
Introducing Darwinian Networks

Cory J. Butz
University of Regina

Regina, S4S 0A2, Canada
butz@cs.uregina.ca

http://www.darwiniannetworks.com

Abstract

Darwinian networks (DNs) are introduced to simplify
and clarify working with Bayesian networks (BNs).
Rather than modelling the variables in a problem do-
main, DNs represent the probability tables in the model.
The graphical manipulation of the tables then takes on
a biological feel. It is shown how DNs can unify mod-
eling and reasoning tasks into a single platform.

Introduction
This invited paper draws from (Butz, Oliveira, and dos San-
tos 2015a). Many different platforms, techniques and con-
cepts can be employed while modeling and reasoning with
Bayesian networks (BNs) (Pearl 1988). A problem domain
is modeled initially as a directed acyclic graph (DAG), de-
noted B, and the strengths of relationships are quantified by
conditional probability tables (CPTs). Independencies are
tested in B using d-separation (Pearl 1988) or m-separation
(Lauritzen et al. 1990; Zhang and Poole 1994). Reasoning
with a BN can be done using B, including inference algo-
rithms such as variable elimination (VE) (Zhang and Poole
1994) and arc-reversal (AR) (Olmsted 1983), or with a sec-
ondary structure called a join tree and denoted T , as in lazy
propagation (LP) (Madsen and Jensen 1999). Considering
exact inference in discrete BNs, a common task, called belief
update, is to compute posterior probabilities given evidence
(observed values of variables). Before performing number
crunching, two kinds of variables can safely be removed,
namely, barren variables (Zhang and Poole 1994) and what
we call independent given evidence variables (Madsen and
Jensen 1999; Zhang and Poole 1994). LP and VE treat the
removal of these variables as separate steps. Furthermore,
LP and VE involve multiple platforms. LP conducts infer-
ence on T and test independencies in B. VE first prunes bar-
ren variables from a DAG B, giving a sub-DAG Bs, and then
prunes independent by evidence variables from the moral-
ization (Pearl 1988) of Bs, denoted Bsm. VE can also use
Bsm to determine an elimination ordering, denoted σ (Koller
and Friedman 2009), using the min-neighbors, min-weight,
min-fill, and weigthed-min-fill (Koller and Friedman 2009)
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heuristic. By adapting a few well-known concepts in biol-
ogy (Dawkins 1976), all of the above can be unified into one
platform to be denoted D.

Darwinian networks (DNs) (Butz, Oliveira, and dos San-
tos 2015a) are put forth as a biological perspective of BNs.
A CPT P (X|Y ) is viewed as a population p(X,Y ) with
combative traits X and docile traits Y . More generally, a
BN is seen as a set of populations. In DNs, how popula-
tions adapt to the deletion of other populations corresponds
precisely with testing independencies in BNs. Once abstract
concepts like merge and replication are used to represent
multiplication, division, and addition, it follows that DNs
can represent VE, AR, and LP. Good elimination orderings,
which are of practical importance, can be computed in DNs.
Besides providing a single platform for testing indepen-
dencies, performing inference, and determining good elim-
ination orderings using min-neighbors, min-weight, min-
fill, and weigthed-min-fill, we show how DNs simplify d-
separation, m-separation, VE, AR, and LP. Omitted proofs
are given in (Butz, Oliveira, and dos Santos 2015c).

Bayesian Networks
Let U = {v1, v2, . . . , vn} be a finite set of variables, each
with a finite domain, and V be the domain of U . Let B
denote a directed acyclic graph (DAG) on U . A directed
path from v1 to vk is a sequence v1, v2, . . . , vk with arcs
(vi, vi+1) in B, i = 1, 2, . . . , k − 1. For each vi ∈ U , the
ancestors of vi, denoted An(vi), are those variables having
a directed path to vi, while the descendants of vi, denoted
De(vi), are those variables to which vi has a directed path.
For a set X ⊆ U , we define An(X) and De(X) in the ob-
vious way. The children Ch(vi) and parents Pa(vi) of vi
are those vj such that (vi, vj) ∈ B and (vj , vi) ∈ B, respec-
tively. An undirected path in a DAG is a path ignoring di-
rections. A path in an undirected graph is defined similarly.
A singleton set {v} may be written as v, {v1, v2, . . . , vn} as
v1v2 · · · vn, and X ∪ Y as XY .

D-separation (Pearl 1988) tests independencies in DAGs
and can be presented as follows (Darwiche 2009). LetX , Y ,
and Z be pairwise disjoint sets of variables in a DAG B. We
say X and Z are d-separated by Y , denoted IB(X,Y, Z), if
at least one valve on every undirected path betweenX and Z
is closed. There are three kinds of valves v: (i) a sequential
valve means v is a parent of one of its neighbors and a child
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of the other; (ii) a divergent valve is when v is a parent of
both neighbors; and, (iii) a convergent valve is when v is a
child of both neighbors. A valve v is either open or closed. A
sequential or divergent valve is closed, if v ∈ Y . A conver-
gent valve is closed, if (v ∪De(v)) ∩ Y = ∅. For example,
suppose X = a, Y = c, and Z = f in DAG B depicted
in Figure 1 (i). To test IB(a, c, f) there are two undirected
paths from a to f . On the path (a, c), (c, e), (e, f), valve c
is closed, since c is a sequential valve and c ∈ Y . Valve d
is closed on the other path, since d is a convergent valve and
{d, h} ∩ Y = ∅. As both paths from a to f have a closed
valve, IB(a, c, f) holds.

Figure 1: (i) A DAG B. (ii) Sub-DAG Bs. (iii) Moralization
Bsm. (iv) Bsm with d and its edges deleted.

M-separation (Lauritzen et al. 1990; Zhang and Poole
1994) is another method for testing independencies in
DAGs, and is equivalent to d-separation. Let X , Y , and Z
be pairwise disjoint sets of variables in a DAG B. Then m-
separation tests IB(X,Y, Z) with four steps: (i) construct
the sub-DAG of B onto XY Z ∪ An(XY Z), yielding Bs;
(ii) construct the moral graph (Pearl 1988) of Bs, denoted
Bsm, by adding an undirected edge between each pair of par-
ents of a common child and then dropping directionality;
(iii) delete Y and its incident edges; and (iv) if there exists
a path from any variable in X to any variable in Z, then
IB(X,Y, Z) does not hold; otherwise, IB(X,Y, Z) holds.
For example, in Figure 1, to test IB(a, d, f) in B of (i), the
sub-DAG Bs is in (ii). Bsm is shown in (iii). Removing d and
incident edges gives (iv). Since there exists a path from a to
f , IB(a, d, f) does not hold.

A potential on V is a function φ such that φ(v) ≥ 0 for
each v ∈ V , and at least one φ(v) > 0. A uniform potential
on V is a function 1 that sets 1(v) = 1/k, where v ∈ V ,
k = |V | and | · | denotes set cardinality. Henceforth, we say
φ is on U instead of V . A joint probability distribution is
a potential P on U , denoted P (U), that sums to one. For
disjoint X,Y ⊆ U , a conditional probability table (CPT)
P (X|Y ) is a potential over XY that sums to one for each
value y of Y .

A Bayesian network (BN) (Pearl 1988) is a DAG B on
U together with CPTs P (v1|Pa(v1)), P (v2|Pa(v2)), . . . ,
P (vn|Pa(vn)). For example, Figure 2 (i) shows a BN,

where CPTs P (a), P (b|a), . . . , P (g|e, f) are not shown.
We call B a BN, if no confusion arises. The product of the

CPTs for B on U is a joint probability distribution P (U).
The conditional independence (Pearl 1988) of X and Z
given Y holding in P (U) is denoted I(X,Y, Z). It is known
that if IB(X,Y, Z) holds by d-separation (or m-separation)
in B, then I(X,Y, Z) holds in P (U).

Figure 2: (Zhang and Poole 1994) Given query P (e|b = 0)
posed to BN B in (i), pruning barren variables g and f in (ii)
and independent by evidence variable a in (iii). (iv) is Bsm.

Inference On A Dag
Variable elimination (VE) (Zhang and Poole 1994) com-
putes P (X|Y = y) from a BN B as follows: (i) all barren
variables are removed recursively, where v is barren (Zhang
and Poole 1994), if Ch(v) = ∅ and v 6∈ XY ; (ii) all in-
dependent by evidence variables are removed, giving Bs,
where v is an independent by evidence variable, if I(v, Y,X)
holds in B by m-separation; (iii) build a uniform distribu-
tion 1(v) for any root of Bs that is not a root of B; (iv) set
Y to Y = y in the CPTs of Bs; (v) determine an elimina-
tion ordering σ from the moral graph Bsm; (vi) following σ,
eliminate variable v by multiplying together all potentials
involving v, and then summing v out of the product; and,
(vii) multiply together all remaining potentials and normal-
ize to obtain P (X|Y = y). For example (Zhang and Poole
1994), in Figure 2, given P (e|b = 0) and BN B in (i), g
and f are barren (ii) and a is independent by evidence (iii)
for steps (i) and (ii). In steps (iii) and (iv), VE builds 1(b)
and updates P (h|b) as P (h|b = 0). Step (v) can determine
σ = (c, d, h) from Bsm shown in (iv). Step (vi) computes
(step (vii) is discussed later):

P (c, e|d, h) = P (c|h) · P (e|c, d), (1)

P (e|d, h) =
∑
c

P (c, e|d, h), (2)

P (e|h) =
∑
d

P (d|h) · P (e|d, h), (3)

P (e|b = 0) =
∑
h

P (h|b = 0) · P (e|h). (4)
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Darwinian Networks
We foreshadow the introduction of DNs with three exam-
ples illustrated in Figure 3. The CPT P (e|c, d) is represented
as a population p(e, cd) in (i). The multiplication in (2) of
CPTs P (c|h) and P (e|c, d) yielding CPT P (c, e|d, h) is rep-
resented as the merge of populations p(c, h) and p(e, cd)
yielding population p(c, e|d, h) in (ii). And, the marginal-
ization in (3) of variable c from CPT P (c, e|d, h) giving
CPT P (e|d, h) is represented as the replication of popula-
tion p(ce, dh) giving itself and population p(e, dh) in (iii).

Adaptation and evolution are used to represent the testing
of independencies and inference, respectively.

Adaptation
A trait t can be combative or docile. A combative trait tc is
depicted by a clear (white) circle. A docile trait td is illus-
trated by a dark (black) circle. A population p(C,D) con-
tains a non-empty set CD of traits, where C and D are
disjoint, C is exclusively combative, and D is exclusively
docile. A population is depicted by a closed curve around
its traits. For example, Figure 4 (i) shows eight populations,
including p(b, ag), short for p({b}, {a, g}), illustrated with
a closed curve around the (clear) combative trait b and two
(dark) docile traits a and g.
Definition 1. A Darwinian network (DN), denoted D, is a
finite, multiset of populations.

A DN D is depicted by a dashed closed curve around
its populations. For example, Figure 4 (i) depicts a DN D
= {p(a), p(b, ag), p(c, a), p(d, be), p(e, c), p(f, e), p(g),
p(h, d)}, where p(C, ∅) is succinctly written p(C).

All combative traits in a given DN D are defined as
Tc(D) = {tc | tc ∈ C, for at least one p(C,D) ∈ D}.
All docile traits in D, denoted Td(D), are defined sim-
ilarly. For example, considering DN D in Figure 4 (i),
then Tc(D) = {ac, bc, cc, dc, ec, fc, gc, hc}. In addition,
Td(D) = {ad, bd, cd, dd, ed, gd}.

(i) Representing CPT P (e|c, d) as population p(e, cd).

(ii) Merging populations p(c, h) and p(e, cd) yields p(ce, dh).

(iii) Replicating p(ce, dh) can give itself and p(e, dh).

Figure 3: Representing a CPT from a BN as a population in
a DN in (i). In (ii), merging populations corresponds to mul-
tiplying CPTs, while replicating a population corresponds to
summing variables out of a CPT in (iii).

Populations are classified based upon characteristics of
their traits. For adaptation, barren populations need only to
be classified. Later, for evolution, we will extend the classi-
fication.

Given two DNs D and D′
, let tc be a trait in Tc(D). Trait

tc is strong, if tc ∈ Tc(D
′
); otherwise, tc is weak. Trait tc is

relict, if td 6∈ Td(D). The notions of strong, weak, and relict
are defined analogously for td.

Given DNs D and D′
, a population p(tc, D) is barren, if

tc is relict, and both tc and td are weak.
In adaptation, natural selection removes recursively all

barren populations from a DN D with respect to a DN D′
.

Example 1. Referring to Figure 4, let us apply natural selec-
tion on the DN D in (i) with respect to DN D′

in (v). First,
barren population p(h, d) is removed. Population p(d, be)
now is barren, since dc is relict, and dc and dd are weak.
Natural selection removes p(d, be) and, in turn, p(b, ag) and
p(g), giving (ii).

Docilization of a DN D adds p(∅, D) to D, for every
population p(C,D) in D with |D| > 1. For example, the
docilization of Figure 4 (ii) is itself, while the docilization
of Figure 4 (vi) adds populations p(∅, ag) and p(∅, be), giv-
ing Figure 4 (vii).

To delete a population p(C,D) from a DND is to remove
all occurrences of it from D. For example, the deletion of
p(c, a) from Figure 4 (ii) gives Figure 4 (iii).

Two populations merge together as follows: for each trait
t appearing in either population, if t is combative in ex-
actly one of the two populations, then t is combative in
the merged population; otherwise, t is docile. Let PX , PY ,
and PZ be pairwise disjoint subsets of populations in a DN
D and let DN D′

= p(C), where C = Tc(PXPY PZ).
We test the adaptation of PX and PZ given PY , denoted
A(PX ,PY ,PZ), in D with four simple steps: (i) let natural
selection act on D with respect to D′

, giving Ds; (ii) con-
struct the docilization ofDs, givingDs

m; (iii) delete p(C,D)
fromDs

m, for each p(C,D) in PY ; and, (iv) after recursively
merging populations sharing a common trait, if there exists
a population containing both a combative trait in Tc(PX)
and a combative trait in Tc(PZ), then A(PX ,PY ,PZ) fails;
otherwise, A(PX ,PY ,PZ) succeeds.

Example 2. Let us test A(p(a), p(c, a), p(f, e)) in the DN
D of Figure 4 (i), where PX = p(a), PY = p(c, a),
and PZ = p(f, e). As Tc({p(a), p(c, a), p(f, e)}) =

{ac, cc, fc}, we obtain the DN D′
= p(acf) in Figure 4 (v).

In step (i), natural selection gives Ds in Figure 4 (ii). In step
(ii), docilization ofDs givesDs

m in Figure 4 (ii). In step (iii),
the deletion of p(c, a) from Ds

m gives Figure 4 (iii). Recur-
sively merging populations in step (iv) yields Figure 4 (iv).
As no population in Figure 4 (iv) contains ac in Tc(p(a))
and fc in Tc(p(f, e)), A(p(a), p(c, a), p(f, e)) succeeds.

Example 3. Let us now testA(p(a), p(d, be), p(f, e)) in the
DND of Figure 4 (i). In this case, DND′

= p(adf) is shown
in Figure 4 (x). In step (i), natural selection removes barren
population p(h, d) as shown in Figure 4 (vi). In step (ii),
docilization of Figure 4 (vi) gives Figure 4 (vii). In step (iii),
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Figure 4: Testing adaptation twice in the DN D in (i).

p(d, be) is deleted as depicted in Figure 4 (viii). Recursively
merging populations in step (iv) yields Figure 4 (ix). By def-
inition, A(p(a), p(d, be), p(f, e)) fails, since the population
in Figure 4 (ix) contains ac and fc.

Evolution
As promised, population classification is extended.

Let PY = {p(tc, D) | p(tc, D) ∈ D and td ∈ D
′} and

PZ = {p(tc, D) | p(tc, D) ∈ D and tc ∈ C
′}, given DNs

D and D′
= p(C

′
, D

′
). In D, p(tc, D) is independent, if

A(p(tc, D),PY ,PZ) succeeds, and is evident, if td is strong,
and D is all relict. Population p(C,D) in a DN D is spent,
if there exists p(C

′
, D) in D such that C

′ ⊂ C and C − C ′

is all relict. In Figure 5, with D in (ii) and D
′
= p(e, b) in

(xiii), p(a) is independent as A(p(a), p(b, a), p(e, cd)) suc-
ceeds, where PY = p(b, a) and PZ = p(e, cd). In D of (iii)
and D

′
of (xiii), p(b, a) is evident as bd is strong, and ad is

relict. In D of (vi), p(ce, dh) is spent as p(e, dh) is in D and
cc is relict.

New populations can be created in a DN as follows. Repli-
cation of a population p(C,D) gives p(C,D), as well as any
set of populations p(C

′
, D), where C

′ ⊂ C.
The evolution of a DN D into a DN D′

occurs by natural
selection removing recursively all barren, independent, and
spent populations, merging existing populations, and repli-
cating to form new populations.

Example 4. In Figure 5, consider one explanation of the
evolution of D in (i) into D′

= p(e, b) in (xiii). Natural
selection removes barren populations p(g, ef) and p(f, a),

yielding (ii). Next, natural selection removes independent
population p(a), giving (iii), and evident population p(b, a),
yielding (iv). Then, p(c, h) and p(e, cd) merge to form
p(ce, dh) in (v). Replication gives (vi). The rest of the exam-
ple involves natural selection (vii), merge (viii), replication
(ix), natural selection (x), merge (xi), replication (xii), and
natural selection (xiii), leaving D′

with population p(e, b).

Testing Independencies
Testing independencies in BNs can be seen as testing adap-
tation in DNs. D-separation can use specialized terminology
not referenced in inference such as open sequential valves
and closed divergent valves. In contrast, no specialized con-
cepts are used in adaptation. And whereas m-separation re-
quires DAGs, sub-DAGs, and moral graphs, adaptation uses
but one platform.
D = {p(v, Pa(v)) | P (v|Pa(v)) is in B} is the DN

for a given BN B. Conversely, the directed graph (or sim-
ply graph) G(D) of a DN D has variables Tc(D) and arcs
{(vi, vj) | p(C,D) ∈ D and vi ∈ D and vj ∈ C}. The
undirected graph U(D) of a DN D has variables Tc(D) and
edges {(vi, vj) | p(C,D) ∈ D and vi, vj ∈ CD}.
Lemma 1. Every BN B can be represented as a DN D, and
the graph of D is B, that is, G(D) = B.

The BN B in Figure 1 (i) can be represented as the DN D
in Figure 4 (i). The graph of D is B, i.e., G(D) = B.

Let D be the DN for a BN B on U . The populations for
W ⊆ U , denoted PW , are PW = {p(C,D) | p(C,D) ∈
D and C ⊆ W}. Thus, given pairwise disjoint subsets
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Figure 5: Representing VE’s computation in Figure 2 as evolution in DNs.

X,Y , and Z in B, it is necessarily the case that PX , PY ,
and PZ are pairwise disjoint populations in D.
Lemma 2. Let Bs be the sub-DAG constructed from a BN
B in step (i) of testing the independence IB(X,Y, Z) using
m-separation. Then Bs = G(Ds), where Ds is the DN con-
structed in step (i) of testing A(PX ,PY ,PZ) in the DN D
for B.

Step (i) of m-separation when testing IB(a, d, f) in the
BN B of Figure 1 (i) constructs the sub-DAG Bs in Figure
1 (ii). On the other hand, step (i) of adaptation when testing
A(p(a), p(d, be), p(f, e)) in the DN D in Figure 4 (i) con-
structs the DNDs in Figure 4 (vi). As guaranteed by Lemma
2, Bs = G(Ds).
Lemma 3. Bsm = U(Ds

m), where Bsm is the moralization of
Bs in Lemma 2, andDs

m is the docilization ofDs in Lemma
2.

Recall the moralization Bsm in Figure 1 (iii) and the
docilization Ds

m in Figure 4 (vii), when testing IB(a, d, f)
and A(p(a), p(d, be), p(f, e)), respectively. As Lemma 3
guarantees, Bsm = U(Ds

m).
Lemma 4. The undirected graph of the DN obtained by
deleting the populations in PY from Ds

m is the same graph
obtained by deleting Y and its incident edges from Bsm,
where Ds

m and Bsm are in Lemma 3.

When testing A(p(a), p(d, be), p(f, e)), deleting popula-
tion p(d, be) in PY from Figure 4 (vii) gives Figure 4 (viii).
The undirected graph of the DN in Figure 4 (viii) is Figure
1 (iv). This is the same graph obtained by deleting variable
d and incident edges from Bsm in Figure 1 (iii) in testing
IB(a, d, f) using m-separation.

Theorem 1. IB(X,Y, Z) holds in a BN B if and only if
A(PX ,PY ,PZ) succeeds in the DN D for B.

Theorem 1 indicates that testing adaptation in DNs can be
used to test independencies in a BN B replacing d-separation
and m-separation. IB(a, c, f) holds by d-separation in Fig-
ure 1 (i) and A(p(a), p(c, a), p(f, e)) succeeds in Example
2. Similarly, IB(a, d, f) does not hold in Figure 1 (i) by m-
separation and A(p(a), p(d, be), p(f, e)) fails as shown in
Example 3.

The docilization step can be refined to add p(∅, D) only
for p(C,D) ∈ PY with |D| > 1. Adding p(∅, D) for
p(C,D) 6∈ PY is extraneous, since the merge of p(C,D)
and p(∅, D) is p(C,D). Similarly, the moralization step in
m-separation need only to add edges between parents of a
common child v when v ∈ Y . For instance, in the moraliza-
tion of Figure 1 (iii) when testing IB(a, d, f), edge (b, e) is
essential as d ∈ Y , but edge (a, g) is superfluous as b 6∈ Y .
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Performing Inference
Recall how VE computes query P (e|b = 0) posed to the
BN B in Figure 2 (i). Referring to Figure 5, B is D in (i),
while P (e|b = 0) is DN D′

in (xiii). The removal of bar-
ren populations p(g, ef) and p(f, a) in (ii) corresponds to
VE pruning barren variables g and f in Figure 2 (ii). Natural
selection removes independent population p(a) in (iii) and
VE removes independent by evidence variable a in Figure 2
(iii). VE then builds 1(b) for the evidence variable b, while
natural selection removes evident population p(b, a) in (iv).
As for the elimination of c, d, and h in (1) - (4): the multi-
plication in (1) is the merge of p(c, h) and p(e, cd) in (iv),
yielding p(ce, dh) in (v); the marginalization in (2) is the
replication p(ce, dh) and p(e, dh) in (vi), followed by the
removal of spent population p(ce, dh) in (vii); (3) is shown
in (vii) - (x); and, (4) is in (x) - (xiii).

The robustness of DNs only is partially revealed in this
example in which DNs detect and remove barren variables,
detect and remove an independent by evidence variable,
and represent multiplication and marginalization to elimi-
nate variables c, d, and h. DNs can also represent AR (Butz,
Oliveira, and dos Santos 2015a) and LP (Butz, Oliveira, and
dos Santos 2015d). Next, we show how DNs can determine
elimination orderings.

Elimination Orderings
The order in which variables are eliminated can have pro-
found impact on the amount of computation performed.
Undirected graphs are typically used to determine good or-
derings (Koller and Friedman 2009).
Example 5. In Figure 6, consider the BN in (i) and its mor-
alization in (ii). Eliminating variable t by adding edges be-
tween t’s neighbours and then removing t and its incident
edges gives the undirected graph in Figure 6 (iii). Eliminat-
ing t from the BN yields the following factorization:

P (a) · P (r|t) · P (s) · · ·P (d|b, r). (5)

Note that the undirected graph of (5) is exactly Figure 6
(iii). A more important point, unfortunately, is that the fac-
torization corresponding to the undirected graph in Figure 6
(ii) is not necessarily unique. For example, the factorization

P (a|r, l), P (r|a, x), P (s|b) · · ·P (d). (6)
defined by the very different BN in Figure 6 (iv) also gives
the undirected graph in Figure Figure 6 (ii). Thus, given only
the undirected graph to work with, it is not clear whether the
corresponding probability tables are those in (5) or those in
(6). DNs, on the contrary, maintain a one-to-one correspon-
dence between the graphical representation and the proba-
bility tables (Butz, Oliveira, and dos Santos 2015b).

Conclusion
DNs, a biological perspective of BNs, are surprisingly sim-
ple, yet remarkably robust. DNs can represent the testing of
independencies using d-separation and m-separation, belief
update using VE, AR, and LP. DNs simplify each of these
separate techniques, while unifying them into one platform.
Moreover, DNs can determine good elimination orderings.

Figure 6: (i) a DAG. (ii) the moralization. (iii) eliminating t.
(iv) another DAG giving the undirected graph in (iii).
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