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Abstract

This paper shows results on gender and body mass in-
dex (BMI) classification using anthropometric and gait
information gathered from subjects using a Microsoft
Kinect sensor. We show that it’s possible to obtain high
accuracies when identifying gender, but that classifying
BMI is a harder task. We also compare the performance
of different machine learning algorithms and different
combination of attributes, showing that Multilayer Per-
ceptron outperforms Support Vector Machine and K-
Nearest Neighbours in the proposed tasks.

Introduction

Person identification systems using full-body information
from subjects (such as anthropometry and gait) is a recent
trend in biometric studies. These systems may not require in-
dividuals’ contact with sensors and can be performed at dis-
tance. The effort applied in video processing of walking sub-
jects can be substantially simplified when using new sensor
technologies, such as the Microsoft Kinect. The Microsoft
Kinect sensor is a human motion tracker that do not require
markers, special clothing or contact with the individual. It
was developed as a companion for the Microsoft X-Box
360 video game console and used to power a gesture-based
interface. The sensor is able to segment and extract three-
dimensional representations of the major human joints, al-
lowing the reconstruction of a simplified skeleton.

Previous work (Andersson and Araujo 2015) attempted
to perform person identification using attributes extracted
from Kinect sensors. The present paper seeks to answer what
other useful features can be identified using anthropomet-
ric information and human gait, obtained from the Kinect
sensor. We explore the possibility of classifying gender and
body mass index (BMI) of subjects and compare the results
of applying three machine learning algorithms: k-Nearest
Neighbour (KNN), Multilayer Perceptron (MLP) and Sup-
port Vector Machine (SVM). We also report on a prototype
system based on the ideas in this paper, deployed for a gen-
der classification application in an e-commerce context.
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Related Work

Several previous works analyse the feasibility of perform-
ing person identification using Microsoft Kinect sensors.
(Sivapalan et al. 2011) proposes the use of Gait Energy
Volumes to extract gait patterns from walking subjects and
used data from a Kinect sensor to validate the proposal. In
(Munsell et al. 2012) the positions and motion patterns of
the different joints provided by the sensor are used as at-
tributes to train both a SVM and a statistical model. (Preis,
Kessel, and Werner 2012) compares the accuracy of Deci-
sion Trees (C4.5) and Naive Bayes classifiers. In (Araujo,
Grana, and Andersson 2013) body segments lengths de-
rived from joint positions were used to train a KNN classi-
fier. Gender classification was recently explored by (Collins,
Miller, and Zhang 2014), where the authors presented a
modified framework that previously classified human be-
haviour using sparse spatiotemporal features from video
clips of 101 pedestrians walking in a treadmill. They used
Support vector machine algorithm to classify the videos and
achieved 87% of accuracy.

All of these previous work are based on very small data
sets, ranging from 8§ to 25 individuals. (Hofmann and Bach-
mann 2012) uses a more extensive data set composed of 176
subjects but, although data was captured using a Kinect sen-
sor, there was no attempt at inferring or using skeletal infor-
mation and only depth data and regular video were used. In
(Andersson and Araujo 2015) a data set composed of skele-
tal data from 140 subjects is used and KNN is shown to be
better at the task when compared to SVM and MLP.

Methodology

In this work, we use the data set described in (Andersson
and Araujo 2015). This data set contains information from
140 subjects (95 men and 45 women) walking in front of
a Kinect sensor (2010 version). Each subjected executed 5
walks each with 6 to 12 gait cycles and 400 to 800 frames.
Each frame contains three-dimensional data for each tracked
joint. We filtered the data set and included only subjects that
provided information on their gender, height and weight. For
gender classification, the resulting data set totalled 112 sub-
jects (68 men and 44 women). For BMI classification, the
data set totalled 106 individuals with height and weight in-
formation.
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Figure 1: Main joints tracked by Kinect sensor (shown as
circles) and the body segments obtained by the Euclidean
distance between two tracked joints.

In order to reduce noise present in raw skeleton data
provided by Kinect sensor, we applied an Auto Regressive
Moving Average (ARMA) filter (Azimi 2012) with a 8 frame
size window, in all walk examples selected, as proposed in
(Andersson and Araujo 2015).

Anthropometric and Gait attributes

The measurement of several body segments were calcu-
lated for each frame by the Euclidean distance between
two tracked joints, as proposed in (Araujo, Grafna, and An-
dersson 2013) (Fig. 1). This resulted in a total of 20 at-
tributes per frame. Finally, all frames from each single walk
were grouped by taking the arithmetic mean over all frames.
Hence, each example represents a single walk of a single
subject.

Gait attributes were separated into spatiotemporal and
kinematic parameters following (Andersson and Araujo
2015) methodology. Spatiotemporal parameters were calcu-
lated based on the average step length of gait cycles present
in a walk example. Kinematic parameters were obtained
from the angles’ curves generated during the entire period
of walking. For each frame, the angle between two lower
segments described the hip, knee, ankle and foot angle rota-
tion during a captured instant.

A total of 56 kinematic attributes were extracted from the
angles’ curves for right and left hips, knees and ankles. For
the foot angle, it was only used the extension (valleys) in-
formation. Spatiotemporal parameters totalled 4 attributes.
Together with anthropometric attributes, we obtained 80 gait
attributes to compose our dataset.

After all anthropometric and gait attributes were obtained,
we separated the dataset with gender and BMI classes by
type of attributes: (i) Gait only, with all spatiotemporal and
kinematic extracted attributes, (ii) anthropometry only, with
the measurements of body segments and height and (iii) all
attributes.
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Training and Testing

For gender classification, we randomly selected 44 men to
have a balanced data set. The examples belonging to each in-
dividual were divided into two disjunct sets of equal sizes for
training and testing (each containing 44 persons). We made
sure that no subject’s examples were present in both train-
ing and testing sets - a random split over all examples would
allow for examples from the same subject to be present in
both sets, making it possible for the classifier to identify the
subject instead of the metrics of interest.

The BMI classification is a simple index of body mass
used to classify adults as being below, above or well above
an ideal body weight (WHO 2014), as presented in Eq. 1:

weight(kg)
(height(m))?

We calculated the BMI index for each subject, grouping
them as healthy, above the recommended BMI (overweight)
and below the recommended BMI (underweight). We ran-
domly chosen 20 examples per class from the height and
weight data set used, to balance with 40 examples of under-
weight class, for train and test sets.

BMI = (1)

Machine learning algorithms

Three machine learning algorithms were chosen to be ap-
plied in our datasets, as they are often used in the biomet-
ric literature: Support Vector Machine (SVM), K-Nearest
Neighbour (KNN) and Multilayer Perceptron (MLP). The
implementation present in the Weka library (Hall et al. 2009)
was used.

For the KNN algorithm, K = 3 was set, and Manhat-
tan distance as the distance metric. Neighbours’ distances d;
were weighted with a weight of 1/d;.

The MLP was set to have a single hidden layer with 4
hidden units. Sigmoidal activation function was used for all
units. Training was performed using the Backpropagation al-
gorithm with momentum set to 0.2, learning rate to 0.3 and
120 epochs (set by early stopping).

The SVM was trained using the Sequential Minimal Opti-
mization (SMO) algorithm (Platt 1999), using a polynomial
kernel and C' = 100.0.

When evaluating the algorithms, we use the Area Under
the Curve (AUC) of a ROC diagram to compare the clas-
sifiers in the gender classification task (as it is binary) and
accuracy in the BMI classification task.

Real-World Application

The used data set contains data from subjects walking in rel-
atively homogeneous and controlled conditions. In order to
test the ability of the trained classifiers to identify gender
in a real world setting, we implemented a prototype appli-
cation of gender classification to be used in a conference
demonstration. The demonstration involved a digital show-
case, where subjects in front of the sensor were shown cus-
tomized advertisements on a display based on their gender.
Since subjects were expected to stand in front of the sensor,
embedded in the showcase, only anthropometric measure-
ments were used.



Virtual Showcase

\

Target Advertising

Kinect
—

—— Vector of

Distances 6ot
Vector Classification

aramis \ '
\

Euclidian Neural
WD Distance Network

Figure 2: Customizable showcase application with the main
modules implemented.

The showcase was implemented according to the diagram
shown in Fig. 2, where the Kinect sensor captures an indi-
vidual and the NUI Skeleton API returns referring joints 3D
points tracked by the sensor during the time that the same
is stopped. A module is responsible for calculating the at-
tributes and feeding the attribute vector to the classifier. As
the classifier we used the best-performing classifier (MLP)
trained with all examples from the data set.

Results
Results Using the Data set

This section presents results from applying the classifiers in
the examples from the data set. Initial results from the real-
world application are presented in the next section.

Gender classification results using SVM, KNN and MLP
algorithms are shown in Table 1, where AUC values are
presented. The datasets were separated by type of attributes
used. It is possible to observe that all classifiers did reason-
ably well in the task but the MLP attained a good score, per-
forming consistently well across different attributes (87.7%
accuracy using all attributes). It is noteworthy that MLP per-
formed considerably better than SVM and KNN, as these
latter two are often preferred in the biometric literature. In
(Andersson and Araujo 2015) it is shown that MLP per-
forms much worse than the other two classifiers in a person
identification task using the same data set. Since the input
attributes are similar for both applications, one explanation
for our results is that there are much fewer classes to be dis-
criminated in the present task, whereas person identification
demands hundreds of subjects to be identified. Also, in op-
position to person identification task, where gait data from
this dataset was shown to be only marginally useful (Anders-
son and Araujo 2015), our results show that gait information
alone has a reasonable discriminative power (81.4% accu-
racy using MLP) compared to when using anthropometric
information only.

Table 2 shows that both Kinematic and Spatiotemporal
gait information perform about the same when used sepa-
rately, but both underperformed the case where they are used
together.

For BMI classification, the main results are shown in Ta-
ble 3. Overall performance is poor but, with the exception
of KNN, still better than random. SVM and MLP perform
about the same, but KNN displayed much worse accuracies.
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Table 1: Classifiers’ ROC area under the curve on gender
classification with different attributes.

Classifier || Gait | Anthropometry | All

SVM 0.837 0.796 0.837
KNN 0.845 0.843 0.882
MLP 0.902 0.931 0.957

Table 2: Classifiers’ ROC area under the curve on gender
with different combinations of gait attributes.

Classifier || Kinematic | Space-temporal | Gait
SVM 0.702 0.762 0.837
KNN 0.788 0.770 0.845
MLP 0.816 0.854 0.902

More importantly, we can see that, contrary to the previ-
ous results on gender, including anthropometry reduces per-
formance and gait only data shows the most discriminative
power. This is even more evident in Table 4, where we can
observe that using only Spatiotemporal attributes provides
the best results across all tested combinations.

Anthropometric data is somewhat expected to be a poor
predictor of BMI, as BMI puts greater emphasis on weight
and Kinect data can only provide approximate height in-
formation. This explains why KNN performed much worse
when using all attributes, since it is more susceptible to the
“curse of dimensionality” (Schuh, Wylie, and Angryk 2014);
when including anthropometric attributes we are effectively
including many non-informative attributes that end up mis-
guiding the distance metric.

These results are evidence that gait information can be
useful to estimate BMI and that spatiotemporal attributes are
the most useful set of gait attributes in this task.

Results from Real-World Application

A total of 13 subjects (6 female and 7 males) participated in
the demonstration. The accuracy obtained was of 61%, much
lower than the results obtained with the more controlled data
set. Classifying women yielded a false positive rate of 33%
and classifying men a false positive rate of 42%.

Three factors are likely to have had an impact in the lower
accuracy obtained. First and most importantly, much fewer
frames were captured from the subjects when compared
to the controlled experiment, since ads had to be shown
quickly. Around 90 frames were captured per subject before
delivering a classification, whereas up to 10 times that was
used in the original data set. Fewer frames leads to a higher
standard deviation of the measurements and consequently to

Table 3: Classifiers’ accuracy on BMI classification with dif-
ferent attributes.

Classifier Gait | Anthropometry All

SVM 53.3% 40.0% 50.0%
KNN 43.3% 25.0% 23.3%
MLP 55.0% 35.0% 51.6%




Table 4: Classifiers’ accuracy on BMI with different combi-
nations of attributes, compared with all gait attributes.

Classifier || Kinematic | Spatiotemporal All

SVM 48.3% 53.3% 53.3%
KNN 40.0% 51.6% 43.3%
MLP 53.3% 60.0% 55.0%

less reliability. Second, and adding to the previous problem,
the ARMA filter was not implemented in the prototype to
further reduce the response time. Finally, subjects were cap-
tured facing towards the sensor, whereas the training data
contains mostly frames of subjects on their sides.

Despite the low accuracy, the obtained results are still bet-
ter than random and encouraging. Allowing for more frames
to be captured and training the classifier under a more diver-
sified set of conditions can likely improve considerably the
results in real-world scenarios.

Conclusions

This paper reported on results of training classifiers to iden-
tify gender and body-mass index of subjects, using data col-
lected from a Microsoft Kinect (2010 version) sensor. We
used a previously published data set (Andersson and Araujo
2015) containing skeleton models, used originally for per-
son identification, that also contained information on height,
weight and gender for most of the subjects.

Our results provide evidences that gender identification
is possible using Kinect data and that both anthropomet-
ric measurements and gait information are valuable for this
task, while previous works showed that gait information on
this data set is only marginally useful for person identifica-
tion. However, the trained classifiers, while displaying good
accuracies in controlled settings (up to 87%), were not able
to fully generalize the task when deployed in uncontrolled
conditions, showing much lower accuracies (an average of
61%). We argued that this was due to the constraints the sys-
tem was subjected to.

Classifying BMI, on the other hand, proved to be a harder
problem. Using all available attributes yielded an accuracy
close to 50% (comparatively, a random choice would yield
33% since there were three balanced classes). In this case,
anthropometric attributes were barely useful to train the
classifiers; gait attributes, in particular spatiotemporal ones,
were responsible for almost the totality of the response and,
when used alone, allowed the classifiers to perform signifi-
cantly better (up to 60% accuracy). These results show that
there are gender and BMI signatures in data extracted from
the Kinect sensor and that these can be useful in a number of
scenarios ranging from automatically customized interfaces
and advertisements to fitness software. Finally, by compar-
ing different classifiers, and again in contrast to person iden-
tification tasks, we showed that MLP outperforms both SVM
and KNN in these two tasks.

The main contribution of this paper is to provide initial re-
sults on gender and BMI classification using Kinect data and
comparing the performance of different classifiers and at-
tributes combinations in these tasks. Future venues of work
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include testing the methodology using other data sets and
further improving the generated prototype to be able to at-
tain accuracies comparable to what is obtained in more con-
trolled settings.
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