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Abstract

Possibilistic DL-Lite is an extension of the DL-Lite frame-
work to deal with uncertain pieces of information. In this
paper, we deal with inconsistency in DL-Lite in case where
the assertions are uncertain and encoded in a possibility the-
ory framework. We investigate three inconsistency-tolerant
reasoning methods for possibilistic DL-Lite knowledge bases
which are based on the selection of one consistent assertional
base. We show that the three possibilistic assertional-based
repairs are achieved in a polynomial time.

Introduction
In many applications, knowledge is often affected by un-
certainty especially when it is provided by several and po-
tentially conflicting sources. In (Dubois and Prade 1991), it
was shown that handling uncertainty is in a complete agree-
ment with possibility theory. This latter offers a very natural
framework to deal with ordinal and qualitative uncertainty
or preferences and priorities. This framework is particularly
appropriate when the uncertainty/priority scale only reflects
a priority relation between the different pieces of informa-
tion. Recently, a particular attention was given to the ex-
tension of Description Logics (DLs) within the possibility
theory setting (e.g. (Qi et al. 2011; Benferhat and Bouraoui
2013)). One of the interesting aspects of possibilistic knowl-
edge bases and more generally weighted knowledge bases
is the ability of reasoning with partially inconsistent knowl-
edge.

In recent years, there is a growing interest in Ontology-
Based Data Access (OBDA) applications. The OBDA prob-
lem takes as input a set of facts, an ontology and a conjunc-
tive query and aims at finding if there is an answer to the
query in the set of facts, eventually enriched by the ontol-
ogy. DL-Lite (Calvanese et al. 2007), a lightweight family
of description logics specifically fitted for applications that
use huge volumes of data, has been recognized as a powerful
formal framework for ODBA. DL-Lite guarantees a very low
computational complexity for reasoning tasks and especially
query answering.

A crucially important problem that arises in OBDA is how
to handle inconsistency; otherwise the knowledge base is
meaningless and useless. In such setting, inconsistency is
always defined with respect to some assertions that contra-
dict the ontology. Indeed, a DL-Lite terminology may be in-

coherent but never inconsistent. Many works (e.g. (Lembo
et al. 2010; Bienvenu and Rosati 2013)), basically inspired
by the approaches proposed in the database area, tried to
deal with inconsistency in standard DL-Lite by proposing
and adapting several inconsistency-tolerant inference meth-
ods that consist in accepting and leaving inconsistency while
coping with it when performing inference (i.e. while answer-
ing queries). All the proposed approaches are based on the
notion of assertion-based repair. An assertion-based repair
(Lembo et al. 2010) for DL-Lite knowledge bases is simply
a maximal set of facts consistent with the ontology (i.e. the
TBox). The notion of priority in DLs was studied in (e.g.
(Du, Qi, and Shen 2013)) in order to deal with inconsis-
tent SHIQ DL knowledge bases by defining maximal re-
pair w.r.t set inclusion in order to answer queries. In (Bien-
venu, Bourgaux, and Goasdoué 2014), the authors redefine
AR and IAR semantics proposed in (Lembo et al. 2010)
when priorities are available among facts and investigate a
method based on conflict resolution to find only if a query
has an answer in a preferred repair or not. Unfortunately,
there is to the best of our knowledge no approach for han-
dling inconsistency in possibilistic DL-Lite knowledge bases
in the context of OBDA. Namely, when uncertainty is bear-
ing only on the assertions in the ABox whereas the TBox is
assumed to be certain and stable.

In this paper, we address the problem of inference under
inconsistency in possibilistic DL-Lite. We investigate three
inconsistency-tolerant reasoning methods mainly based on
the selection of one consistent assertion-based repair. We
specifically focus on non-defeated inference. Interestingly
enough, such relations allow efficient handling of incon-
sistency in DL-Lite bases without any extra computational
complexity. An important feature when restoring consis-
tency in DL-Lite is the use of the notion of deductive clo-
sure. Indeed, we study for each proposed inference method
its sensitivity to the deductive closure. Note that the use
of deductive closure is really proper to description logic
languages contrarily to the propositional logic framework
where it is hard to be defined.

Possibilistic DL-Lite: A Brief Presentation
Handling uncertainty can be conveniently and efficiently
dealt with in possibility theory. In order to encode the avail-
able uncertain knowledge and exploit it to deal with incon-
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sistency, a possibility theory based DL-Lite logic (Benfer-
hat and Bouraoui 2013) is more appropriate. In this section,
we recall the main notions of possibilistic DL-Lite logic, de-
noted by π-DL-Lite.

DL-Lite Logic
This section briefly recalls the main concepts of DL-Lite
logic. For the sake of simplicity, we only consider DL-
LiteR that underlies the OWL2-QL language. (Calvanese et
al. 2007). The DL-LiteR language is defined as follows:

B −→ A | ∃R C −→ B | ¬B
R −→ P | P− E −→ R | ¬R

where A is an atomic concept, P is an atomic role and
P− is the inverse of the atomic role. B (resp. C) is called
basic (resp. complex) concept and role R (resp. E) is called
basic (resp. complex) role. A DL-Lite KB is a pairK=〈T ,A〉
where T is called the TBox and A is called the ABox. A
TBox includes a finite set of inclusion axioms on concepts
and on roles respectively of the form: B v C and R v E.
The ABox contains a finite set of membership assertions on
atomic concepts and on atomic roles respectively of the form
A(a) and P (a, b) where a and b are two individuals. For the
sake of simplicity, in the rest of this paper, when there is no
ambiguity, we simply use DL-Lite instead of DL-LiteR.

The semantics of a DL-Lite KB is given in term of in-
terpretations. An interpretation I=(∆I , .I) consists of an
non-empty domain ∆I and an interpretation function .I that
maps each individual a to aI∈∆I , each A to AI⊆∆I and
each role P to P I⊆∆I×∆I . Furthermore, the interpretation
function .I is extended in a straightforward way for complex
concepts and roles for instance as follows: (¬B)I=∆I \BI ,
(P−)I={(y, x) ∈ ∆I ×∆I |(x, y) ∈ P I} and (∃R)I={x ∈
∆I |∃y ∈ ∆I such that (x, y) ∈ RI}. An interpretation I is
said to be a model of a concept (resp. role) inclusion axiom,
denoted by I |= B v C (resp. I |= R v E), iff BI ⊆ CI

(resp. RI ⊆ EI ). Similarly, we say that I satisfies a concept
(resp. role) membership assertion, denoted by I |= A(a)
(resp. I |= P (a, b) ), iff aI ∈ AI (resp. (aI , bI) ∈ P I ).

A DL-Lite TBox T is said incoherent if there exists at
least a concept C such that for each interpretation I which
is a model of T , we have CI=∅. A KB K is said consistent
if it admits at least one model, otherwise K is said inconsis-
tent. Note that within the DL-Lite setting, the inconsistency
problem is always defined with respect to some ABox since
a TBox may be incoherent but never inconsistent.

Knowledge Representation in π-DL-Lite
Let L be a DL-Lite description language, a π-DL-Lite KB
is a set of possibilistic axioms of the form (ϕ, α) where ϕ
is an axiom expressed in L and α∈] 0, 1] is the degree of
certainty of ϕ. Namely, a π-DL-Lite KB K is such that
K={(ϕi, αi):i=1, ..., n}. Only somewhat certain informa-
tion are explicitly represented in a π-DL-Lite KB. Namely,
axioms with a null degree (α=0) are not explicitly repre-
sented in the KB. The weighted axiom (ϕ, α) means that
the certainty degree of ϕ is at least equal to α (namely

N(ϕ)≥α). A π-DL-Lite KB K will also be represented by
a coupleK=〈T ,A〉 where both elements in T andAmay be
uncertain. It is important to note that, if we consider all αi=1
then we found a classical DL-Lite KB: K∗={ϕi : (ϕi, αi) ∈
K}.

GivenK=〈T ,A〉 a π-DL-LiteKB, we define the α-cut of
K (resp. T and A), denoted by K≥α (resp. T≥α and A≥α),
the subbase of K (resp. T and A) composed of axioms hav-
ing weights at least greater than α and the strict α-cut of
K (resp. T and A), denoted by K>α (resp. T>α, A>α), as
a subbase of K (resp. T and A) composed of axioms hav-
ing weights strictly greater than α. We say that K is con-
sistent if the standard KB obtained from K by ignoring the
weights associated with axioms is consistent. In case of in-
consistency, we attach toK an inconsistency degree. The in-
consistency degree of a π-DL-Lite KBK, denoted Inc(K),
is syntactically defined as follow: Inc(K)=max{α:K≥α is
inconsistent}.

The semantics of π-DL-Lite KB is given by a possibility
distribution, denoted π. This latter is a mapping from a set
of DL-Lite interpretations Ω (namely, I=(∆I , .I)∈Ω) to the
unit interval ]0, 1]. For a complete presentation of the π-DL-
Lite semantics, see (Benferhat and Bouraoui 2013).

Negative Possibilistic Closure in π-DL-Lite
Let K=〈T ,A〉 be a π-DL-Lite KB. In (Benferhat and
Bouraoui 2013), it was shown that computing the incon-
sistency degree of K comes down to compute the one of
〈π − neg(T ),A〉 where π-neg(T ) is the negated closure
of T . The negated closure will contain all the possibilistic
negated axioms of the form (B1v¬B2,α) and (R1v¬R2,α)
that can be derived from T . The set π-neg(T ) is obtained by
applying a set of rules that extend the ones defined in stan-
dard DL-Lite when axioms are weighted with certainty de-
grees. This notion is crucial for characterizing the concepts
of consistency and how to deal with it in π-DL-Lite KB. At
the beginning π-neg(T ) is set to an empty set.

Rule1: Add all negated axioms of T to π-neg(T ).

Rule2: If 〈B1vB2,α1〉∈T and 〈B2v¬B3,α2〉∈π-
neg(T ) then add 〈B1v¬B3, min(α1, α2)〉 to π-neg(T ).

Rule3: If 〈B1vB2,α1〉∈T and 〈B3v¬B2,α2〉∈π-
neg(T ) then add 〈B1v¬B3, min(α1, α2)〉 to π-neg(T ).

Rule4: If 〈R1vR2,α1〉∈T and 〈∃R2v¬B,α2〉∈π-
neg(T ) or 〈Bv¬∃R2,α2〉∈π-neg(T ) then add
〈∃R1v¬B,min (α1,α2)〉 to π-neg(T ).

Rule5: If 〈R1vR2,α1〉∈T and 〈∃R−2 v¬B,α2〉∈π-
neg(T ) or 〈Bv¬∃R−2 ,α2〉∈π-neg(T ) then add
〈∃R−1 v¬B,min (α1,α2)〉 to π-neg(T ).

Rule6: If 〈R1vR2,α1〉∈T and 〈R2v¬R3,α2〉∈π-
neg(T ) or 〈R3v¬R2,α2〉∈π-neg(T ) then add
〈R1v¬R3,min (α1,α2)〉 to π-neg(T ).

Rule7: If 〈Rv¬R,α〉∈π-neg(T ) or 〈∃Rv¬∃R,α〉∈π-
neg(T ) or 〈∃R−v¬∃R−,α〉∈π-neg(T ) then add
〈Rv¬R,α〉 and 〈∃Rv¬∃R,α〉 and 〈∃R−v¬∃R−,α〉 to
π-neg(T ).
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Rule8: 〈ϕ, α1〉 ∈ π-neg(T ) and 〈ϕ, α2〉 ∈π-neg(T ) then
〈ϕ,max(α1, α2)〉 ∈π-neg(T ) where ϕ is an axiom of
TBox or ABox.

The first rule simply states that negative axioms that are
explicitly stated inK are trivially entailed fromK, and hence
can be added to π-neg(T ). The rules 2-7 simply express
transitivity relation induced by the inclusion relations. Rules
8 deals with redundancy and simply states that an axiom
does not need to appear several times in a KB. It is enough to
keep the one having the highest degree. Note that the min-
imum operation used in the rules for propagating certainty
degrees is justified by the fact that the joint distribution will
not be affected if the derived inclusion relations are added
to the KB. Lastly, when the degrees αi are equal to 1, then
π-neg(T ) simply collapses with the standard negated clo-
sure defined for standard DL-Lite KBs. In fact, π-neg(T )
extends standard DL-Lite when one only deals with fully
certain pieces of information.

Computing Inconsistency Degree in π-DL-Lite
We now provide a characterization of the inconsistency de-
gree of a π-DL-Lite knowledge base by only focusing on
〈π-neg(T ),A〉. First recall that the ABox only contains pos-
itive membership assertions (facts). Hence, the ABox alone
is always consistent. Similarly, the TBox π-neg(T ) alone
(namely, when ABox=∅) is also consistent. Indeed, it is easy
to define an interpretation I which is a model of π-neg(T ).
For each 〈B1v¬B2,α〉∈π-neg(T ), we let (Bi)

I=∅ if Bi is
a concept and (R)I=∅ if Bi is of the form ∃R or ∃R− and
R is a role. I is then trivially a model of π-neg(T ). Hence,
pieces responsible of inconsistency should involve both ele-
ments from π-neg(T ) and A.

Besides, an inconsistency problem is always defined with
respect to some ABox assertions and a TBox axiom, since a
TBox may be incoherent but never inconsistent. A conflict,
denoted by C, is clearly an inconsistent subset of information
that involve one element from π-neg(T ) and two elements
from A (Benferhat and Bouraoui 2013). It is minimal (up
to a particular case where B1=B2). Indeed, removing any
element of a conflict restores consistency. A particular case
is when B1v¬B1 belongs to π-neg(T ). This corresponds
to the situation of an unsatisfiable concept. A conflict hence
involves one negative axiom from π-neg(T ) and one or two
assertions. The following definition introduces the concepts
of the degree of a conflict.

Definition 1. Let C be a conflict. The degree of conflict,
denoted Deg(C), is defined as: Deg(C)=min(α1, α2, α3)
where (D1v¬D2,α1)∈C,(X,α2)∈C and (Y ,α3)∈C with X
(resp. Y ) is a concept or role assertion according to the form
of D1 (resp. D2).

The inconsistency degree of K (Inc(K)) using conflicts
and their degrees is defined as follows:

Proposition 1. Let K=〈T ,A〉 be a π-DL-Lite KB and π-
neg(T ) be its negated closure. Then:

Inc(K)=Inc(〈π − neg(T ),A〉)=max{Deg(C):C is a
conflict of 〈π-neg(T ),A〉}

Proof. The proof can be found in (Benferhat and Bouraoui
2013).

Inference Based on Possibilistic Entailment
Throughout the rest of this paper, we investigate
inconsistency-tolerant inferences stemming from a possi-
bilistic DL-Lite KB. We position ourselves in a context of
OBDA. In such setting, the TBox acts as a schema used to
reformulate the queries in order to offer a better access to the
data stored in the ABox. A crucially important problem that
arises in OBDA is how to handle inconsistency; otherwise
the kb is meaningless and useless. Indeed, we assume that
the TBox is stable and certain however assertions in the
ABox are attached with certainty degrees.

Example 1. Let K=〈T ,A〉 such that T ={EvF , ∃HvF ,
Fv¬G, ∃H−vI} and assume that assertional facts of
A come from distinct sources. Let {α1, α2, α3} be a
certainty scales such that 0<α3<α2<α1. A is as fol-
lows: A={(E(a), α1), (G(f),α1), (H(c, e), α2), (G(a),
α2), (F (t), α2), (H(a, b), α3), (G(c), α3), (I(y), α3)}. As
for the TBox T , each axiom ψ of T will be encoded in the π-
DL-Lite setting as (ψ, 1) (for instance (E v F ,1). For sake
of simplicity, we omit weights attached to TBox axioms.

Within the possibility theory setting, possibilistic entail-
ment is based on the selection of a consistent and not nec-
essarily maximal sub-base of A which is consistent with T .
This sub-set is induced by the inconsistency degree of K.
Within an OBDA setting, the inconsistency problem is al-
ways defined w.r.t some ABox, since a TBox may be inco-
herent but never inconsistent. We define the notion of ABox
conflict as a minimal inconsistent subset of assertions that
contradict the TBox. More formally:

Definition 2. Let K=〈T ,A〉 be an π-DL-Lite KB. A sub-
base C⊆A is said to be an assertional conflict set of K iff

• 〈T , C〉 is inconsistent
• ∀ f∈C, 〈T , C − {f}〉 is consistent with f=(ϕ, α) is a fact.

Example 2. [Example continued] One can com-
pute the following conflict sets: C1={E(a)α1

,
G(a)α2

},C2={H(c, e)α2
,G(c)α3

},C3={G(a)α2
,H(a, b)α3

}.
We used ϕαi

as an abbreviation of (ϕ,αi)

It is clear that in Definition 2, removing any assertional
fact f from C restores the consistency of 〈T , C〉. Recall
that when the TBox is coherent, a conflict involves exactly
two assertions. Let us use π(A) to denote the sub-set of A
induced by the inconsistency degree (i.e.π(A)=A>Inc(K)).
Note that if K=〈T ,A〉 is consistent then π(A)=A. The fol-
lowing definition introduces the π-DL-Lite entailment (π-
entailment).

Definition 3. Let K=〈T ,A〉 be a π-DL-Lite KB. A query
Q is said to be a π-consequence of K, denoted K |=π Q, iff:
〈T , π(A)〉|=Q.

Algorithm 1, COMPUTE-π(A), details how to com-
pute the subset π(A). The first step of the algorithm
consists in computing the π-neg(T ) of T . We suppose
that this is performed by a PINEGCLOSURE function.
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Algorithm 1 COMPUTE-π(A)

Input: K = 〈T ,A〉 where A=S1 ∪ . . . ∪ Sn
Output: π(A)
1: π-neg(T )←PINEGCLOSURE(T )
2: π(A)← ∅,
3: inc← 0, x← 0
4: for all Xv¬Y ∈π-neg(T ) do
5: for all (ϕi, αi), (ϕj , αj) ∈ A do
6: if 〈X v ¬Y, {(ϕi, αi), (ϕj , αj)}〉 is inconsistent then
7: x← min(αi, αj)

8: inc← max(inc, x),
9: x← 0

10: return π(A)← A>inc

Then, for each negative inclusion axiom (Xv¬Y, 1) of π-
neg(T ) the algorithm looks for the existence of a contra-
diction in the ABox. This is done by checking whether
〈(Xv¬Y ,1),{(ϕi, αi),(ϕj , αj)}〉 is consistent or not. Note
that this step can be performed by a boolean query expressed
in form (Xv¬Y, 1) to check whether {(ϕi, αi),(ϕj , αj)}
contradicts the query, or not.

Example 3. [Example continued] We have E(a) and G(a)
contradict (Ev¬G, 1) (a negative inclusion axioms deduced
from T ) and all assertion having weights equals to α1

are consistent with T . Therefore Inc(K)= α2 and π(A)=
{E(a)α1 , G(f)α1}.
Proposition 2. The computational complexity of π-
entailment is O(cons) where cons is the complexity of con-
sistency checking of standard DL-Lite.

Sketch of proof. The proof of the complexity of π-
entailment can be found in (Benferhat and Bouraoui
2013).

Possibilistic Deductive Closure
The inference relations given in Definition 3 can be either
defined in 〈T ,A〉 or on 〈T ,Cl(A)〉 where Cl(.) denotes the
deductive closure of a set of assertions. Note that the use of
deductive closure is really proper to description logic lan-
guages. Let us first define the notion of deductive closure in
standard DL-Lite.

Definition 4. LetK=〈T ,A〉 be standard DL-Lite KB. Let Tp
be the set of all positive inclusion axioms of T . We define
the deductive closure of a sub-base S ofAw.r.t T as follows:
Cl(S)={B(a):〈Tp,S〉|=B(a) whereB is a concept of T and
a is an individual of S} ∪ {R(a, b):〈Tp,S〉|=R(a, b) where
R is a role of T and a,b are individuals of S}.

The extension of deductive closure to the possibility-
theory framework gives:

Definition 5. Let K=〈T ,A〉 be π-DL-Lite KB. Let
β1=1>...>βn>0 be different weights in the KB. Let
Sβi={(ϕ, α):(ϕ, α) ∈A and α=βi}. Then:

Cl(A)=〈T ,Cl(Sβ1
)∪Cl(Sβ1

∪Sβ2
)∪...∪Cl(Sβ1

∪...∪Sβn
)

An important feature of π-inference is that it is insensitive
to the deductive closure, more precisely:

Proposition 3. Let K=〈T ,A〉 be a π-DL-Lite KB. Then
∀Q: 〈T ,A〉|=πQ iff 〈T ,Cl(A)〉|=πQ.

Proof. The intuition behind the proof is that first π-inference
uses a consistency checking of the whole sets Si to decide
whether this latter should be kept or not for restoring the
consistency of the KB. Besides, one can easily check that
in standard DL-Lite, 〈T ,A〉 is consistent iff 〈T ,Cl(A)〉 is
consistent.

Unfortunately, π-entailment is not very satisfactory when
handling inconsistency since following the definition of in-
consistency degree, π(A) is not guaranteed to be the maxi-
mal set of A. In general, possibilistic inference suffers from
an important drawback in the sense that some assertions
from A\π(A) that are not involved in any conflict are in-
hibited as we can see in the following example.
Example 4. [Example continued] One can see that I(y) and
F (t) are not involved in any conflict. However I(y)/∈π(A)
and F (t)/∈π(A).

Inference Based on Non-Defeated Entailment
One way to overcome this drawback consists in enlarging
π(A) by recovering all the inhibited non conflicting ele-
ments. Let us denote by C(A) the collection of conflict sets
in A (Definition 2). The following definition introduces the
notion of non conflicting assertions or (free assertions).
Definition 6. Let K=〈T ,A〉 be π-DL-Lite KB. An asser-
tion f∈A is said to be free iff ∀C∈C(A):f /∈C with f=(ϕ, α).

Intuitively, free assertions are those facts that are not in-
volved in any conflict. The notions of free elements and
free-entailment have been originally proposed in (Benfer-
hat, Dubois, and Prade 1992) where KBs are encoded in a
propositional logic setting. The definition of free-entailment
is also equivalent to the definition of IAR-entailment (Lembo
et al. 2010) for flat DL-Lite where its computation is achived
in polynomial time. Let S∈A be a set of facts, we denote by
free(S) the set of free assertions in S.
Definition 7. Let K=〈T ,A〉 be π-DL-Lite KB. Let
α1=1>...>αn>0 be different weights in the KB and
∀i=1, ..., n :Si={(ϕ, αi):(ϕ, αi)∈A}. The non-defeated as-
sertional base ofA, denoted by nd(A), is defined as follows:
nd(A)=free(S1)∪free(S1 ∪ S2)∪. . .∪free(S1∪. . .∪Sn)

where ∀i:free(S1∪...∪Si) denotes the set of free facts in
(S1∪...∪Si).
Example 5 (Example continued). We have free(S1) =
{E(a), G(f)},free(S1∪S2)={G(f),H(c, e),F (t)},free(S1
∪S2∪S3)={I(y),G(f),F (t)}. Hence nd(A)={E(a),G(f),
H(c, e),F (t), I(y)}.

Note that given i≥1, there is no inclusion relation
between free(S1∪. . .∪Si) and free(S1∪. . .∪Sk) where
k>i. Namely, if f∈free(S1∪. . .∪Si) with f=(ϕ, α),
this does not mean that f∈free(S1∪. . .∪Sk) since
S1∪. . .∪Si⊂S1∪. . .∪Sk and S1∪. . .∪Sk may include
new free assertional facts some of which can contra-
dict ones which are free in S1∪. . .∪Si. However if
f /∈free(S1∪. . .∪Si) then f /∈free(S1∪. . .∪Sk).
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From Definition 2, when T is coherent, a conflict involves
exactly two assertional facts and dropping any element re-
stores its consistency. When certainty degrees are available,
restoring the consistency of a conflict sets comes down to
throw out the elements which have the lowest level of cer-
tainty. More formally,

Definition 8. Let C={(ϕi, αi), (ϕj , αj)} be a conflict
in A then 〈T , C∗〉 is consistent where C∗=C>Inc(C)

and
Inc(C)=min(αi, αj).

It is clear that the non-defeated base nd(A) of A is com-
posed of all the facts that are not contained in the least cer-
tainty level of each conflict ofA. Indeed, if there is a conflict
C in A, then all the assertions that belong to C∩C∗ have a
certainty degree higher than Inc(C).

Proposition 4. Let K=〈T ,A〉 be π-DL-Lite KB. Then
nd(A)={(ϕ, α): ∀C∈C(A), (ϕ, α)/∈C\C∗}

Proof. Let C be a conflict of A where k=Inc(C)
and nd(A)=free(S1∪. . .∪Sn). Assume that (ϕ, αi)∈C∗.
This means that k≥i and ϕ∈iS1∪. . .∪Sk. This means
also that ϕ∈ifree(S1∪. . .∪Sk). Moreover for n>k
ϕ∈ifree(S1∪. . .∪Sn), since if (ϕ, αi) is involved in an-
other conflict, then following Definition 8 we drop the
elements having the lowest certainty level. Therefore
ϕ∈nd(A). The converse follows similarly.

Example 6 (Examples continued). We have: C1=
{E(a)α1 , G(a)α2},C2={H(c, e)α2 ,G(c)α3},C3={G(a)α2 ,
H(a, b)α3}. Indeed, C∗1={E(a)α1}, C∗2={H(c, e)α2},
C∗3={G(a)α2}, thus nd(A)={E(a),G(f), H(c, e), F (t),
I(y)} which is the same result as in Example 5.

From Proposition 4, the set nd(A) is the largest subset of
A containing non defeated facts.

Definition 9. Let K=〈T ,A〉 be π-DL-Lite KB and nd(A)
be its non-defeated sub-base. A query Q is said to be a non-
defeated consequence (ND-consequence) from K, denoted
by K |=nd Q, iff 〈T , nd(A)〉 |=Q.

The following proposition shows that ND-inference is
sensitive to the use of the deductive closure.

Proposition 5. Let K=〈T ,A〉 be π-DL-Lite KB and
nd(A) be its non-defeated sub-base. Then ∀Q: if
〈T ,A〉|=ndQ then 〈T ,Cl(A)〉|=ndQ. The converse is false.

Proof. The proof is immediate since free(Si)⊆free(Cl(Si)),
∀i=1,...,n. For the converse it is enough to consider
T ={Ev¬B,BvC,EvC} and A=A1={E(a), B(a)}. We
have nd(A)=∅ and nd(Cl(A))={C(a)}. Hence C(a) is
an ND-consequence of 〈T ,Cl(A)〉 but it is not an ND-
consequence of 〈T ,A〉.

The computational complexity of the computation of the
non-defeated sub-base of A is polynomial. This is obtained
by a simple modification of Algorithm 1. Algorithm 2 shows
how to compute nd(A).

Proposition 6. The complexity of ND-entailment is in P.

Algorithm 2 COMPUTE-nd(A)

Input: K = 〈T ,A〉 where A=S1 ∪ . . . ∪ Sn
Output: nd(A)
1: π − neg(T )← PINEGCLOSURE(T ),
2: nd(A)← A,
3: inc← 0,C ← ∅.
4: for all X v ¬Y ∈ π − neg(T ) do
5: for all (ϕi, αi), (ϕj , αj) ∈ A do
6: if 〈X v ¬Y, {(ϕi, αi), (ϕj , αj)}〉 is inconsistent then
7: inc← min{αi, αj}
8: C ← C ∪ {{ϕi, ϕj} \ {ϕi, ϕj}>inc}
9: return nd(A) \ C

Proof. The proof follows from the fact that computing
free-subbase is done in polynomial time. ND-entailment
proceeds to a linear number of computations of free sub-
bases.

Inference Based on Linear-Based Entailment
Another way to recover the inhibited assertions is to define
the linear assertional base from A that is consistent with T .

Definition 10. Let K=〈T ,A〉 be a π-DL-Lite KB.
Let α1=1>...>αn>0 be different weights in A and
Si={(ϕ, αi):(ϕ, αi)∈A}. The linear base of A, denoted
`(A), is obtained as follows:

• For i=1:`(S1)=S1 if 〈T ,S1〉 is consistent. Otherwise
`(S1)=∅.
• For i>1: `(S1∪. . .∪Si)=`(S1∪. . .∪Si−1)∪Si if
〈T , `(S1 ∪ . . . ∪ Si−1) ∪ Si〉 is consistent. Otherwise
`(S1∪. . .∪Si)=`(S1∪. . .∪Si−1).

Clearly, `(A) is obtained by discarding the layer Si when
its facts conflict with the ones involved in the previous lay-
ers. `(A) is unique and consistent with T .

Example 7 (Example continued). We have
T ∪{E(a), G(f)}α1

∪{{H(a, b), G(c),I(y)}α3
} is consis-

tent. Then `(A)={E(a),G(f), H(a, b), G(c), I(y)}.
The following proposition shows that the `-inference is

insensitive to the deductive closure, more precisely:

Proposition 7. Let K=〈T ,A〉 be a π-DL-Lite KB. Then
∀Q: 〈T ,A〉|=`Q iff 〈T ,Cl(A)〉|=`Q

Proof. The proof is similar to the proof of Proposition 3
since `-inference use also a consistency checking of the
whole layer to decide whether this latter should be kept or
not for restoring the consistency of the KB. Recall that a
layer Si={(ϕ, αi):(ϕ, αi) ∈A} where α1=1>...>αn>0 are
the different weights in A.

Algorithm 3 shows how to compute the set `(A), the lin-
ear sub-base of A.

Proposition 8. The computational complexity of `-
entailment is inO(n∗ cons) where n is the number of strata
in the DL-Lite KB and cons is the complexity of consistency
checking of standard DL-Lite.
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Algorithm 3 COMPUTE-`(A)

Input: K = 〈T ,A〉 where A=S1 ∪ . . . ∪ Sn
Output: `(A)
1: π − neg(T )← PINEGCLOSURE(T )
2: `(A)← ∅,
3: inc← 0
4: V ← {α1, α2, ..., αn} //vector of weights in A
5: S ← ∅, S(A)← ∅ // a collection of strata
6: for all αi ∈ V do
7: for all (ϕj , αj) ∈ A do
8: if αi=αj then S ← S ∪ {(ϕj , αj)}
9: S(A)← S(A) ∪ S, S ← ∅

10: for all X v ¬Y ∈ π − neg(T ) do
11: for all S ∈ S(A) do
12: for all (ϕi, αi), (ϕj , αj) ∈ (`(A) ∪ S) do
13: if 〈X v ¬Y, {(ϕi, αi), (ϕj , αj)}〉 is inconsistent

then inc← max{αi, αj}
14: if inc = 0 then `(A)← `(A) ∪ S
15: else inc← 0
16: return `(A)

Sketch of proof. The proof of the complexity of `-entailment
is immediate since to see whether a stratum should be kept
in the result of restoring consistency, one consistency check
is needed.

Comparative Analysis
Obviously, the `-entailment is more productive than π-
entailment) since given i>1, if Si is inhibited by |=π

then Sj with j>i is not necessarily inhibited by |=` .
However the linear sub-base does not solve completely the
drawback. Indeed, according to Definition 10, if an asser-
tion in Si conflicts with another one in a previous layer,
then the whole Si is inhibited including the assertions that
are not involved in any conflict. For instance, from Exam-
ple 4, F (t) is not involved in any conflict but it is still in-
hibited in `(A). The ND-entailment, `-entailment and π-
entailment don’t have the same behavior in the sense that
ND-entailment and `-entailment are more productive than π-
consequence. However, `-entailment remains incomparable
with the ND-consequence, since layers including non free
assertions can be present in `(A). Finally `-entailment and
π-entailment are insensitive to the negated closure. However
ND-inference is sensitive to the use of the deductive closure.
The following figure summarizes the relationships between
ND-entailment, `-entailment and π-entailment.

π-inference cl(π)-inference

`-inference

cl(`)-inference

ND-inference

cl(ND)-inference

Figure 1: Relationship between inference relations

Conclusions
This paper dealt with an important issue regarding reason-
ing under inconsistency in π-DL-Lite. The core of our ap-
proach is exploiting the available certainty degrees for deal-
ing with inconsistency. We defined inference modes based
on possibilistic DL-Lite entailment and linear-based entail-
ment. Both of them are not sensitive to the deductive closure
of the ABox. The ND-entailment extends possibilistic en-
tailment but remains incomparable with the linear inference
as it is the case in the propositional setting. One way to go
one step further than ND-inference is to use the possibilis-
tic closure. This is proper to the DL-framework and it can
hardly be defined in a propositional logic setting.
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