
On-Line Learning of Multi-Valued Decision Diagram

Jean-Christophe Magnan and Pierre-Henri Wuillemin
Laboratoire d’Informatique de Paris VI – UPMC – France

Abstract
In the domain of decision theoretic planning, the fac-
tored framework (Factored Markov Decision Process, FMDP)
has produced optimized algorithms using Decision Trees
(Structured Value Iteration (SVI), Structured Policy Iteration
(SPI)) or Algebraic Decision Diagrams (Stochastic Planning
Using Decision Diagrams (SPUDD)). Since it may be difficult
to determine the factored models of such complex stochastic
environments, the framework SDYNA, which combines plan-
ning and learning algorithms using structured representations
was proposed. Yet, the state-of-the-art algorithms for incre-
mental learning, for structured decision theoretic planning or
for reinforcement learning require the problem to be specified
only with binary variables and/or use data structures that can
be improved in term of compactness. Recently, Multi-Valued
Decision Diagrams (MDDs) were proposed as more efficient
data structures and planning algorithms dedicated to these
data structures were provided. The purpose of this article is
to study how to incrementally learn such compact factored
models on discrete domains. Its main result is an online learn-
ing algorithm for MDDs that shows significant improvements
both in term of quality of the learned model and in time. Fi-
nally, we show that our algorithm leads to a SDYNA frame-
work for simultaneous learning and planning using MDDs.

Introduction
In decision-theoretic planning, the Markov Decision Process
(MDP) is a widely used framework that formalizes the inter-
actions of an agent with a stochastic environment. A MDP
is commonly used to find an optimal policy, i.e. the best ac-
tion for the agent to do in each configuration of the envi-
ronment (state). Two algorithms named Value Iteration (VI
(Bellman 1957)) and Policy Iteration (PI (Howard 1960)) ex-
ploit such models to find optimal policies. Each step of these
algorithms has a linear time complexity in the size of the
state space. However, for realistic problems, the size of the
state space tends to be very large. State spaces are indeed
often multi-dimensional and then grow exponentially as the
number of variables (dimensions) characterizing these prob-
lems increases. VI and PI inevitably fall under the famous
Bellman’s “Curse of Dimensionality” (Bellman 1957). It be-
comes unfeasible to find the optimal solution for realistic
problems.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Many relevant solutions have emerged to handle this
growth: for instance by formalizing abstractions in the state
space. Through these abstractions, large sets of states in
which the agent mostly behaves the same are aggregated.
As a result, the number of states to visit during an itera-
tion of VI or PI drastically diminished. Working on this idea,
Factored MDPs have proven to be efficient. Structured VI
(SVI) and Structured PI (SPI) (Boutilier, Dean, and Hanks
1999) proposed to employ Decision Trees (DTs) as a base
for the abstraction process. More recently, Stochastic Plan-
ning using Decision Diagrams (SPUDD, (Hoey et al. 1999))
and Multi-valued Decision Diagrams (SPUMDD, (Magnan
and Wuillemin 2013)) achieved better results using Alge-
braic Decision Diagrams (ADDs) or Multi-Valued Decision
Diagrams (MDDs).

These algorithms involve to know as a prior the fac-
tored model of the problem to be solved. In the Reinforce-
ment Learning framework, the agent has the charge to dis-
cover the world and to learn by itself the optimal policy.
Model-based approaches such as DYNA and DYNA-Q (Sut-
ton 1990) propose that the agent iteratively learns a descrip-
tion of the world as a Markov Decision Process and then
apply either VI or PI to come up with an optimal policy.
Of course, these algorithms face difficulties when scaling
up and it becomes necessary to provide the ability to handle
factored representations ((Strehl, Diuk, and Littman 2007;
Chakraborty and Stone 2011)). With SPITI, Degris, Sigaud,
and Wuillemin(2006a) extends the framework to factored
representations using DTs. An incremental learning algo-
rithm ITI (Utgoff, Berkman, and Clouse 1997) is used to
learn the DTs defining the MDPs as the agent experiments the
world. DTs are however less efficient in terms of size and, as
a consequence, of handling than ADDs or MDDs (see Fig-
ure 1). Hoey et al.(1999) and Magnan and Wuillemin(2013)
provide planning algorithms using these data structures.

Learning such models is difficult, particularly for systems
with a huge number of states. It may even be impossible to
build the complete database needed to elaborate these mod-
els. Generally speaking, there are many cases where an on-
line (or incremental) learning process is more appropriate.
To the best of our knowledge there is no known algorithm for
incremental learning of Multi-Valued Decisions Diagrams.
The main contribution of this paper is an algorithm address-
ing this issue. This article is organized as follows: Section

576

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference

2 covers the frameworks for incremental learning of com-
pact and factored models. Section 3 describes IMDDI, our
proposition to incrementally learn MDDs. Finally, the exper-
imentations in Section 4 illustrate the efficiency of IMDDI
both in terms of quality of the learned models and in terms
of duration of a learning step.

S

E

1
2
3
4
5
6

1 2 3 4 5

(a)
X3

X2

X2

X1

X1 X1

Y 3

Y 3 Y 3 Y 3 Y 3

Y 2

Y 2 Y 2 Y 2 Y 2 Y 2 Y 2

Y 1 Y 1 Y 1 Y 1 Y 1

Up RightDown Left

(b)

X

Y Y Y Y

Up RightDown Left

4 1 3 2

15 3 4 42 1 6

5

6

6
6

2

(c)
Figure 1: Same optimal Policy for going from S to E in the maze
(a) represented by (b) a Arithmetic Decision Diagram (ADD) and
(c) by a Multi-Valued Decision Diagram (MDD). The compactness
as much as the readability of the solution are clearly improved with
MDDs.

Learning Factored Models while planning
A Factored Markov Decision Process (FMDP, (Puterman
2005)) is a discrete time control process that models a
stochastic system in which an agent sequentially performs
actions. A set of variables X = {X1, X2, . . . , Xn} is used
to unequivocally characterize the states of this system. Per-
forming an action a in any state x triggers a transition from
x to a new state x′. The transition probability P (x′|a,x) de-
scribes this evolution. The reward function r(x′, a,x) eval-
uates the relevance of this transition. The objective is to find
a policy that maximizes the total expected reward. Boutilier,
Dean, and Hanks(1999) and Hoey et al.(1999) show that fac-
tored representations of the transition probabilities and re-
ward function using Decision Trees (DTs) or Algebraic De-
cision Diagrams (ADDs) are effective. They provide modi-
fied resolution algorithms which increase the size of solv-
able problems (see Figure 1).

Planning while Learning (SDYNA)
The representation of the world (reward function and tran-
sition probabilities) may not be known because of a lack of
data (the state space has not been explored yet) or because
of the nature of the data (typically for online process such
as stock market prediction). This remark leads to the imple-
mentation of online algorithms that have to take into account
each new observation ξ. The reinforcement learning frame-
work has proposed to learn these functions by trial-and-error
during the experiment (Dyna, Dyna-Q (Sutton 1990)). In
(Degris, Sigaud, and Wuillemin 2006b), the general archi-

tecture SDYNA integrates planning, acting and learning us-
ing factored representations as described in Algorithm 1.

Algorithm 1: SDYNA global architecture

1 foreach time step t do
2 s← current state;
3 a← πt(s); // πt is the current strategy
4 Perform a, observe s′ and r and define ξ = (s, a, s′, r);
5 Incremental “factored” learning from observation ξ;
6 “Factored” planning new πt+1;

In order to implement a SDYNA architecture, one has
to choose a structured representation of the problem (DT,
ADDs, etc.) and to provide an optimal policy search algo-
rithm and an incremental learning algorithm for the data
structure. The following subsections will cover learning al-
gorithm for factored models.

Incremental Tree Induction (ITI)
There are many algorithms to learn a tree from a set of obser-
vations : CART (Breiman et al. 1984), C4.5 (Quinlan 1993),
etc. These approaches require to have the complete set prior
to the learning. They are not able to provide adaptation of the
tree to any new observation. A windowed approach could be
implemented but it would require to rebuild the tree from
scratch for each new observation. ITI is an algorithm that
fulfill this need of online adaptation to new observations.

In ITI, each node N of the learned DT contains a set of
observations ΩN that are compatible with the instantiation
in N . For instance, the sets of observations installed in the
leaves of a tree form a partition of the set of all the observa-
tions Ω. Then adding a new observation ξ means to update
any set compatible with ξ and then to use it to update the
structure of the tree if needed. The structure depends itself
on these sets of observations : an internal node N contains
the “best” (not yet instantiated) variable that separates the
set of observations ΩN . To select the variable, ITI uses the
Information Gain Ratio as a criterion and compare the dif-
ferent distributions created by installing each free variable
in the node. We refer the readers to (Utgoff, Berkman, and
Clouse 1997) for a much more complete presentation of this
algorithm.

Learning MDDs
Several articles address the problem of learning Multi-
Valued Decision Diagrams. Oliver(1993) proposes to firstly
build a tree using the state-of-the-art algorithms (CART,
C4.5). Then this tree is transformed in order to facilitate the
search for isomorphic subtrees. Eventually, these subtrees
are merged using the Minimum Description Lenght princi-
ple as a criterion. Kohavi and Li(1995) directly builds an
ordered tree and then reduced it using its own set of rules.

These algorithms do not cope with the issue of online
learning since the trees are learned from fixed databases.
Therefore, adding new observations to the database demands
to learn a new whole tree. Hence these approaches can not be
good candidates for a SDYNA architecture. Being able to re-
view the tree, and if and only if necessary its reduced version
the MDD, without having to go through the whole database

577

X2

X1

12

∗

∗ 2
3

Figure 2: An MDD representing a probability distribution
P (Y |X1, X2). The leaves contain probability distributions for Y .
This MDD states that P (Y |X1 = 2) = P (Y |X1 = 1, X2 /∈
{2, 3}) and that P (Y |X1 /∈ {1, 2}) = P (Y |X1 = 1, X2 = 3).
Those equalities represent Context-Specific Independence in P
(Boutilier et al. 1996).

would be a great asset that has not been proposed yet to the
best of our knowledge. The next section covers our results
on that matter.

On-line Learning of Multi-valued Decision
Diagrams

In this section we describe IMDDI, a novel algorithm for the
incremental learning of MDDs. Without any loss of gener-
ality, this presentation will focus on the estimation of the
probability distribution of a multi-valued variable Y accord-
ing to a set of multi-valued variables X = {X1, . . . , Xn}
(see Figure 2). Indeed, learning the transition model of a fac-
tored MDP consists in learning several conditional probabil-
ity distributions (Boutilier, Dean, and Hanks 1999). More-
over, learning other functions such as the reward function is
done using very similar algorithms.

There are two major differences between a DT and an
MDD : first, an MDD is structured by a global order on the
variables. Variables must appear on each branch of the MDD
w.r.t this global order. This order has a large impact on the
compactness of the MDD. We call Ordered Decision Tree
(ODT) a DT with this constraint of a global order on the vari-
ables. Second, an MDD merges sub-trees together in order to
be reduced. The complexity of reducing an ODT T into an
MDD is O(|T | · log |T |) where |T | is the number of nodes in
T (Bryant 1986). Figure 3 depicts the transformation from a
DT into an MDD via an ODT. A first incremental algorithm to
learn MDD (named ITI+DD later) could be i) to simply use
ITI to learn the DT, ii) then to choose an order and to build
the ODT and finally iii) to build the MDD at each step as it
has been proposed for non incremental learning of MDDs by
(Oliver 1993). However the search for an optimum global
order is a NP-hard algorithm. Moreover, it is possible to just
update an estimation of an efficient global order. This is a
key point in our algorithm IMDDI : we propose a modified
version of ITI that handles an ordered decision tree instead
of a tree. Then, in a second part, whenever needed, the MDD
will be build from this ODT.

Z Y

Y Z

X

(a)

Z Z Z

Y Y

X

(b)

Z Z

Y Y

X

(c)
Figure 3: A probability distribution represented as (a) a DT, (b) an
ODT (X � Y � Z) and (c) an MDD (with the same order).

Incremental Induction of an Ordered Tree
IMDDI is based on a version of ITI but the main features have
been revised and are described in the following subsections:
how to select the variable that will be installed in a node;
how to incrementally integrate a new observation ξ and how
to update the structure w.r.t. this new observation.

Variable Selection As selection criteria, both G-statistic
(Mingers 1989) and χ2 statistic have no bias toward multi-
valued variable (White and Liu 1994). G and χ2 tests are
close when the size of the sample is big enough but (Dun-
ning 1993) argues thatG-statistic is superior to the χ2 statis-
tic for dealing with rare events.

Let N be the node on which we want to either install a
variable (if N is a leaf) or ensure that the current variable
is the most pertinent. Let ΩN be the set of associated ob-
servations on which we rely to perform our selection (see
below Algorithm 2 to understand how these databases are
extracted). Let VN be the set of variables that could be in-
stalled on node N . For each variable Xi ∈ VN , N keeps
a contingency table giving the samples size nxi,y for each
combination of Xi and Y values. The G-statistic is then
computed in the following way :

G(Xi) = 2 ·
∑

xi∈DomXi

∑
y∈DomY

nxi,y ln
nxi,y · |ΩN |
n.,ynxi,.

(1)

where n.,y =
∑
xi
nxi,y and nxi,. =

∑
y nxi,y .

To decide among every Xi which one should be install
as the test, IMDDI compares the p-values associated to these
computed G-statistics: variables with a high number of val-
ues tend to have a high G-statistic whereas variables with a
low number of G-statistic has a low score. The uses of p-
values avoids this bias towards multi-valued variables since
the p-values “normalizes” every G-statistics by integrating
degrees of freedom. Furthermore, as the χ2, the G-statistic
has an interesting feature : it can also be used as a pre-
pruning criterion in order to prevent the tree from growing
unreasonably. To sum up, the variable with the highest p-
value will be selected. If this p-value is higher than a fixed
threshold, we install that variable as a test for the node. If it
is lower than the threshold and node N is not a leaf, N is
turned into a leaf.

Adding a new observation ξ An observation ξ is an in-
stantiation of all the variables of interest 〈X1, · · · , Xn, Y 〉.
By construction, there exists a unique path form the root to a
leaf of the ODT that represents partial instantiations compati-
ble with ξ. Adding ξ to the ODT consists in updating ΩN and
the G-statistics of every node N of that path. With XN the
variable installed in an internal node N , pNG (Xi) the p-value
for a variable Xi ∈ VN in the node N , cN (v) the child of
node N for the value v of XN and finally ξ(A) the value for
the variable A in ξ, Algorithm 2 describes this update of the
internal structure of the ODT.

Updating the ODT Once the statistics have been updated,
a last step consists in revising the tree topology. Due to the
insertion of the new observation, a revision of the variables

578

Algorithm 2: AddObs (addition of an observation ξ)
Data: the observation ξ = {x1, . . . , xn, y} and the ODT T

1 Node N← root of T ;
2 repeat
3 Add ξ to ΩN ;
4 foreach variable Xi ∈ VN do
5 Update pNG (Xi);
6 if N is not a leaf then
7 Node N← cN (ξ(Xi));
8 until N is a leaf ;

previously installed may be necessary. However, this revi-
sion has to take into account that the order is global. To up-
date the ODT, IMDDI must (i) find a (as good as possible)
global order, (ii) ensure that this order is respected on every
branch and (iii) ensure that the best possible test is installed
on every node. A last requirement is that for any observation
that will not change the structure, this operation should be
as simple as possible. As an incremental algorithm, IMDDI
infers a relevant global order while keeping the possibility to
revise it. To fulfill these requirements, the strategy we pro-
pose is to check variable by variable the relevance of their
position in the current global order. While the variables keep
their positions, no structural modifications will be performed
in the ODT.

To decide which variable should be the next one in the
global order, each remaining variable has to be scored us-
ing G-statistics on each node but later aggregated on many
nodes within a boundary B. B is the set of nodes where a
variable must be installed w.r.t. the updated global order at
each iteration. The boundary is initialized as the root node
(singleton) and will contain the leaves of the ODT at the
end of this step. IMDDI computes an aggregated score by
summing up the p-value computed on each node N ∈ B
weighted by the proportion of observations on that node
(|ΩN |) compared to the total number of observation added
to the tree (|Ω|). The variable with the highest score is then
chosen and becomes the next variable in the updated global
order. Then, for every node of the boundary, this chosen vari-
able will be installed if the p-value is above a fixed threshold.
This installation is done the same way it is done in ITI (see
(Utgoff, Berkman, and Clouse 1997) for further details). If
the variable is effectively installed, the node is removed from
the boundary, replaced by all its children. Once this iteration
is over, nodes in the boundary will not be able to choose to
install this variable later.

The stopping criterion for the Algorithm 3 has to take into
account two cases : either all variables of X have been added
to the updated global order or no variables can be installed
on any node of the current boundary (i.e. all the p-values are
below the threshold). When it stops, the boundary contains
all the leaves of the updated ODT. If the new observation
does not change the structure of the ODT, the only compu-
tations performed by the Algorithm 3 are weighted sums on
each boundary from the root to the leaves of the tree.

From the ODT to the MDD

Once the ODT is generated, the next step is to reduced it into
a MDD. Algorithm 4) merges the isomorphic subtrees with a

Algorithm 3: UpdateODT (updating the structure)
Data: an ODT T after adding ξ (with Algorithm 2)

1 B = { root R of T}; // boundary
2 F = X; // Set of variables
3 repeat
4 foreach variable Xi ∈ F do

5 pG(Xi) =
∑
N∈B

|ΩN |
|Ω| · p

N
G (Xi);

6 V ← arg min
Xi∈F

pG(Xi);

7 B′ ← B;
8 foreach N ∈ B do
9 if pNG (V) ≥ τ1 then

10 Install V in node N ;
11 B′ ← B′ \ {N} ∪

⋃
v∈Dom(V) cN (v)

12 B ← B′;
13 F ← F \ {V };
14 until F = ∅ or no variable in F can be installed in B;

bottom-up polynomial (in time) algorithm which starts with
the merging of every leaves with similar probability distri-
butions. Then, for every variable Xi, going backward in the
global order, two nodesN andN ′ bound toXi are merged if
they have the same children. At last, if a node has only one
child then it is redundant and is replaced by arcs outgoing
from its parents to its unique child.

Algorithm 4: Reduce (merge isomorphic subtrees)
Data: an ODT T

1 repeat
2 (U∗, V ∗) = arg min

(U,V) leaves(max(pGU , p
G
V));

3 if max(pU
∗

G , pV
∗

G) ≤ τ2 then
4 Merge U∗ and V ∗;
5 until 6 ∃ two leaves that can merge;
6 foreach Xi ∈ X backward w.r.t the order do
7 foreach NXi , N

′
Xi

with Xi as installed variable do
8 if ∀xi ∈ Dom(Xi), cNXi

(xi) = cN′
Xi

(xi) then
9 NXi and N ′Xi

are merged ;
10 foreach NXi with Xi as installed variable do
11 if ∀xki , xli ∈ Dom(Xi), cNXi

(xki) = cNXi
(xli) then

12 Replace NXi by arcs outgoing from the parents
to the unique child.

The first stage which consists in merging similar leaves
together has to be addressed more specifically. If the leaves
of the MDD were discrete values, merging these leaves would
be very simple. However, in our framework, each leaf is
a probability distribution over the variable Y . As a conse-
quence, we need a test to decide whether or not two proba-
bility distributions are similar.

Let U and V be the two leaves we want to merge, let
nU,y be the samples size for the value y ∈ Dom(Y) and
NU = |ΩU | be the total number of observations on the
leaf U . Merging U and V would produce a new node W .
It follows that ∀y ∈ Dom(Y), nW,y = nU,y + nV,y and
NW = NU + NV . To determine whether or not we should
merge U and V into W , we compute for both leaves a G-
statistic : ∀L ∈ {U, V }, GL = 2 ·

∑
y nL,y ln

nL,y

eL,y
where

eL,y = nW,y
NL

NW
. Note that we have to scale down the quan-

tity nW,y to be compared to the quantity nL,y . We propose a

579

greedy algorithm on the leaves of the ODT (Algorithm 4): a
couple of p-values (pUG, p

V
G) is computed for every possible

couple of leaves (U, V). Then the best candidate for merg-
ing is (U∗, V ∗) = arg min(U,V) max

(
pUG, p

V
G

)
. This crite-

rion selects the couple with the lowest high dissimilarity in
the probability distributions. If both pU

∗

G an pV
∗

G are smaller
than the threshold then the nodes are merged and the process
is repeated. The stopping criterion is the absence of merging
during an iteration.

Algorithm 5: Incremental MDD Induction (IMDDI) for
P (Y |X1, . . . , Xn)

Data: a data stream of observations : ξ = (X1, . . . , Xn, Y)
1 foreach ξ = next observation do
2 AddObs(ξ); // see Algorithm 2
3 UpdateODT(); // see Algorithm 3
4 if change is needed then
5 Reduce(); // see Algorithm 4

Algorithm 5 presents the complete IMDDI algorithm. Sim-
ple complexity considerations show that IMDDI is an algo-
rithm dedicated for online learning: the size of the base of
observations Ω has no direct influence on the complexity of
the algorithms. Moreover, the more complex algorithm (Al-
gorithm 4) are rarely performed because the ODT will not
change often (as described in Algorithm 5) or because the
algorithm will just marginally change the structure and then
the order will mainly stay the same. The next section will
illustrate that the re-evaluation of the MDD does not occur
often.

Experiments
In order to analyze the behavior of our algorithm IMDDI, we
have compared it to ITI since it is the online learning algo-
rithm for DTs. However, ITI is an algorithm that produces
unordered DTs. Hence, we have also compared IMDDI to the
extended version ITI+DD which reorders the tree learned by
an ITI with the heuristic used in IMDDI and reduces it into an
MDD. These three algorithms have been written in Python.
Oliver(1993) and Kohavi and Li(1995) propose batch MDD
learning algorithms that would also be interesting to com-
pare with. Unfortunately, to the best of our knowledge, no
working implementation for these algorithms is accessible.

We have tested our algorithms on databases of observa-
tions ξ = 〈x, y〉. Each database was associated to a different
set of variables X and to a different distribution P (Y |X).
To produce these distributions P (Y |X), we select three dif-
ferent settings for the original model : i) MDD, ii) DT, and
iii) Bayesian Networks. In the first setting, IMDDI could find
the original model. In the two last settings, the representa-
tion of P (Y |X) as a MDD necessary leads to approximation.
For the second setting, the challenge is to see if a learned
MDD will be able to represent efficiently a DT, despite the
absence of explicit isomorphic subpart and global order. Fi-
nally a Bayesian Network implies conditional dependencies
between Y and the set of variables X but does not compel
the existence of context-specific independences that are ex-
isting in MDDs or a DTs.

For all configuration, the domain size of each variable was

randomized (up to 5); the size of X is 10; then the structure
and the parameters of each model are randomly chosen. The
randomized structure of the model may imply that only a
subset of X is needed for the estimation of Y .

For each setting, 20 random instances were generated.
From each instance, databases of 20 000 observations and of
10 000 observations have been generated. The first database
is used to learn the model whereas the second one is used
to compare the log likelihood of the learned models. The
formula being used to compute the log likelihood of a
database DB according to a model θ is : logPθ(DB) =∑
ξ∈DB

logPθ(yξ|xξ).

Quality of the learned models
For a qualitative comparison , we propose to use two crite-
rion : the log likelihood to ensure that IMDDI does not de-
grade too much the quality of the learn probability distribu-
tion in comparison to both ITI and ITI+DD and the size (in
term of nodes) of the learned models (MDDs or DTs). As we
need a model as compact as possible, this criterion ensure
that there is a gain in size of models.

Table 1: Log-likelihood and size comparison (average ± standard
deviation) between IMDDI, ITI and ITI+DD

IMDDI vs ITI

Size Log Likelihood

MDDs 63.34%±9, 51% 100.96%±1, 53%

DTs 69.44%±15.44% 101.93%±1.89%

BNs 60.51%±8.73% 100.69%±1.25%

IMDDI vs ITI+DD

Size Log Likelihood

MDDs 101.15%±3, 46% 100.01%±0.04%

DTs 101.52%±15.22% 100.03%±0.09%

BNs 105.53%±5.83% 99.94%±0.39%

Table 1 shows the results obtained by averaging over the
twenty instances for each model. The numbers are the rel-
ative difference between IMDDI and ITI or ITI+DD. For
instance, the first number 63.34% means that in average,
IMDDI gives a decrease of 36.66% for the size of the learned
model compared to ITI with the first setting (MDD). Accord-
ing to this table, the IMDDI strategy is as interesting as ITI
or ITI+DD from this quality of the solution point of view.
Moreover, the learned models are clearly more compact than
ITI. Compared to ITI+DD, the results both in terms of likeli-
hood and in terms of size do not lead to an improvement for
our algorithm. However it has to be reminded that ITI+DD
learned the MDD from scratch at each iteration.

Computation time
The other criterion on which we challenged IMDDI and
ITI+DD is the time. We compare the time spent to take into
account a new observation. Figure 4 shows the average time
spent to take into account a new observation when no re-
duction is applied to the decision diagram. It clearly demon-
strates how the time spent to reorder the tree in the ITI+DD

580

strategy completely renders it inefficient : the reordering part
become much slower for ITI+DD as the tree grows.

Figure 4: Two comparisons between IMDDI and ITI+DD: (a) times
spent to take into account a new observation when no revision of
the MDD occurs and (b) evolution of the relative change of the to-
tal times to take a new observation into account (curve shows the
relative change average).

Steps with reconstruction of the MDDs experimentally
represent from 15% to 7% of the observations. In that cases,
on all our experiments, the IMDDI step is still shorter than
the ITI+DD step. Indeed, in the second part of the Figure
4, we show the relative differences between the total times
taken by IMDDI and ITI+DD to handle a new observation :
the central curve demonstrates that on average, in spite of the
reduction to the MDDs, the IMDDI algorithms remains fifty
times faster than the ITI+DD algorithm. These experiments
illustrate that our algorithm outperforms ITI in term of qual-
ity (same likelihood, better compactness) and outperforms a
straightforward ITI+DD in term of computation time.

Conclusion
This article presents IMDDI, the first online learning algo-
rithm for MDDs. As the advantages of MDDs over DTs were
demonstrated in Decision Theoretic Planning, such an in-
cremental algorithm became mandatory for their use in the
structured Reinforcement Learning framework. The paper
details the IMDDI algorithm and its different phases: addi-
tion of an observation, update of the structure, and reduction
into a decision diagram. It experimentally verifies the com-
pactness and the accuracy of the learned models in compar-
ison with algorithms ITI and ITI+DD. It also illustrates that
IMDDI is much faster than a straightforward ITI+DD learn-
ing strategy.

It is noteworthy that the IMDDI algorithm needs no prior
on the variables: no knowledge about the number of vari-
ables or even their domains are required and can be dynam-
ically discovered during the learning.

References
Bellman, R. 1957. Dynamic Programming. Princeton, NJ,
USA: Princeton University Press, 1 edition.
Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller, D.
1996. Context-specific independence in bayesian networks.
115–123.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-theoretic
planning: Structural assumptions and computational leverage.
JAIR 11:1–94.
Breiman, L.; Friedman, J.; Olshen, R.; and Stone, C. 1984.
Classification and Regression Trees. Wadsworth & Brooks.
Bryant, R. E. 1986. Graph-based algorithms for boolean func-
tion manipulation. IEEE Transactions on Computers 35:677–
691.
Chakraborty, D., and Stone, P. 2011. Structure learning in er-
godic factored mdps without knowledge of the transition func-
tion’s in-degree. In ICML-28, 737–744.
Degris, T.; Sigaud, O.; and Wuillemin, P.-H. 2006a. Chi-square
Tests Driven Method for Learning the Structure of Factored
MDPs. In UAI-22, 122–129. AUAI Press.
Degris, T.; Sigaud, O.; and Wuillemin, P.-H. 2006b. Learning
the Structure of Factored Markov Decision Processes in Rein-
forcement Learning Problems. In ICML-23, 257–264.
Dunning, T. 1993. Accurate methods for the statistics of sur-
prise and coincidence. Comput. Linguist. 19(1):61–74.
Hoey, J.; St-aubin, R.; Hu, A.; and Boutilier, C. 1999. Spudd:
Stochastic planning using decision diagrams. In UAI-15, 279–
288. Morgan Kaufmann.
Howard, R. A. 1960. Dynamic Programming and Markov Pro-
cesses. MIT Press.
Kohavi, R., and Li, C.-H. 1995. Oblivious decision trees,
graphs, and top-down pruning. In IJCAI-14, 1071–1077.
Magnan, J.-C., and Wuillemin, P.-H. 2013. Improving Decision
Diagrams for Decision Theoretic planning. In FLAIRS-26, 621–
626.
Mingers, J. 1989. An empirical comparison of selection mea-
sures for decision-tree induction. Machine Learning 3(4):319–
342.
Oliver, J. J. 1993. Decision graphs - an extension of decision
trees. In Proceedings of the Fourth International Workshop on
Artificial Intelligence and Statistics, 343–350.
Puterman, M. 2005. Markov decision processes: discrete
stochastic dynamic programming. Wiley series in probability
and statistics. Wiley-Interscience.
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.
Strehl, E. L.; Diuk, C.; and Littman, M. L. 2007. Efficient
structure learning in factored-state mdps. In AAAI-07, 645–650.
Sutton, R. S. 1990. Integrated architectures for learning, plan-
ning, and reacting based on approximating dynamic program-
ming. In ICML-7, 216–224.
Utgoff, P. E.; Berkman, N. C.; and Clouse, J. A. 1997. Decision
tree induction based on efficient tree restructuring. Machine
Learning 29(1):5–44.
White, A. P., and Liu, W. Z. 1994. Technical note: Bias in
information-based measures in decision tree induction. Ma-
chine Learning 15(3):321–329.

581

