouping keyphrases, we are able to achieve im-
proved performance for Information Retrieval.

Introduction
A keyphrase is a sequence of words that usually follows a
grammatical structure and describes a specific concept or
entity. For example, “hot dog” and “Apple store” cannot be
adequately represented by the individual words contained in
them separately. Keyphrase extraction is to identify multi-
word sequences that more or less correspond to keyphrases.
Since keyphrases help capture the content of a document,
they are useful for a wide range of natural language process-
ing tasks such as Information Retrieval (Croft, Turtle, and
Lewis 2010), Document Classification (Coenen et al. 2007),
and Text Summarization (Wan and Xiao 2010).

Although keyphrases can be manually identified by hu-
mans like what is commonly done by librarians for indexing
books and other references, it is, however, not feasible to do
the same for large document collections that are increasingly
available with the fast growth of the Internet and the Web. To
avoid such labor-intensive and time-consuming tasks, it is
strongly desirable to automate the extraction of keyphrases
so that we can have a scalable technique to keep up with the
fast growth of the document collections.

In addition to the extraction of keyphrases, there is also a
need to group them since some may have similar meanings.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For example, the full name of “Twentieth Century Fox” is
“Twentieth Century Fox Film Corporation”. For the NBA
player Michael Jordan, his full name is Michael Jeffrey Jor-
dan and sometimes he is just called Jordan. Finding ways to
group these keywords and keyphrases can help us not only
cut down the redundancy in text representation but also find
as many relevant documents as possible for applications like
Information Retrieval.

In this paper, we focus on the automatic extraction and
grouping of keyphrases along with keywords. Our main con-
tribution is to apply association rule mining for both tasks so
that they can be handled consistently in one framework. We
first identify frequent word sequences using the BIDE algo-
rithm (Wang and Han 2004), which are then strengthened
with a LocalMaxs method (Silva et al. 1999). After that, we
group synonymous keyphrases with association rules based
on co-occurrence frequencies. We further apply our solution
for keyphrase extraction and grouping to Information Re-
trieval so that we can evaluate its performance on a standard
dataset.

For the rest of the paper, we first introduce the related
work before presenting our new solutions to keyphrase ex-
traction and grouping. After that, we describe our experi-
mental results along with discussions. Finally, we conclude
our paper with a discussion on future directions.

Related Work
Keyphrase Extraction and Grouping
Keyphrase extraction has been studied for a long time and
we can broadly divide the current research into linguistic,
statistical, graph-based, and hybrid approaches. Linguistic
approaches use grammatical structures at morphological,
syntactic, and/or semantic levels to extract phrases. Statisti-
cal approaches use different association measures to identify
frequent phrases from a corpus. Graph-based approaches use
tokens and the co-occurrence relations and/or semantic rela-
tions among them to construct a graph for finding the most
likely phrases. Hybrid approaches are combinations of the
approaches mentioned above.

The advantage of linguistic approaches is that they can
generate less noisy output, but the disadvantage is that they
are not easily adaptable to a new domain, since the rules are
usually constructed manually for a specific domain.

181

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference

Statistical approaches, on the other hand, can be noisy,
but are usually domain-independent and scalable for large
datasets, since the process can often be automated through
machine learning techniques. Various association measures
have been proposed such as those based on term frequen-
cies, TF×IDF, co-occurrences, and term independence so
that keyphrases can be extracted by identifying word se-
quences that are strongly associated according to such mea-
sures.

One particular statistical method, called LocalMaxs,
is proposed by Silva et al. (1999) that uses the lexical
connection to extract keyphrases. The authors describes
the lexical connection as “glue” values, which are usually
strong within true phrases, such as “Twentieth Century Fox
Film Corporation” but weak within arbitrary multi-word
sequences such as “if his cats” and “I will be”. Based on
this intuition, they propose their LocalMaxs algorithm
as follows. Assume W is an n-gram w1w2...wn, Y is a
(n+1)-gram extended from W by adding another word
before, within, or after W, and X is a (n-1)-gram reduced
from W by removing a word. Then, W will be chosen as a
keyphrase if:

length(W) = 2 : g(W) > g(Y)

length(W) > 2 : g(X) ≤ g(W) and g(W) > g(Y)

g(.)

human

rights

human

rights in

human

rights in

east

human

rights in

east

Timor

human

rights in

east

Timor are

Figure 1: Example ”Glue” Values for Some N-grams

Figure 1 shows an example from Silva et al. (1999) that
clearly illustrates the idea of LocalMaxs. As can be seen, the
glue values for “Human Rights” and “Human Rights in East
Timor” are locally higher than their (n-1)-grams and (n+1)-
grams. As a result, they will be extracted as keyphrases. The
advantage of LocalMaxs is that it needs neither complex lin-
guistic information nor empirically obtained thresholds for
keyphrase extraction. In addition, it is a pure statistical ap-
proach that can be easily applied to different natural lan-
guages.

By grouping similar phrases into clusters, we can increase
the recall performance of a text processing system. Exist-
ing work is usually based on the fact that similar documents
tend to share many phrases in common. As a result, we can
use the co-occurrence patterns to group related phrases to-
gether. Zamir (1999) tries to cluster documents based on
the phrase clusters. Latiri (2012) applies phrase grouping

to query expansion, where a concept iceberg lattice is used
to find the maximal phrase groups that share the same doc-
uments. Kuhn et al. (2010) uses phrase clustering for sta-
tistical machine translation, where phrases are grouped ac-
cording to two types of similarity metrics: count-based and
edit-based. The former relies on the co-occurrence counts of
phrases, such as “law” and “court”, and the latter focuses on
the makeup of the phrases, such as “International Business
Machine” and “Business Machine”. They got a better result
for the count-based clustering, but also found that the result
can be unreliable when the training data is too small.

Association Rule Mining

Association rules can capture important relations between
variables in large databases, and mining association rules
is useful for a wide range of applications. Let I =
{i1, i2, . . . , in} be a set of items and D = {d1, d2, . . . , dm}
be a database of transactions where each di ⊆ I . Given two
itemsets: A ⊂ I , B ⊂ I , and A ∩ B = ∅, an associa-
tion rule of the form A⇒ B holds if it has a strong support
(≥ min sup) and a strong confidence (≥ min conf) where
support(A ⇒ B) equals to the probability of P(A ∪ B) and
confidence(A ⇒ B) equals to P(A|B) with respect to the
transactions in D.

To generate association rules, we normally need to iden-
tify all frequent itemsets (i.e., those with support values
≥ min sup). One popular solution is the Apriori algorithm
proposed by Agrawal and Srikant (1994), which first identi-
fies frequent 1-itemsets in a database and extends them with
a single item to get 2-itemsets. After that, it prunes those 2-
itemsets that do not satisfy the min sup value. Such a pro-
cess is repeated level-by-level until no frequent k-itemsets
can be found. The algorithm is costly in both memory and
time in that it needs to generate and maintain a large number
of candidate itemsets and repeatedly scan the database for
counting their frequencies.

To extract keyphrases, we actually need frequent se-
quences out of individual documents in a text collection so
that the word order can be represented and distinguished.
Fortunately, there is an efficient algorithm called BIDE (BI-
Directional Extension) (Wang and Han 2004) that allows us
to find all frequent sequences without the need to maintain
the large number of candidates along with two pruning pro-
cedures to optimize the search process. In fact, BIDE only
generates frequent closed sequences in order to reduce the
redundant frequent sequences. A frequent sequence is closed
if its support value ≥ min sup and no sequences that con-
tain it as a subsequence have the same support values. As
a result, we can cut down the redundancy of the shorter se-
quences that have the same support values of the related fre-
quent closed sequences.

Proposed Solution

In this section, we describe our proposed solution for
keyphrase extraction and grouping along with its application
to information retrieval.

182

Generating Keyphrase Candidates

The BIDE algorithm allows us to generate sequences with
gaps. For example, given the string “ABCDEFG”, a se-
quence can be “ACG” where there are gaps between A and
C and between C and G in the original string. To identify
keyphrases, we may need to skip some words in text, such
as extracting “pick up” from “pick it up”. However, most
keyphrases are noun phrases, for which we rarely skip words
in between. If the stop words like “it”, “of”, and “the” are
removed during text preprocessing, as is normally done for
many language processing tasks, even the case like “pick
up” will not need to skip any words. As a result, we simply
adapt the BIDE algorithm to extract only consecutive words
or ngrams as the sequences. This also helps improve the effi-
ciency since there is no need to skip any words in the search
process.

In addition, although frequent closed sequences help re-
duce the redundancy in text representation, we still need to
extract many frequent sequences for applications like infor-
mation retrieval. This is because a user may use different
frequent keyphrases in queries and if we only store frequent
closed sequences in the index, we will not be able to match
them with some of the frequent sequences in queries, result-
ing in low recall performance. Consequently, we also need
to extract frequent sequences along with the frequent closed
sequences using a BIDE-like algorithm. One main advan-
tage of such an algorithm is that it saves both memory and
time in generating frequent sequences since all sequences to
be examined are maintained in pseudo-projection databases
in the form of positions and offsets of the sequences in the
original database.

Frequent sequences are selected based on document fre-
quencies, measuring how often they occur across all docu-
ments in a database. They are sometimes not strong enough
to be keyphrases. For example, “able to find”, “fast enough”,
and “where is it” are frequent sequences, but they are not
normally considered as keyphrases. As a result, we need to
further differentiate frequent sequences by selecting strong
ones as keyphrases, as discussed in the following sub-
section.

Selecting Keyphrases

From frequent sequences, we further apply the LocalMaxs
method so that sequences with strong word associations are
selected as keyphrases. The method uses a “glue” value to
measure the strength of word associations. It starts with
the Symmetric Conditional Probability (SCP) between two
words x and y (Silva et al. 1999):

SCP (x, y) = p(x|y)p(y|x) = p(x, y)2

p(x)p(y)
(1)

where p(x|y) is the conditional probability of word x occur-
ring when word y appears, and p(x, y) is the joint probability
of words x and y occurring together.

To generalize the SCP to multi-word sequences, Fair
Dispersion Point Normalization is defined as the average

strength of splitting an n-gram at different points:

Avp =
1

n− 1

n−1∑
i=1

p(w1, ..., wi)p(wi+1, ..., wn) (2)

Using Avp, we can then get the generalized SCP for se-
quences with n ≥ 2 words:

SCP f(w1, w2, ..., wn) = p(w1, w2, ..., wn)
2/Avp (3)

In Huo (2012), another association measure is proposed
which normalizes the sequence probability by its nth root to
get the average word-level strength for a sequence:

seq p(w1, w2, ..., wn) =
n
√
p(w1, w2, ..., wn) (4)

Both SCP f and seq p can be used as the glue values g(.)
for the LocalMaxs method described the ”Related Work”
section.

Grouping Related Keyphrases
With the keyphrases selected by LocalMaxs, we can then
use them to group related frequent sequences based on an
Iceberg lattice that uses confidence values or co-occurrence
frequencies.

Grouping Based on Confidence Values An Iceberg lat-
tice provides an intuitive visualization in the form of a
hierarchical representation that shows the “includes” rela-
tionship among frequent sequences. As stated earlier, Lo-
calMaxs helps us to select strong frequent sequences as
keyphrases. However, some eliminated sequences may still
appear in documents and queries, and if we do not include
them in the index, we may fail to match them for informa-
tion retrieval. By grouping these frequent sequences with the
keyphrases selected via LocalMaxs, we can treat those se-
quences in each group as “synonyms” and thus increase the
recall performance for information retrieval.

Level 3

Level 2

Level 1

ABC:2

AB:6 AC:3 BC:5

A:10 B:20 C:8

NULL

Level 4

Figure 2: An Example Iceberg Lattice

An iceberg lattice is built from bottom up, but the search
for synonym groups is done from top down. As illustrated in

183

Figure 2, level 1 links NULL (the empty sequence) to all un-
igrams; level 2 links all unigrams to bigrams, and so on. The
top-down search looks for sequences that satisfy a minimum
confidence in order to form synonym groups. Also in Figure
2, we assume that sequences in boldface are selected by Lo-
calMaxs, which also includes all the unigrams for complete-
ness. Using the minimum confidence of 0.6, we will start
the search from the top node of ABC. We first search its
sub-sequences and check their confidence values relative to
ABC. Since AC is the only sequence that satisfies this min-
imum confidence, it is put into the same group with ABC.
Then, AC is checked against its sub-sequences to see if more
sub-sequences can satisfy the minimum confidence, and so
on.

Grouping Based on Co-occurrence Frequencies Alter-
natively, we can group frequent sequences based on their co-
occurrence frequencies in the database. In TextRank (Mihal-
cea and Tarau 2004), the co-occurrence frequency is com-
puted within a window of maximum N words in a sen-
tence, where N is a user-defined parameter between 2 and
10 in their experiments. To use co-occurrence frequencies
to group frequent sequences, we compute the co-occurrence
frequency of two sequences at a document level and pro-
pose a more relaxed condition for merging sequences: any
two sequences that co-occur in a sufficient number of docu-
ments will be merged into one synonym group. More specif-
ically, given F (A) as the document frequency of sequence
A, U(A,B) as the co-occurrence frequency of sequences A
and B, and R as the user-defined ratio for grouping, A and
B can be put into one group if:

min(F (A), F (B))

F (A) + F (B)− U(A,B)
≥ R (5)

In Figure 3, we construct an example lattice using the
LATIMES dataset. Each node contains a frequent sequence
along with its document frequency. The nodes with circles
correspond to the keyphrases selected by LocalMaxs. When
we search the lattice from top down, “blood’s ability carry”
will be added to the group with “blood’s ability carry oxy-
gen” based on the above formula, but “blood’s ability” will
not be added since it does not meet the requirement above.

The advantage of co-occurrence frequencies is that by
having a high value between two sequences, they become
the “recommenders” to each other, thus helping us to con-
nect them together to improve both recall and precision for
an information retrieval system.

Application to Information Retrieval
To demonstrate the effectiveness of our keyphrase extrac-
tion and grouping method, we apply it to the task of infor-
mation retrieval. We follow the typical process of creating
the keyword index, including stopword removal, stemming,
and document frequency cutoff for the rare words. However,
instead of relying only on keywords, we use both keywords
and keyphrases in our index for an information retrieval sys-
tem.

With both keywords and keyphrases in the index, the
challenge is to match queries against the index to identify

blood’s ability carry oxygen
 5

ability carry oxygen
 6

carry oxygen
 19

oxygen
 441

blood’s ability carry
 5

blood’s ability
 6

ability carry
 28

blood’s
 15

 ability
 4770

carry
12031

Figure 3: An Example Co-occurrence Graph

relevant documents. Using only keywords, the matching is
straightforward: two words are either the same or different.
For keyphrases, however, the matching is a bit more com-
plicated: a piece of text can be matched only once or multi-
ple times, and for a matched sequence, we can use only the
sequence itself or also its subsequences, allowing overlaps
of the embedded words. This leads to a total of four differ-
ent variations as summarized in the following: (1) greedy
match without overlaps (GN); (2) greedy match with over-
laps (GO); (3) incremental match without overlaps (IN); and
(4) incremental match with overlaps (IO). By greedy match,
we try to search forward as far as possible for a sequence
that can match a keyphrase in the index. After that, we skip
beyond this sequence to search for the next match. For exam-
ple, given the string “ABCDEFGHI”, if “ABCD” is a longest
match, we will move to “E” in the string to search for the
next longest match. By incremental match, we only skip for-
ward by one word after a longest matched sequence and then
start searching for the next longest matched sequence. For
the example above, after the longest match of “ABCD”, we
will move to “B” in the string to search for the next longest
match. Without overlaps, only the longest matched sequence
is used for retrieval. With overlaps, all the sub-sequences of
the longest matched sequence are also used for retrieval if
they are matched against certain keyphrases in the index as
well.

To incorporate keyphrase grouping into an information re-
trieval system, we need to select a representative keyphrase
for each synonym group so that a hashmap can be used
to map all keyphrases to their corresponding representa-
tive keyphrases. To help identify a unique representative for
each group, we first search for the longest keyphrases, and
if there are more than one of them, we try to find the one
that is located the earliest in the alphabetical order. After
that, we merge all statistics (such as TF’s and IDF’s) for
the keyphrases of the same groups and store them with the
related representative keyphrases in the index. During re-
trieval, all matched keyphrases will be mapped to their rep-

184

resentative keyphrases so that the merged statistics can be
used for computing TF×IDF weights and cosine similari-
ties. Thus, keyphrase grouping essentially allows us to con-
nect more keyphrases together so that we can potentially en-
hance the recall performance of the related information re-
trieval system.

Experimental Results and Discussions
By including both keywords and keyphrases in the index, we
can evaluate the impact of keyphrase extraction and group-
ing for information retrieval using the common measures on
the standard datasets.

Datasets and Evaluation Metrics
Our keyphrase grouping algorithm has the time complexity
of O(n2). Due to the time-consuming process, we choose
only the LATIMES dataset from TREC5 document collec-
tions for our experiments. The dataset has 131,896 docu-
ments, with an average of 526.5 words per document. For
evaluations, we use the query sets from TREC 6, 7, and 8 in
the form of 3-fold cross validation: i.e., two query sets for
training and one for testing, and we repeat the process three
times for the three folds.

Following the recent practice for ad hoc information re-
trieval, we use the Mean Average Precision (MAP) as the
composite measure for evaluating the performance of an
information retrieval system. It sums each query’s Aver-
age Precision (AP) and divides the total by the number of
queries. More specifically, MAP is defined as follows:

MAP = 1/N

N∑
j=1

(1/Qj

Qj∑
i=1

P (rel = i)) (6)

where Qj is the number of retrieved relevant documents for
query j; N is the number of queries; and P (rel = i) is the
precision at the ith relevant document.

Baseline for Information Retrieval
For all of our information retrieval systems, we follow the
vector space model and use TF×IDF weights and cosine
similarities to rank the retrieved documents for a query. For
the baseline system, we only use frequent keywords (i.e., no
keyphrases) in the index. Through the three-fold cross val-
idation, we find that a threshold of 4 gives the best MAP
result of 0.1256. As a result, we only keep the keywords that
occur in four or more documents as frequent keywords in all
of our information retrieval systems.

Keyphrase Matching Based on LocalMaxs
As described earlier, there are two glue functions (SCP f
and seq p) that can be used by the LocalMaxs algorithm to
select strong keyphrases. By including keyphrases in the in-
dex and using one of the four keyphrases matching methods
described in the previous section, we get four different in-
formation retrieval systems along with their MAP results in
Table 1.

Except for GN, the other three matching methods all did
better than the baseline. The IN method, corresponding to

”Incremental Match without Overlaps”, did the best with the
MAP values of 0.1532 for the SCP f measure and 0.1535
for the seq p measure, both of which are significantly bet-
ter than the baseline at 95% confidence level. In terms of
the number of keyphrases selected, the LocalMaxs based on
seq p has more than that based on SCP f : 4,577,454 vs.
3,550,612, respectively, implying the SCP f measure tends
to be more selective in choosing keyphrases.

Table 1: Keyphrase Selection Based on LocalMaxs
Matching LocalMax(SCP f) LocalMaxs(seq p)

GN 0.1046 0.0932
GO 0.1498 0.1506
IN 0.1532 0.1535
IO 0.1501 0.1492

Keyphrase Matching Based on Lattice Grouping
To group frequent sequences with the related keyphrases se-
lected by LocalMaxs, we set the confidence value to 0.95 for
our lattice-based grouping method.

Table 2: Results Based on Lattice Grouping
Matching LocalMax(SCP f) LocalMaxs(seq p)

GN 0.1018 0.0919
IN 0.1524 0.1522

As can be seen in Table 2, the performance is decreased
slightly for both GN and IN matching methods. By exam-
ining the individual results, we find that the ranking of the
retrieved documents gets worse for some queries, indicat-
ing that the lattice grouping may introduce noise in merg-
ing frequent sequences into groups. Note that the overlapped
matching methods are not suitable for keyphrase grouping,
since the short sequences will be over-counted in the pro-
cess.

Keyphrase Matching Based on Co-occurrence
Frequencies
In addition to the lattice-based grouping, we can add the
grouping based on co-occurrence frequencies. We also set
the confidence level to 0.95, which is comparatively strong.
As shown in Table 3, the performance for IN is improved
significantly over that for IN using LocalMaxs alone. Thus,
keyphrase extraction and grouping together is more effec-
tive than the other systems we developed for information
retrieval.

Table 3: Results Based on Co-occurrence Grouping
Matching LocalMax(SCP f) LocalMaxs(seq p)

GN 0.1093 0.0983
IN 0.1586 0.1547

Encouraged by the results above, we try to decrease the
confidence value, but unfortunately, the performance starts

185

to decrease as well, indicating that weak confidence levels
are not suitable for information retrieval.

Conclusions and Future Work
In this paper, we focused on the effective ways for keyphrase
extraction and grouping based on association rule min-
ing along with its application to information retrieval. For
keyphrase extraction, we first adapt the BIDE algorithm for
generating frequent ngrams which dramatically reduces the
memory space by avoiding enumerating all possible ngrams
and at the same time speeds up the process by pruning the
search space.

To extract meaningful keyphrases from the frequent
ngrams, we further apply the LocalMaxs method that does
not require linguistic knowledge and is also language inde-
pendent. However, although LocalMaxs helps extract high
quality keyphrases, it is a bit too aggressive in that some
useful keyphrases may be filtered out, making it difficult to
match the related keyphrases for information retrieval. Con-
sequently, we explore the use of lattice structures and co-
occurrence frequencies for keyphrase grouping so that the
frequent ngrams generated by BIDE can be merged with
the keyphrases extracted by LocalMaxs to form synonym
groups. All keyphrases in a related group can be matched
against each other for information retrieval.

To demonstrate the effectiveness of our solution for
keyphrase extraction and grouping, we apply it to informa-
tion retrieval. With keyphrases, there can be different ways
to match them in documents and queries. We tested our im-
plementations on the standard TREC datasets. Our results
indicate that adding frequent ngrams improves the retrieval
performance significantly over the baseline made of key-
words only. In addition, the performance can be further im-
proved by selecting high quality keyphrases with the Lo-
calMaxs method. Finally, by merging related keywords and
keyphrases into synonym groups, we can increase the MAP
value to 0.1586 from the baseline result of 0.1256, demon-
strating the benefits of keyphrase extraction and grouping
for information retrieval.

For keyphrase extraction, it would be useful to integrate
linguistic knowledge, such as Part-of-Speech (POS) tags
during data preprocessing and test on our datasets to see if
the performance can be further improved.

In our experiments, we use a simple mechanism for
keyphrase grouping which relies on the co-occurrence fre-
quencies of keyphrases. For future work, we could explore
other semantic relations among keyphrases to enhance the
quality of keyphrase grouping, such as those used in PageR-
ank, Wikipedia, and WordNet. In particular, we could bring
Wikipedia’s semantic relations into groups right after the
LocalMaxs is applied to keyphrase extraction.

In our experiments, we used the vector space model
for information retrieval. It would be interesting to apply
keyphrase extraction and grouping to other retrieval mod-
els such as language models. Due to the time consuming
process of our solution for keyphrase grouping, we only
tested our solutions on a subset of the whole TREC4&5
datasets. With further improvements on the efficiency of our
keyphrase grouping algorithm, we could test our system on

the whole TREC4&5 datasets to see if our results can be
scaled up for larger datasets.

References
Agrawal, R., and Srikant, R. 1994. Fast algorithms for min-
ing association rules. In Proceedings of the 20th Conference
on Very Large Data Bases, 387–499.
Coenen, F.; Leng, P.; Sanderson, R.; and Wang, Y. J. 2007.
Statistical identification of key phrases for text classification.
Machine Learning and Data Mining in Pattern Recognition
4571:838–853.
Croft, W. B.; Turtle, H. R.; and Lewis, D. D. 2010. The use
of phrases and structured queries in information retrieval. In
Proceedings of the 14th SIGIR Conference, 32–45.
Huo, W. 2012. Automatic multi-word term extraction and
its application to web-page summerization.
Kuhn, R.; Chen, B.; Foster, G.; and Stratford, E. 2010.
Phrase clustering for smoothing tm probabilities or how to
extract paraphrases from phrase tables. In Proceedings of
the 23rd Internationall Conference on Computational Lin-
guistics, 608–616.
Latiri, C. C.; Haddad, H.; and Hamrouni, T. 2012. Towards
an effective automatic query expansion pprocess using an
association rule mining approach. Journal of Intelligent In-
formation Systems 39(1):209–247.
Mihalcea, R., and Tarau, P. 2004. Textrank: Bringing order
into texts. In Proceedings of EMNLP, 404–411.
Silva, J. F. D.; Dias, G.; Guillore, S.; and Lopes, J. G. P.
1999. Using localmaxs algorithm for the extraction of con-
tiguous and non-contiguous multiword lexical units. Lecture
Notes in Computer Science 1695:113–132.
Wan, X., and Xiao, J. 2010. Exploiting neighbor-
hood knowledge for single document summarization and
keyphrase extraction. ACM Trans. on Information Systems
28(2).
Wang, J., and Han, J. 2004. Bide: Efficient mining of fre-
quent closed sequences. In IEEE Proceedings of 20th Inter-
national Conference on Data Engineering, 79–90.
Zamir, O. E. 1999. Clustering Web Documents: a Phrase-
Based Method for Grouping Search Engine Results. Ph.D.
Dissertation, University of Washington.

186

