
Light-Weight versus Heavy-Weight Algorithms
for SAC and Neighbourhood SAC

Richard J. Wallace
Insight Centre for Data Analytics

Department of Computer Science, University College Cork, Cork, Ireland

richard.wallace@insight-centre.org

Abstract

This paper compares different forms of singleton arc
consistency (SAC) algorithms with respect to: (i) their
relative efficiency as a function of the increase in prob-
lem size and/or difficulty, (ii) the effectiveness with
which they can be transformed into algorithms for
establishing neighbourhood singleton arc consistency
(NSAC) In such comparisons, it was found useful to
distinguish two classes of SAC algorithm with the
terms “light-weight” and “heavy-weight”. The differ-
ence turns on the complexity of data structures re-
quired; this complexity is much greater for the heavy-
weight than the light-weight algorithms. The present
work shows that this difference is reflected in scalabil-
ity. In general, light-weight algorithms scale better than
heavy-weight algorithms on both random and struc-
tured problems, although in the latter case the heavy-
weight algorithm SAC-3 is able to compensate for its
extra overhead. In addition, it is shown that modifying
heavy-weight algorithms to produce NSAC algorithms
is problematic because the logic underlying their im-
provements, while suited to SAC, requires major revi-
sions when carried over to neighbourhood SAC. As a
result, even for problems where heavy-weight SAC al-
gorithms are competitive with light-weight algorithms,
the efficiency of the corresponding NSAC algorithms is
seriously compromised. In contrast, light-weight SAC
algorithms can be easily converted to efficient NSAC
algorithms. These results show that heavy-weight algo-
rithms for SAC cannot be considered as unconditional
improvements on light-weight algorithms, and more im-
portantly that more attention should be paid to the basic
tradeoff between reducing the number of dominant op-
erations (constraint checks) and minimizing extra over-
head in local consistency algorithms.

Introduction
Singleton arc consistency (SAC) is a powerful enhancement
of arc consistency, the best-known type of local consistency
algorithm. In this variant, each value associated with a vari-
able is considered as a singleton domain, and arc consistency
is carried out under this assumption. Under these conditions,
failure in the form of a domain wipeout implies that there is

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

no solution containing this value; hence it can be discarded
without affecting the solution set for the problem.

The original SAC algorithm proposed by (Debruyne and
Bessière 1997) performs SAC on each value of the prob-
lem, and repeats this process until no value is deleted. Since
this is the same strategy used by AC-1, the algorithm is re-
ferred to as SAC-1. (Bartak and Erben 2004) proposed a ver-
sion of SAC (SAC-2) that uses support counts in the manner
of AC-4. More recently, (Bessière and Debruyne 2005) de-
veloped SAC-SDS, which is based on an optimal-time SAC
algorithm (SAC-Opt). SAC-Opt uses n × d copies of the
original problem, each altered to give a different singleton
domain. SAC-SDS retains some multiple information in the
form of domains and queues for updating. It thereby re-
moves some of the redundancy in problem representation
in SAC-Opt, while still avoiding some of the redundancy
in effort of SAC-1. (Lecoutre and Cardon 2005) developed
a greedy form of SAC called SAC-3. The idea behind this
algorithm is to extend a singleton value to a singleton se-
ries (a “branch”) until this gives an arc-inconsistent prob-
lem. With this strategy, values added to the branch after the
first are checked against the problem reduced by the previ-
ous singleton values, which reduces the amount of consis-
tency checking required. More recently (Wallace 2015) in-
troduced a SAC algorithm called SACQ, which replaces the
repeat loop of SAC-1 with a queue update after each value
deletion.

In working with these algorithms it became clear that a
useful distinction can be made between “light-weight” and
“heavy-weight” SAC (and NSAC) algorithms. Light-weight
algorithms like SAC-1 and SACQ require only simple data
structures and procedures. In contrast, heavy-weight algo-
rithms like SAC-2, SAC-SDS, and SAC-3 require elabo-
rate data structures and special procedures to maintain them.
While the former are much easier to code (an important con-
sideration in actual practice), they fail to achieve optimal
or near-optimal performance in terms of constraint checks.
On the other hand, heavy-weight algorithms are not only
much more difficult to code correctly, they are also space-
inefficient and they involve extra processing to keep the data
structures up to date. These differences bear on a funda-
mental tradeoff in this field, between the reduction in the
number of dominant operations, here constraint checks, and
the overhead incurred in maintaining the complex data struc-

91

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference

tures needed to effect this reduction.
Recently a new form of singleton arc consistency was

defined, called neighbourhood singleton arc consistency
(NSAC) (Wallace 2015). NSAC is a limited form of SAC
in which only the subgraph based on the neighbourhood of
the variable with the singleton domain is made arc consis-
tent during the SAC phase. This form of singleton arc con-
sistency, while dominated by SAC, is nearly as effective on
many problems (with respect to values deleted and prov-
ing unsatisfiability) while requiring much less time. Three
NSAC algorithms were proposed that establish this form of
consistency throughout a problem. All of them are based on
SAC-1 or SACQ. But since NSAC algorithms are variations
of SAC procedures, this is another area where it is important
to compare light-weight and heavy-weight algorithms.

In the present work, we compare light-weight and heavy-
weight algorithms with respect to their scaling properties
when problem size and/or difficulty increases. We also
present results for NSAC versions of some of these algo-
rithms; here we find that the strategies involved in heavy-
weight SAC do not carry over readily to the NSAC context,
so that adjustments must be made that compromise perfor-
mance. This is in marked contrast to the situation with light-
weight SAC algorithms.

The next section gives general background concepts and
definitions and brief descriptions of the basic SAC algo-
rithms. Section 3 recounts results of experiments to test scal-
ing properties of SAC algorithms on four types of problem.
Section 4 describes how SAC algorithms can be converted
to NSAC algorithms and gives some experimental compar-
isons of the latter. Section 5 presents conclusions.

Background
General concepts
A constraint satisfaction problem (CSP) is defined as a tu-
ple, (X,D,C) where X are variables, D are domains such
that Di is associated with Xi, and C are constraints. A so-
lution to a CSP is an assignment or mapping from variables
to values that includes all variables and does not violate any
constraint in C.

CSPs have an important monotonicity property in that
inconsistency with respect to even one constraint implies
inconsistency with respect to the entire problem. This has
given rise to algorithms for filtering out values that cannot
participate in a solution, based on local inconsistencies, i.e.
inconsistencies with respect to subsets of constraints. By do-
ing this, these algorithms can establish well-defined forms
of local consistency in a problem. The most widely studied
methods establish arc consistency. In problems with binary
constraints, arc consistency (AC) refers to the property that
for every value a in the domain of variable Xi and for every
constraint Cij with Xi in its scope, there is at least one value
b in the domain of Xj such that (a,b) satisfies that constraint.
For non-binary, or n-ary, constraints generalized arc consis-
tency (GAC) refers to the property that for every value a in
the domain of variable Xi and for every constraint Cj with
Xi in its scope, there is a valid tuple that includes a.

Singleton arc consistency, or SAC, is a particular form

of AC in which the just-mentioned value a, for example,
is considered the sole representative of the domain of Xi

(Debruyne and Bessière 1997). (In the present paper, Xi is
called the “focal variable”.) If AC can be established for the
problem under this condition, then it may be possible to find
a solution containing this value. On the other hand, if AC
cannot be established then there can be no such solution,
since AC is a necessary condition for there to be a solution,
and a can be discarded. If this condition can be established
for all values in problem P , then the problem is singleton arc
consistent. (Obviously, SAC implies AC, but not vice versa.)

The following definition is given in order to clarify the
description of the neighbourhood SAC algorithms.
Definition 1. The neighbourhood of a variable Xi is the set
XN ∈ X of all variables in all constraints whose scope in-
cludes Xi, excluding Xi itself. Variables belonging to XN

are called the neighbours of Xi.
Neighbourhood SAC establishes SAC with respect to the

neighbourhood of the variable whose domain is a singleton.

Definition 2. A problem P is neighbourhood singleton arc
consistent with respect to value v in the domain of Xi, if
when Di (the domain of Xi) is restricted to v, the problem
PN = (XN ∪ Xi, CN) is arc consistent, where XN is the
neighbourhood of Xi and CN is the set of all constraints
whose scope is a subset of XN ∪Xi.

In this definition, note that CN includes constraints
among variables other than Xi, provided that these do not
include variables outside the neighbourhood of Xi.
Definition 3. A problem P is neighbourhood singleton arc
consistent (NSAC) if each value in each of its domains is
neighbourhood singleton arc consistent.

SAC Algorithms
SAC-1, SAC-2, SAC-SDS, and SAC-3 are well-known and
have been described in detail elsewhere (see original pa-
pers as well as descriptions in (Wallace 2015)). SACQ is
described in (Wallace 2015). So only brief descriptions are
given here.

SAC-1, the original SAC algorithm (Debruyne and
Bessière 1997), uses an AC-1-style procedure. This means
that all values in all domains are tested for singleton arc
consistency in each major pass of the procedure, and this
continues until no values are deleted. In addition, if a value
is deleted (because instantiating a variable to this value led
to a wipeout), then after removal a full AC procedure is ap-
plied to the remaining problem before continuing on to the
next singleton value.

The SAC-SDS algorithm (Bessière and Debruyne 2005;
2008) is a modified form of the authors’ “optimal” SAC al-
gorithm, SAC-Opt. The key idea of SAC-SDS (and SAC-
Opt) is to represent each SAC reduction separately; conse-
quently there are n× d problem representations (where n is
the number of variables and d is the maximum domain size),
each with one domain Di reduced to a singleton. These are
the “subproblems”; in addition there is a “master problem”.
If a SAC-test in a subproblem fails, then the value is deleted

92

from the master problem and that problem is made arc con-
sistent. If this leads to failure, the problem is inconsistent;
otherwise, all values that were deleted in order to make the
problem arc consistent are collected in order to update any
subproblems that still contain those values. Along with this
activity, the main list of assignments (the ”pending list”) is
updated, so that any subproblem with a domain reduction is
re-subjected to a SAC-test.

SAC-SDS also makes use of queues (here called “copy-
queues”), one for each subproblem, composed of variables
whose domains have been reduced. These are used to re-
strict SAC-based arc consistency in that subproblem, in that
the AC-queue of the subproblem can be initialized to the
neighbours of the variables in the copy queue. Copy queues
themselves are initialized (at the beginning of the entire pro-
cedure) to the variable whose domain is a singleton. In addi-
tion, if a SAC-test leads to failure, the subproblem involved
can be taken ‘off-line’ to avoid unnecessary processing. Sub-
problems need only be created and processed when the rele-
vant assignment is taken from the pending list; moreover,
once a subproblem is ‘off-line’ it will not appear on the
pending list again, so a spurious reinstatement of the prob-
lem cannot occur.

The SAC-3 algorithm (Lecoutre and Cardon 2005) uses a
greedy strategy to eliminate some of the redundant check-
ing done by SAC-1. The basic idea is to perform a set of
SAC tests in a cumulative series, i.e. to perform SAC with
a given domain reduced to a single value, and if that suc-
ceeds to perform SAC with an additional domain reduced to
a singleton, and so forth until a SAC-test fails. (This series
is called a “branch” in the original paper.) The gain occurs
because successive tests are done on problems already re-
duced during earlier SAC tests in the same series. However,
a value can only be deleted during a SAC test if it is an un-
conditional failure , i.e. if this is the first test in a series. This
strategy is carried out within the SAC-1 framework. That is,
successive phases in which all of the existing assignments
are tested for SAC are repeated until there is no change to
the problem.

SACQ uses an AC-3 style of processing at the top-level
instead of the AC-1 style procedure that is often used with
SAC algorithms. This means that there is a list (a queue)
of variables, whose domains are considered in turn; in ad-
dition, if there is a SAC-based deletion of a value from the
domain of Xi, then all values that are not currently on the
queue are put back on. Unlike other SAC (or NSAC) algo-
rithms, there is no “AC phase” following a SAC-based value
removal. Since this algorithm is less familiar than the others,
pseudocode is shown in Figure 1.

In this work, both SAC (and NSAC) algorithms were pre-
ceded by a step in which arc consistency was established
(shown in Figure 1), although this is not required to estab-
lish either property. This was done to rapidly rule out prob-
lems in which AC is sufficient to prove unsatisfiability. It
also eliminates inconsistent values which are easily detected
using a less expensive arc consistency algorithm.

All algorithms were coded in Common Lisp. Care was
taken to develop efficient data structures, especially for the
heavy-weight algorithms. In some cases this required itera-

Procedure SACQ
Q←X
OK← AC(P)
While OK and not empty-Q

Select Xi from Q
Changed← false
Foreach vj ∈ dom(Xi)

dom′(Xi)← {vj}
If AC(P ′)) leads to wipeout

Changed← true
dom(Xi)← dom(Xi)/vj
If dom(Xi) == ∅

OK← false
If Changed == true

Update Q to include all variables of P

Figure 1: Pseudocode for SACQ.

tions over a number of months. (For more details see (Wal-
lace 2015).) In addition, during testing correctness of im-
plementation was evaluated by cross-checking the number
of values deleted for all algorithms on all problems when a
problem was not proven unsatisfiable during preprocessing.

Experimental Analysis
The chief point of the experiments was to determine how
well each algorithm scales as a function of problem size
and/or difficulty. Here we will mainly consider problem size.

To assess differences among algorithms across a range of
problems, both randomly generated problems and bench-
marks were used. (There is one limitation in that all are
binary CSPs.) The randomly generated problems were of
two types: (i) homogeneous random CSPs, where neither
domain nor constraint elements are ordered, the probability
of a constraint between two variables is the same for each
variable pair, and the probability that a particular tuple is
part of a given constraint’s relation is the same for all tuples
that might appear, (2) random relop problems, where domain
values are ordered and the constraints are relational opera-
tors, such as not-equals or greater-than, while as with the ho-
mogeneous problems, the likelihood of a constraint between
any two variables is the same for all variable pairs. Two
kinds of benchmark problems were used: radio frequency
assignment problems and open-shop scheduling problems.

Experiments with random problems
The first experiment was done with homogeneous ran-
dom problems. Problems had either 50, 75 or 100 vari-
ables. Density and tightness were chosen to ensure that
each set of problems was in a critical complexity re-
gion. The values of the standard parameters for each prob-
lem set were <50,10,0.21,0.43>, <75,15,0.15,0.57>, and
<100,20,0.05,0.70>, where the series inside the brackets
indicates number of variables, domain size (kept constant),
constraint graph density, and constraint tightness (kept con-
stant) in that order. Each problem set had fifty problems.
These and later experiments were run in the XLispstat envi-
ronment with a Unix OS on a Dell Poweredge 4600 machine

93

0

20

40

60

80

100

50 75 100

times
(sec)

problem size (n)

SACQ
SAC-1
SAC-SDS
SAC-3
SAC-2

Figure 2: Mean runtimes for SAC algorithms on homoge-
neous random problems of increasing size. Last segment of
SAC-2 curve only shown up to 100-sec limit.

(1.8 GHz). Also, in each experiment all algorithms were run
sequentially, one immediately after the other, to minimize
vagaries in timing that have been observed when similar runs
are separated by days or weeks. The results of the first ex-
periment are shown in Figure 2.

From the figure it can be seen that there is a definite diver-
gence in efficiency in favour of the light-weight algorithms
as problem size increases. The most spectacular increase in
runtime is for SAC-2. In this case, the last point (for the 100-
variable problems) could not be graphed without compress-
ing the other curves, so it was omitted. (The value of the
mean in this case was 402 sec.) For SAC-3 and SAC-SDS
the increase was much less dramatic, but for the largest prob-
lems there was a marked divergence from the light-weight
algorithms. For problems of this type, SAC-1 and SACQ had
very similar average runtimes, although there is some indi-
cation of a divergence for the largest problems in favour of
SACQ. (As expected, SAC-SDS showed a dramatic reduc-
tion in constraint checks, to about 50% of those generated
by SAC-1.)

The second experiment was done with random relop prob-
lems. These problems were generated with equal propor-
tions of greater-than-or-equal and not-equals constraints; the
latter ensured that the problems were not tractable. Three
sets of fifty problems were used with the following parame-
ters: (i) 60-variable problems with domain size 15 and con-
straint graph density 0.32, (ii) 100-variable problems with
domain size 20 and constraint graph density 0.27, (iii) 150-
variable problems with domain size 20 and constraint graph
density 0.21.

Results for this experiment are shown in Figure 3. Al-
though it was possible to collect some data for SAC-2, run-
times were so much greater than for other algorithms that
they are omitted from the graph. (For the 60-variable prob-
lems mean runtime was more than 3000 sec., while for the
100-variable problems was more than 30,000 sec.)

For the 60-variable problems runtimes were low for all

0

500

1000

1500

2000

2500

60 100 150

times
(sec)

problem size (n)

SACQ
SAC-1
SAC-SDS
SAC-3

Figure 3: Runtimes for SAC algorithms on relop problems
of increasing size.

other algorithms, although average time for SAC-SDS was
half that for the light-weight algorithms (about 20 versus 40
seconds), while the mean runtime for SAC-3 was half-way
between these values. For the 100-variable problems, both
heavy-weight and both light-weight algorithms performed
similarly, but the heavy-weight algorithms were more than
twice as fast as the light-weight algorithms on average.
(SAC-SDS was somewhat faster than SAC-3.) However, for
the largest problems, this difference tended to reverse, so
that SAC-1 was now the fastest algorithm on average and
SAC-SDS the slowest. In this case the mean runtimes for
SACQ and SAC-3 were almost the same. The difference be-
tween SAC-3’s performance in this experiment (and later
ones) and on experiments with homogeneous random prob-
lems is due to the fact that SAC-3 can take account of the
redundancy in ordered problems, and this compensates for
the extra overhead.

Experiments with benchmark problems
Radio frequency assignment (RLFAP) problems were ob-
tained from the site maintained at Université Artois 1. These
were the modified RLFAPs called graph problems. Of the
seven problems in this set only the four with solutions were
used. These will be designated Graph1, Graph2, Graph3 and
Graph4. (The remaining problems are extremely easy so
they are not useful for comparisons of this sort.)

RLFAP problems have domains composed of integer val-
ues, which include only a small subset of the values between
the smallest and largest values. The constraints are “distance
constraints” of the form |X1 −X2| > k or |X1 −X2| = k,
with the meaning that the absolute difference between vari-
ables X1 and X2 must be greater than a constant k or equal
to it, respectively.

The Graph1 and Graph3 problems have 200 variables; the
others 400. Despite this, each successively numbered prob-
lem is more difficult than the previous ones. This is due to

1http://www.cril.univ-artois.fr/lecoutre/benchmarks.html

94

0

10

102

103

104

105

1 2 3 4

times
(sec)

problem no.

SACQ
SAC-1
SAC-SDS
SAC-3

Figure 4: Runtimes for SAC algorithms on RLFAP problems
of increasing size and/or difficulty. Missing data point SAC-
SDS is due to inability to finish the run (time > 105 sec).
Note log scale on ordinate.

the fact that a few domains in the Graph1 and Graph2 prob-
lems are severely reduced in size, making them less difficult
to process than Graph3 and Graph4.

Results of tests with these problems are shown in Fig-
ure 4. For these moderately large problems it was not pos-
sible to complete any runs with SAC-2. SAC-SDS was also
highly inefficient, and this inefficiency increased as prob-
lem size and difficulty increased, to the point where the run
with hardest problem could not be completed. Another point
worth noting is that the inflection for SAC-SDS is different
from the other algorithms; this undoubtedly reflects the fact
that Problem 2 in this series is much larger than Problem 3
although it is basically easier to solve. In this case the space
inefficiency of SAC-SDS is also reflected in the runtime.

SAC-3 as about as efficient as SAC-1 on these problems,
but both are less efficient than SACQ. These differences be-
come clear for difficult problems that are also large. Thus,
runtimes for Problem No. 4 were 20,336, 21,244 and 13,664
sec for SAC-1, SAC-3 and SACQ, respectively. Since SAC-
1 begins to diverge from SACQ on the most difficult prob-
lems, this indicates that here the queue-based strategy scales
better than the repeat-loop strategy.

Scheduling problems were taken from two of the Tail-
lard series (Taillard 1993). These were the taillard-4-100 and
taillard-5-100 problems, where the time window is set to the
best-known value. These problems have solutions, but since
the time window restrictions are tight, they are relatively
difficult to solve. For these problems, constraints prevent
two operations that require the same resource from overlap-
ping; specifically, they are disjunctive relations of the form,
Xi + k1 ≤ Xj ∨ Xj + k2 ≤ Xi. The os-taillard-4 prob-
lems have 16 variables with 100-200 values per domain; os-
taillard-5 problems have 25 variables with 200-300 values
per domain.

Results of tests with these problems are shown in Fig-
ure 5. (SAC-2 is not included in the graph since the mean

0

10

102

103

104

105

ost-4 ost-5

times
(sec)

problem set

SACQ
SAC-1
SAC-SDS
SAC-3

Figure 5: Runtimes for SAC algorithms on os-taillard prob-
lems of increasing size. Note log scale on ordinate.

runtime with os-taillard-4 problems was over 104 sec; tests
with os-taillard-5 problems were not attempted.) Times for
the smaller os-taillard-4-100 problems were similar (mean
runtimes were 538, 344, 564 and 469 seconds for SAC-1,
SACQ, SAC-3 and SAC-SDS, respectively). However, with
larger problems, SAC-SDS was much slower than the other
algorithms; in this case SAC-1 and SAC-3 had similar run-
times while SACQ was somewhat faster.

Converting SAC to NSAC Algorithms
Converting either light-weight SAC algorithm to an algo-
rithm for establishing neighbourhood singleton arc consis-
tency is straightforward. In both cases all that is necessary is
that SAC-based consistency testing be replaced with a SAC-
based test limited to the neighbourhood of the focal variable.
For NSACQ this means replacing the line (in Figure 1)

If AC(P ′)) leads to wipeout

with the line

If AC(Xi+neighbours(Xi)) leads to wipeout

and the line

Update Q to include all variables of P

with

Update Q to include all neighbours of Xi

On the other hand, converting heavy-weight algorithms
requires some significant changes. (In this case no attempt
was made to convert SAC-2 because it proved to be so inef-
ficient on the experiments reported in the last section.)

To convert SAC-SDS to NSAC-SDS it was necessary
to eliminate the copy-queues and to substitute a different
means of updating the subproblems. The reason is that per-
forming AC on the basis of copy-queues (which include all
variables whose domains have been reduced since the last
test of that subproblem) takes one beyond the neighbour-
hood subgraph. This may cause the singleton value to be
discarded even if the subgraph is consistent. Instead, after

95

deleting values from a subproblem and putting the subprob-
lem back on the pending list, SAC-based arc consistency
was re-established for the neighbourhood subgraph. In do-
ing this care was taken to test all arcs in the neighbourhood
subgraph since it could not be assumed that simply testing
those adjacent to the focal variable would eliminate all pos-
sible values. One can make this assumption with the full
SAC algorithm, since neighbours of all affected variables
are checked.

For NSAC-3, a similar procedure for testing all arcs in a
subgraph had to be followed for the same reason. That is, as
variable-value pairs are successively added to an NSAC-3
branch, it is possible to choose a pair whose subgraph is no
longer arc consistent due to previous NSAC-based process-
ing, but where supports can be found in all neighbouring
domains for the singleton value. In this case, if one restricts
the initial arc consistency queue to arcs involving the focal
variable, this form of inconsistency is not detected. In con-
trast, in the SAC-3 algorithm the entire problem is made arc
consistent at each step, so this condition doesn’t occur.

Table 1. Results for Different Forms of NSAC
with Random and Structured Problems

probs NSAC-1 NSACQ NSAC-SDS NSAC-3
random 4 2 3 58
rlfap 745 418 3951 9098
relop 56 42 69 63
sched 511 200 719 260

Notes. Mean runtimes in sec.

Versions of NSAC based on each SAC algorithm ex-
cept SAC-2 were tested with the four types of problem on
which SAC algorithms had been tested. Each problem set
was one of those tested earlier: random problems were the
fifty 100-variable problems, relop problems were the fifty
100-variable problems, RLFAPs were the four rlfap-graph
problems, and scheduling problems were the os-taillard-4-
100 set. Results are shown in Table 1.

From these results, it is clear that NSAC algorithms based
on heavy-weight SAC methods are generally inferior to
those based on light-weight algorithms, sometimes dramati-
cally so. This is true even for problems for which the heavy-
weight SAC algorithms are either much more efficient than
light-weight algorithms (relop problems), or in the case of
SAC-3, equally efficient (RLFAPs)

Conclusions
This work introduces a distinction between light-weight and
heavy-weight SAC algorithms. That this distinction may be
of critical importance is shown by results of tests with prob-
lems of increasing size and/or difficulty. For the most part,
heavy-weight SAC algorithms do not scale as well as light-
weight SAC algorithms. This highlights what may be the
basic problem in this field, the tradeoff between reducing
the dominant operation of constraint checks and contending
with increased overhead due to the more complex data struc-
tures that are necessary to effect this reduction.

At the same time, it must be recognized that there is a
fairly consistent ordering of efficiency among heavy-weight
SAC algorithms, especially when dealing with structured

problems. With such problems SAC-3 is always the most
efficient, and except for some very large problems, its ef-
ficiency often matches or exceeds that of the light-weight
algorithms. Nonetheless, the limited data collected so far
suggests that scaling problems will appear whenever prob-
lem size exceeds some mid-sized range, roughly from 150 to
200 variables. Next is SAC-SDS, which is always shows loss
of efficiency relative to light-weight algorithms as problems
scale up. Finally, SAC-2 is always much slower than SAC-
SDS or any other SAC algorithm, and this difference can be
observed even with small problems.

In this work it was also found that in addition to diffi-
culties involving overall efficiency, heavy-weight algorithms
are not well-suited for establishing neighbourhood singleton
arc consistency. This is the case even with problems where
the original SAC algorithm is much better than any of its
light-weight counterparts.

All this shows that we cannot consider the developments
in this area of algorithmics as a simple ‘monotonic’ progres-
sion to better and better algorithms. Instead, sooner or later
we will have to face the fact that the tradeoffs entailed by
such developments make this area problematic with respect
to algorithmic efficiency.

References
Bartak, R., and Erben, R. 2004. A new algorithm for single-
ton arc consistency. In Proc. 17th Internat. FLAIRS Confer-
ence. Vol. 1, 257–262.
Bessière, C., and Debruyne, R. 2005. Optimal and subop-
timal singleton arc consistency algorithms. In Proc. 19th
Internat. Joint Conf. on Artif. Intell. – IJCAI’05, 54–59.
Bessière, C., and Debruyne, R. 2008. Theoretical analysis
of singleton arc consistency and its extensions. Artificial
Intelligence 172:29–41.
Debruyne, R., and Bessière, C. 1997. Some practicable fil-
tering techniques for the constraint satisfaction problem. In
Proc. 15th Internat. Joint Conf. on Artif. Intell. – IJCAI’97.
Vol. 1, 412–417. Morgan Kaufmann.
Lecoutre, C., and Cardon, S. 2005. A greedy approach to
establish singleton arc consistency. In Proc. 19th Internat.
Joint Conf. on Artif. Intell. – IJCAI’05, 199–204. Profes-
sional Book Center.
Taillard, E. 1993. Benchmarks for basic scheduling prob-
lems. European Journal of Operational Research 64:278–
285.
Wallace, R. J. 2015. SAC and neighbourhood SAC. AI
Communications 28(2):345–364.

96

