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Abstract 

Distributed multi-agent learning has recently received sig-
nificant interest but also proven to be very complex as the 
decisions made by any individual agent are not the only fac-
tors in the outcomes of those decisions. Uncertainty associ-
ated in the decisions and exploration choices of other agents 
add complexity and delay to individual learning processes. 
To address this complexity and provide for better scaling of 
distributed multi-agent learning this paper extends the op-
tions framework and the Nash-Q learning technique to apply 
to multi-agent distributed learning in non-cooperative game 
theoretic settings. We illustrate the effectiveness of this ap-
proach in a grid world and demonstrate improved learning 
for a set of tasks in a semi-cooperative environment. 

 Introduction   

Control of multi-agent systems and in particular using rein-
forcement learning in order to learn control strategies for 
such systems has recently gained significant popularity and 
interest to facilitate real world applications. However, dis-
tributed multi-agent learning of equilibrium strategies can 
be very complex and time consuming, making it difficult to 
scale to real-world tasks. Part of the complexity arises be-
cause in a multi-agent environment, at any given timestep, 
an individual agent’s decision is not the only contributing 
factor to the result of its actions, and consideration and 
prediction of the choices made by other agents slows the 
learning process and adds uncertainty to individual agent 
learning. This complexity is increased when exploration is 
introduced, as the exploration of other agents adds com-
plexity to the learning calculations and updates of individ-
ual agents. For this reason, many implementations of 
game-theoretic multi-agent approaches handle decision 
making in a centralized fashion. This, however, is general-
ly not realistic since it requires either a centralized coordi-
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nator or a completely cooperative scenario where one of 
the agents can determine the actions of all other agents. In 
most practical task domains neither of these assumptions is 
realistic since there is generally no central coordinator and 
agents are not fully cooperative (e.g. in a robotics domain, 
even if the overall task were collaborative, each agent 
would normally also have its own objective to not be dam-
aged which is not shared with the other agents). To suc-
cessfully address general multi-agent domains it is thus 
essential to be able to address distributed, non-
collaborative decision making and to be able to scale the 
decision learning to larger, more real world tasks.  

In single agent systems, Sutton, Precup and Singh intro-
duced the concept of options, or extended-time-step ac-
tions, to reduce the complexity of learning in a single agent 
system (Sutton, Precup, and Singh 1999). To achieve a 
similar scaling effect in multi-agent domains, this paper 
extends this concept to multi-agent systems, where a learn-
ing-time benefit is shown in the coordination mechanism 
established by providing multi-agent options. When agents 
select multi-agent options to execute as their equilibrium 
strategies, the equilibrium strategy character of these op-
tions implies that those agents have agreed that for the du-
ration of that option, they will follow a set joint policy. 

Options have previously been extended to consider a 
single agent executing multiple policies concurrently (mul-
ti-tasking) (Rohanimanesh et al. 2001), to task allocation 
domains and to transfer learning research. Many applica-
tions of options to multi-agent systems focus on applying 
options traditionally, as single agent policies in a multi-
agent environment, such as in Riedmiller and Merke’s soc-
cer ‘moves’ (Riedmiller and Merke 2002), or on leveraging 
a centralized control agent with decision making authority. 
Examples of applications of options to multi-agent systems 
include the work by Stone, Sutton, and Kuhlmann (Stone, 
Sutton, and Kuhlmann 2005) on a keepaway subtask of 
robot soccer, Ghavamzadeh and Mahadevan’s 
(Ghavamzadeh and Mahadevan 2004) application of op-
tions to communication and coordination hierarchies, and 
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Trigo and Coelho’s (Trigo and Coelho 2007) joint-
intention multi-agent option model. 

Stone, Sutton, and Kuhlmann (Stone et al. 2005) focus 
on keepaway (a subtask of robot soccer). While those 
agents use options to coordinate passing behavior among 
teammates, they are single-agent options and the selection 
of those options is carried out by only one teammate (only 
the ball-possessor selects an option). Using collaborative 
options to support joint decision making is not addressed. 

Ghavamzadeh and Mahadevan (Ghavamzadeh and 
Mahadevan 2004) extend the options framework to multi-
agent systems in a purely cooperative task. Their work 
focuses on using an options-informed framework to deter-
mine when agents would be best served to coordinate and 
retrieve information about other agents’ intended action 
choices in a hierarchical task structure, but does not focus 
on team behaviors other than to maximize total system 
utility. Their work is extended by Cheng, Shen, Liu, and 
Gu (Cheng et al. 2007) to learn options at multiple levels in 
the task hierarchy, but that work also does not look at op-
tions to facilitate teamwork, but rather as a mechanism to 
maximize the total system utility. Recent work in Dec-
POMDPs (Amato, Konidaris, and Kaelbling 2014) also 
extends the options framework to multi-agent systems, and 
similarly focuses on purely cooperative domains. 

Trigo and Coelho (Trigo and Coelho 2007) describe op-
tions as a set of intentions for individual systems, and de-
scribe a hierarchical approach where the intentions of indi-
vidual agents are coordinated into the intentions of the total 
group of agents. At each decision epoch in their model, the 
agent can choose whether to select an action individually 
or request that one be selected for them by the collective. 
The collective and individual policies are motivated by 
different goals and are learned in parallel. The primary 
difference between their work and the structure we are 
about to describe is the selection of opportunities to col-
laborate via a centralized collective versus the selection of 
specific collaboration behaviors by individual agents.  

Options have proven to be an efficient mechanism to 
speed learning time for single agents by Provost, Kuipers, 
and Miikkulainen (Provost, Kuipers, and Miikkulainen 
2004) who compared learning effectiveness in a robot-
sensing environment between options-enabled and primi-
tive action learners. They concluded that options-enabled 
learners were able to rapidly identify critical areas of the 
state space because options moved high-value, distant re-
wards through the learning system more efficiently.  

In this paper, we briefly cover the techniques which 
have been extended by this research, describe the approach 
taken to develop joint multi-agent options in general, non-
cooperative settings, describe an experiment on learning 
speed and action selection in a grid world with collabora-
tive and competitive aspects, and present conclusions. 

Background 

In the work described in this paper we will extend two 
primary concepts, options and Nash-Q. 

Options 

Options, as described by Sutton, Precup and Singh (Sutton 
et al. 1999), provide a mechanism in single agent systems 
to extend actions over multi-step time scales. Formally, 
options (π, τ, I) are described as being comprised of:  

 a policy π: S × Ap→[0,1] where S is the set of all 

states and Ap is the set of primitive actions, where π 
represents the probability of the corresponding ac-
tion; 

 a termination condition τ: S ×Ap →[0,1] where S is 

the set of all states and Ap is the set of primitive 
actions, where τ represents the probability of termi-
nating the option; 

 an initiation set I ⊆ S. 
When in an initiation state, an agent has the ability to se-

lect an option associated with that initiation state. Once an 
option has been selected, an agent will follow the policy 
associated with that option until that option terminates per 
τ. Primitive, or single-step, actions can also be defined as 
options, and combined with the SMDP work of Bradtke 
and Duff (Bradtke and Duff 1995), the Sutton, Precup and 
Singh paper defines policies over options, thereby enabling 
temporal hierarchies of behavior. Using this hierarchical 
SMDP learning has been shown to have the potential to 
significantly accelerate learning and to allow for larger 
problems to be learned than could be done using only 
primitive actions. (Provost et al. 2004) 

Nash-Q 

Nash-Q is a reinforcement learning algorithm that extends 
Q-learning to the game-theoretic multi-agent domain. 
Since in these domains greedy utility maximization by 
each agent is no longer a viable solution, Nash-Q learns 
instead a game-theoretic equilibrium strategy. In particular, 
Nash-Q learning for multi-agent systems (Hu and Wellman 
2003), uses the Nash Equilibrium as the update feature for 
Q-learning as opposed to the max. This was chosen as a 
mechanism to address the fact that learning in multi-agent 
systems is challenging due to the uncertainty associated 
with other agents’ explorations and that an agent who pos-
sesses some knowledge about the choices, benefits or re-
wards of other agents can improve their learning by mak-
ing decisions informed by that knowledge in addition to 
reasoning about their own behavior. 

A Nash-Q learner learns in a distributed fashion and rea-
sons that the other agents within a system will behave ra-
tionally (in a game-theoretic sense) in future interactions, 
and therefore selecting an equilibrium behavior will prove 
more advantageous in semi-cooperative games than select-
ing an independent max behavior. 

Nash-Q, formally, extends the traditional Q-value update 
equations for reinforcement learning: 

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = (1 − 𝛼𝑡) ∗  𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 
𝛼𝑡 [𝑅𝑡 +  𝛽 max

𝑎
𝑄𝑡(𝑠𝑡+1, a)]  

(1) 

 where 𝛼𝑡 is a learning rate and β represents a discount 
factor and 𝑅𝑡 is the learner’s reward at time 𝑡 to stochastic 
multi-agent games as 
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𝑄𝑡+1
𝑖 (𝑠𝑡 , 𝑎1, … , 𝑎𝑛) = (1 − 𝛼𝑡) ∗

 𝑄𝑡
𝑖(𝑠𝑡 , 𝑎1, … , 𝑎𝑛) + 𝛼𝑡[𝑅𝑡

𝑖  +  𝛽 𝑁𝑎𝑠ℎ𝑄𝑡
𝑖(𝑠′)]  

(2) 

where 𝑁𝑎𝑠ℎ𝑄𝑡
𝑖(𝑠′) is the expected payoff of the Nash 

equilibrium strategy of the stage game associated with the 
next state Q-values. Selection of that equilibrium strategy 
consistently across agents is one of the challenges of Nash-
Q. For the initial implementation, Hu and Wellman select-
ed the first equilibrium. 

Nash-Q learning is a commonly used learning algorithm 
in multi-agent domains and we extend it to the situation 
where agents can use multi-agent options as action choices. 

Approach 

In this paper we will expand on the concept of an option 
from single agent reinforcement learning to allow for hier-
archical learning with extended time actions in multi-agent 
domains. For this we will extend the concept of the single 
agent option to the game theoretic multi-agent setting and 
integrate it into a hierarchical multi-agent learning frame-
work. We will illustrate the effect this has on the value 
function update in the Nash-Q learning algorithm and will 
finally show the benefit of this in a grid world domain. 

A multi-agent option extends a single-agent option as 
follows. A multi-agent option (P, π, τ, I) is comprised of: 

 a set of participating players 𝑃 ⊆ 𝑋, where 𝑋 is the 
set of all known agents 

 a multi-agent policy (i.e. an equilibrium strategy 
profile) in the form of a set of policies (one for each 
participating player) 𝜋1…𝑛: 𝑆 × 𝐴1…𝑛  → [0,1] 
where 𝑆 is the set of all states, 𝐴𝑝 is the set of 

primitive actions, and 𝑛 is the number of 
participating players; 

 a termination condition 𝜏: 𝑆+ × 𝐴1…𝑛 → [0,1] where 
𝑆+ is the set of all states including any termination 
states, 𝐴𝑝 is the set of primitive actions, and 𝑛 is the 

number of participating players; 

 an initiation set 𝐼 ⊆ 𝑆. 
 The primary extension from the standard option frame-

work is the shift from a single agent policy to a set of poli-
cies (one for each participating player) which jointly form 
a Nash equilibrium strategy for a given task represented by 
the multi-agent option. When in an initiation state, each 
player has the ability to select a multi-agent option. If all 
participating players select the multi-agent option, for as 
long as all participating players jointly pursue that option, 
those agents follow a previously established collaborative 
interaction based on execution of their own individual pol-
icies πi. None of the agents should have an incentive to 
terminate outside the joint termination condition because 
once agents have decided to pursue the “subtask” repre-
sented by the option (and do not change their mind), the 
fact that the associated policies form a Nash equilibrium 
strategy should remove any incentive to deviate from this 
strategy. Following this reasoning, for the focus of this 
paper, agents terminate execution of a multi-agent option 
either (a) when that option reaches a probabilistic termina-

tion state or (b) when it is detected that the other agents are 
not participating in the selected option. This detection hap-
pens immediately after the first action is taken within an 
option, as the current implementation is fully observable. 
Other termination schemes for agent non-selection or early 
exit from an option choice will be addressed in future 
work. 

At each decision epoch, the players use Nash-Q to de-
termine the Nash equilibrium action they will play for the 
next cycle. This selected action could be a primitive action 
or a multi-agent option. If both players choose to play the 
same multi-agent option, they are effectively choosing to 
collaborate for the duration of that option. For the purposes 
of this work, Nash equilibrium are identified by the GAM-
BIT game theory tool suite (McKelvey, McLennan, and 
Turocy 2011).  

An individual player Pi’s decision process is as follows: 
1. Pi selects an action (either primitive or multi-agent 

option) for the current state s per the learning 
method used (in this case Nash-Q, but the process 
can be generalized). In this case, the selection 
process is per Nash-Q, and will satisfy a Nash 
equilibrium strategy when the available actions to 
consist of all primitive options and all multi-agent 
options where s is a member of that option’s 
initiation set and Pi is a member of the set of 
participating players for that option. 

2. All players execute their selected actions and 
receive observations. If a player has selected a 
multi-agent option, the primitive action to execute 
is selected based on the player’s policy πi 
associated with that multi-agent option. 

3. Pi updates the Q-value of the current state s for the 
primitive actions that were taken.  

4. If all participating players are executing a multi-
agent option, and that option has terminated, Pi 
updates the Q-value for the initiation state of that 
option with the discounted cumulative reward 
associated with executing that option.  

5. If Pi is executing an option and all participating 
players are also executing that option, Pi’s next 
action for the new state is selected from the 
associated policy πi and return to step 2. Otherwise 
(including the case where all participating players 
are not executing the option), return to step 1.  

Primitive actions are updated per the standard Nash-Q 
process, but updating the value of the options is handled 
slightly differently. After an option 𝑜 has completed, the 
value of its initiation state 𝑠0 is updated per Eq. 3. 

𝑄𝑡+1(𝑠0, 𝑜) = [(1 − 𝛼) ∗ 𝑄𝑡(𝑠0, 𝑜)] + [∑ 𝛽𝑖𝑅𝑖
𝑢
i=0 ] +

(α ∗ 𝛽𝑢+1 ∗ 𝑁𝑎𝑠ℎ𝑄(𝑠′))  
(3) 

where 𝑢 represents the number of timesteps the option 
was active, and 𝑅𝑖 is the reward received in intermediate 
state 𝑠𝑖, which is a state traversed during option execution. 

For the purposes of this paper, the assessment of wheth-
er or not all participating players have selected an option is 
handled through the full-observability of the system – all 
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Figure 2. A sample path taken by two agents executing the 

Move Up To Bridge option 
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Figure 1. The Grid World 
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players know via observations exactly which (if any) mul-
ti-agent option was selected by each independent agent and 
which primitive action was executed immediately after the 
first action is executed. Future work will include the as-
sessment of whether or not all participating players are 
executing a multi-agent option as well as the termination 
responses if agents leave a multi-agent option prematurely. 

Design of Experiments 

To demonstrate the operation and assess the benefits of the 
presented hierarchical learning approach using multi-agent 
options with Nash-Q, a set of experiments in a two-agent 
grid-world domain that contains collaborative and competi-
tive task elements was performed. 

The target world for these experiments is the 3x3 grid 
world illustrated in Fig. 1. The purpose of the game is for 
each player to locate one of two keys and bring it to their 
goal to open a player-specific door to a blocked region. 
Each key can only be picked up by a single agent when 
both agents occupy the same square as the key. To access 
the keys, the agents must cross a bridge square, which they 
can only enter together. If an agent attempts to enter the 
bridge square alone, that agent remains in place. If both 
agents attempt to pick up a key, neither agent gets the key. 
The game ends when at least one door is opened with the 
key, meaning that the agent and a key are in the goal 
square and a specific action is taken to open the door. Each 
agent is penalized for every time step, making the final 
score dependent on the time it takes to retrieve and use a 
key. This penalization as well as the difference in reward 
between the agent that picks up a key and the agent that 
only assists comprises the competitive aspect of the game. 
Agents receive a small bonus reward for holding a key and 
a slightly smaller reward for the other agent holding a key. 
There is a large reward associated with opening the door. 
All rewards aggregate at each time step.  

In this environment, the states are described by the posi-
tions of each player, the positions of each of the keys, and 
for each key, which (if any) agent possesses the key. These 
parameters describe the available state space S: P1x × P1y 
× P2x × P2y × K1x ×K1y ×K2x ×K2y ×K1p ×K2p; where 
P1 and P2 represent the players in the game, K1 and K2 
represent the keys, x and y represent x and y positions in 

the grid world environment [0,2], and p represents the pos-
session of a given key {NONE, P1, P2}. This results in 
59,049 distinct states. 

There are six available primitive actions Ap {UP, 
DOWN, LEFT, RIGHT, PICKUP, and DROP}. Overall, 
there are also six available multi-agent options O {Move 
Up To Bridge, Move Down To Bridge, Player 1 Gets Key 
1, Player 1 Gets Key 2, Player 2 Gets Key 1, and Player 2 
Gets Key 2}. In each of these multi-agent options the joint 
policy represents a Nash equilibrium strategy for obtaining 
the associated task objective indicated in the name of the 
option. Both players must participate in these options (P = 
{P1, P2}). Rules defining the initiation states and the ter-
mination probabilities associated with these options are 
defined in Table 1. All states that meet the criteria indicat-
ed in Table 1 are members of the initiation set for that mul-
ti-agent option. 

A selected example path for two agents from the “move 
up” option is illustrated in Fig. 2. Each of the players has 
the ability to select a multi-agent option in the associated 
start states for that option in addition to the primitive ac-

Table 1. Definition of the initiation states and termination proba-

bilities associated with the six multi-agent options 

Option 
Initiation State 

Definition 

Termination  

Probability Definition 

Move Up To 

Bridge 

P1y = 0 & P2y = 0 & 

~(P1x = 1 & P2x = 1) 

1 if P1x = 1; P2x = 1;  

 P1y = 1; P2y = 1  

0 otherwise 

Move Down 

To Bridge 

P1y = 0 & P2y = 0 & 

~(P1x = 1 & P2x = 1) 

1 if P1x = 1; P2x = 1;  

 P1y = 1; P2y = 1  

0 otherwise 

Player 1 Gets 

Key 1 

P1y = 2 & P2y = 2 & 

K1p = NONE &  

K2p ≠ P1 

1 if K1p = P1 

0 otherwise 

Player 1 Gets 

Key 2 

P1y = 2 & P2y = 2 & 

K1p ≠ P1 & 

K2p = NONE 

1 if K1p = P1 

0 otherwise 

Player 2 Gets 

Key 1 

P1y = 2 & P2y = 2 & 

K1p = NONE &  

K2p ≠ P2 

1 if K1p = P2 

0 otherwise 

Player 2 Gets 

Key 2 

P1y = 2 & P2y = 2 & 

K1p ≠ P2 & 

K2p = NONE 

1 if K1p = P2 

0 otherwise 
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Figure 3. Comparison of the score for each agent in a two agent game with and without multi-agent options. Each point represents the 

average score for 100 episodes across 5 runs. The bars represent +/- one standard deviation. The exploration rate decreases exponentially 

from 1 at a rate of -0.0005*episode, to a minimum of 0.01. The black diamonds illustrate where the exploration rate (ϵ) = 0.1 and 0.01. 

Note these values are plotted logarithmically, and all values have been increased by a constant (1000) to ensure that they are depicted on 

this scale. After each run, the leading player was established as the player with the highest average score over the last 100 episodes. 
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tions. No options are available when agents are split (one 
in the top row and one in the bottom row) or in the bridge 
square itself. The policies associated with the options rep-
resent Nash equilibrium strategies for their specific associ-
ated subtasks and, while they have been hand-coded in 
these experiments, could easily be learned policies via a 
sub-goal learning process. 

The options themselves are each focused on an aspect of 
the game that requires coordination among the players to 
be successful, for example, both players being in the same 
square as a key with only one player attempting to pick the 
key up. This results in some sub-optimal individual behav-
iors for the agents when seen in relation to their final task 
rewards. For example, if an agent is already in the same 
square as a key, the other agent is not, and a “get key” op-
tion is jointly selected, the agent that is already positioned 
correctly will remain in that location (at individual cost) 
until the other agent arrives at that position. 

If a player selects a multi-agent option and the other 
player does not select the same option, the player will ter-
minate option execution and reselect based on Nash-Q. 
This is enabled by the fully observable nature of the cur-
rent implementation and allows our experiment to remain 
unconcerned with detecting if the other player has selected 
an option. If both players select the same multi-agent op-
tion, that option executes until a common termination hap-
pens per the termination probabilities.  

To determine learning performance, these experiments 
were run for 10,000 episodes. Games were run with or 
without multi-agent options available. Execution of an 
episode continued until a player opened a door or 500 
primitive actions were executed. In the learning period, 
players would randomly select an option per an exponen-
tially decaying rate (λ) of -0.0005, which would transition 
to a 1% exploration rate (ϵ) after the learning period was 
completed (episode 8400). Initial Q-values are set to 5, 
which is the reward when both players hold keys, without 
the movement penalty. In the case where there were multi-
ple equilibria, agents would select risk dominant equilibri-

um (Harsanyi and Selten 1988). If there were multiple risk 
dominant equilibrium, the agents would select the risk 
dominant equilibrium that maximized their multiplicatively 
combined utility. 

Results 

The score of both agents over the course of their learning is 
shown in Fig. 3, with the multi-agent-options-enabled 
agents represented with dark lines and the options-free 
agents with gray lines. Indications of the time during the 
experiments when the exploration rate reaches 0.1 and 0.01 
are shown by the black diamonds. The agents with multi-
agent options available are able to learn the optimal policy 
of both agents opening their doors simultaneously. The 
agents without multi-agent options available under the 
same learning time parameterization are only able to learn 
the sub-optimal policy of both agents retrieving keys under 
the same parameters. One of the key differences in our 
work to previous implementations of options in multi-
agent systems is that each agent makes decisions based on 
individual utility. As seen in these results, the agents with 
multi-agent options learn the optimal policy together. De-
spite the fact that at least one of the non-options-enabled 
agents is able to reach the goal during the exploration peri-
od, those agents stabilize to a sub-optimal policy when the 
exploration period is concluded, because at least one agent 
does not have any learned incentive to cooperate beyond 
retrieving the keys. 

As illustrated in Fig. 4, multi-agent options make more 
of the policy space (represented as a percentage of the q-
table explored) accessible to agents quickly. Agents are 
able to use multi-agent options to leap forward to less easi-
ly accessible regions of the solution space and exploit the 
rewards available there. This result replicates the single 
agent domain findings of Provost, Kuipers, and Miikku-
lainen (Provost et al. 2004) in a multi-agent domain. 

As shown in Fig. 5, agents independently selected to 
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Figure 5. Options selected per executed round.  
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Figure 4. Percentage of Q-Table explored with multi-agent op-

tions and without multi-agent options.  
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collaborate via options a greater percentage of time as they 
learned. The spike shown near episode 8000 is due to a 
single run with some late exploration on the part of the 
lagging player. The variance in option selection is due to 
the fact that in some runs, after an initial learning period, 
the primitive actions within the option policies replaced the 
options themselves. Since options and their underlying 
actions initially resulted in the same q-values, and since the 
update process was asymmetric (Q-values of primitive 
actions were updated as options executed, but options were 
not updated when primitive actions aligned with option-
based policies executed), primitive actions have a slight 
learning advantage. In a few cases, once a policy was 
learned, the behavior was to “dissolve the option” and use 
the constituent actions instead. However, it is important to 
note that while the final policy no longer uses the options, 
it performs the same actions. The agent’s early use of op-
tions during learning is essential for the overall learning 
process, including the learning of the Q-values of the prim-
itive actions used in the final policy. 

Conclusions 

In this paper, we have shown that multi-agent options in a 
hierarchical reinforcement learning framework establish an 
early advantage to learning collaborative techniques. The 
pre-established coordination mechanisms available through 
these options establish a structure for agents to reach areas 
of the solution space that would be limited by the explora-
tion of other agents.  

Extending this research to support learned collaborative 
options rather than generated options is a logical extension 
of this work. Also, further analysis could be done to com-
pare the performance of multi-agent collaborative options 
to traditional single agent options. This analysis could de-
termine whether the contribution of multi-agent options 
was due to the collaboration inherent in those options, or to 
the extended timescale associated with those options. The 
collaborative nature of these subtasks would make devel-
opment of these options difficult without some mainte-
nance of history, since single agent options could get 
caught in loops if the other agents were uncooperative (for 
example, by trying to simultaneously retrieve a key, there-
by blocking both agents). 

Exploring other selection criteria for equilibrium strate-
gies or implementing other learning algorithms (other than 
Nash-Q) within this framework would also be of interest as 
an extension to this work. 
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