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Abstract

This work examines the potential for computational creativ-
ity in the culinary arts. In particular, we present the outcome
of our efforts to create an artificial chef that produces novel
salad recipes with limited human assistance. Our system was
designed in two steps: first, we constructed a statistical model
to rank recipes. Then, we experimented with various search
algorithms to explore the salad recipe space and discover
novel ingredient combinations. Surprisingly, we discovered
that the top ranked recipes from a randomly generated pop-
ulation were already of high quality, obviating the need for
search. To validate the quality of our automatically generated
salads, we conducted a blind taste test pitting three computer-
designed and three human-designed salads against each other.
We discovered that the best performing computer salad was
competitive with the human generated salads.

1 Introduction
Can machines be creative? This is a question that is
central to the field of Artificial Intelligence, and whose
history can be traced all the way back to Alan Turing’s
seminal paper that introduced the “Imitation Game” (Turing
1950). In the past few decades, impressive strides have
been made in the field of computational creativity in
areas as diverse as music composition (Cope 1992; 2005;
Quintana et al. 2013), the visual arts (Cohen 1995;
Colton 2012), storytelling (Turner 1993;
Birnbaum et al. 2014), humor (Binsted and Ritchie
1994), scientific discovery (Schmidt and Lipson 2009),
and mathematical problem-solving (McCune 1994;
2005). In this paper, we explore artificial creativity in a
domain that has been mostly overlooked — cooking.

In particular, we investigate the feasibility of creating a
program that autonomously generates novel and flavorful
salad recipes. In this preliminary work, we limit our
attention to salads to avoid having to model the complex
chemical transformations that the cooking process can
introduce (though this modeling problem offers a rich
setting for future investigations). Within this restricted
domain, our problem is this: given that ingredients can be
combined in an exponential number of ways to produce
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recipes, what is an effective strategy to navigate this space
and discover combinations that surprise and delight the
average human palate?

Our approach comprises two steps. First, we train a
discriminative classifier that, given two recipe descriptions,
predicts which one is better. We use this pairwise recipe
comparator as a heuristic to guide a local search algorithm
whose goal is to construct new ingredient combinations.
Surprisingly, our experiments reveal that very little search
is actually necessary to successfully create novel recipes.
Indeed, we found that our baseline approach — namely,
choosing to combine ingredients that are selected uniformly
at random — is startlingly successful. The salads generated
in this manner were received favorably by anonymous
human subjects in a blind taste test. This suggests that
ingredient combinations that make for good salads are
distributed rather densely throughout the ingredient space;
unlike in many other combinatorial search spaces, finding
good salad recipes is not a problem of looking for a needle
in a haystack. Phrased differently: creating novel salads
does not seem to require particularly great creative leaps.

The remainder of this paper is organized as follows. In
section 2, we discuss some related work on using com-
putational approaches to understand the structural proper-
ties of cooking recipes. Sections 3, 4, and 5 describe our
data acquisition, processing, model construction, and search
methodology. Section 6 describes and analyzes our simula-
tion and taste test results. We conclude with some sugges-
tions for future work in section 7.

2 Related Work
While there is little prior work that investigates compu-
tational recipe generation, there is an extensive body of
literature devoted to the problem of recommending recipes.
Typically, these systems suggest recipes for users to try
based on parameters such as their past assigned ratings
(Forbes and Zhu 2011; Freyne and Berkovsky 2010b;
2010a), their browsing history (Ueda, Takahata, and
Nakajima 2011), and ingredient availability and nutri-
tional needs (Kamieth, Braun, and Schlehuber 2011;
Shidochi et al. 2009). Crucially, however, none of these
systems generate novel recipes that weren’t already part of
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a human curated database.

More recently, Ahn et al. (2011) studied the structural
properties of recipe networks by using graph theoretic
approaches. Specifically, they constructed a weighted,
undirected graph where individual ingredients formed
the nodes and edges connected vertices that shared some
minimal number of flavor compounds. By analyzing this
flavor network, the authors were able to extract interesting
insights about the nature of ingredient pairing in various
world cuisines. For example, they discovered that North
American and Western European dishes tend to favor
recipes where ingredients share many flavor compounds;
East Asian and Southern European recipes, on the other
hand, tend to combine ingredients with disparate flavor
compositions.

Teng, Lin, and Adamic (2012) similarly used a combina-
tion of network analysis and machine learning techniques
to build a model that, given a pair of recipes, could predict
which one would receive a higher “star” rating. The dataset
used in this study was scraped from allrecipes.com, an
online aggregator of user-contributed recipes. The authors’
model was trained on pairs of recipes: each training
example was a vector of features that described the two
recipes, with a binary label indicating which of the recipes
was better (i.e., had received a higher star rating from
online users). The features used to describe the recipes were
derived by applying dimensionality reduction techniques
to two graphs: a complement network and a substitution
network. In the former, ingredients form the nodes, with
edges connecting two nodes only if they co-occur in some
minimal number of recipes. In the latter, ingredients share
an edge only if they can be effectively substituted for each
other in a recipe. Using this approach, the authors created a
model that could correctly identify the higher-rated recipe
from a pair 79% of the time.

Building on this prior work, we ask the question: how
can these insights into the structure and nature of ingredient
networks be used to create novel recipes? We note that this
work is most similar in spirit to that of the “cognitive cook-
ing” effort at IBM (Bilow 2014). However, most of IBM’s
work in this area remains proprietary; very little has been
published or otherwise released into the public domain.

3 Data Collection and Cleansing
We began by scraping the ingredient lists for salad recipes
with at least five user reviews from allrecipes.com (1802 in
all). In the remainder of this paper, we will refer to this mas-
ter set of recipes as R. We cleaned each ingredient name
by eliminating amount descriptors (3/4 cup, 1 lb., a pinch,
etc.) and preparation information (chopped, baked, sliced,
etc.), and by changing the word stem to its singular form.
So, for example, “1/2 lbs. sliced carrots” was converted into
“carrot”. Ingredients with multiple names were manually re-
named to a single, consistent name (for example, “scallion”
and “green onion” were both remapped to “green onion”).
Finally, following the approach of Teng, Lin, and Adamic,

we removed from consideration any ingredient that did not
appear in at least 6 unique recipes. This eliminated any in-
gredients that were rare, branded, misspelled, or not edible.
After these preprocessing steps, we were left with a list of
319 unique ingredients. We denote this set of ingredients by
I .

4 Ranking Recipes
We built a discriminative classifier that, given two recipes,
could predict which of the pair was better, i.e., received a
higher star rating. Our first approach used a binary vector
of length |I| = 319 to represent each recipe. The setting of
each of the bits corresponded to the presence (1) or absence
(0) of a specific ingredient in that recipe. A training example
consisted of the concatenation of the vectors representing
two different recipes, with a binary label indicating whether
the first or the second recipe received a higher star rating.
Following the approach of Teng, Lin, and Adamic, we
were selective in deciding which recipes were paired and
presented as training examples to the machine learning
system. Specifically, only recipe pairs that had a cosine
similarity greater than 0.2 were used as training examples.
These pairs, on average, shared 2.7 ingredients in common.
The similarity criterion was used to ensure that the learner
did not attempt to generalize from salad pairs that were
overly dissimilar (which may happen if the salads are drawn
from, say, different cuisines). The set R was partitioned into
a 60:20:20 train-validation-test split. All recipe pairs with a
similarity score above 0.2 in the training fold were supplied
as training examples to a boosted decision stump learner
(Friedman 2002) with 8 terminal nodes. The parameters
of the learner (namely, the number of boosting iterations)
were tuned based on performance on all pairs of recipes in
the validation fold. The accuracy of the learned model was
evaluated on all pairs of recipes in the test fold by measuring
the percentage of cases in which the model correctly picked
out the better recipe. With this simple bit vector recipe
representation, our predictive model achieved an accuracy
of 52%.

To improve on this performance, we decided to abandon
the bit vector representation and instead combine the
network-based approaches of both Teng, Lin, and Adamic,
and Ahn et al.. We constructed a complement network for
the ingredients in I , as outlined in Teng, Lin, and Adamic
(2012), and used the flavor compound data provided by
Ahn et al. (2011). There were, however, several ingre-
dients in I for which flavor compound information was
missing. We used mean value imputation to accommodate
these ingredients. Further, due to selection bias, the vast
majority of recipes from allrecipes.com have a rating
between 4 and 5 stars, out of 5. This is unsurprising,
since people do not knowingly contribute poor recipes to
online collections. However, this created an interesting
conundrum: the purpose of the classifier was to help us
automatically winnow out poorly performing recipes that
would be generated by a search process. However, this
search process was likely to generate many poor recipes,
from a part of the recipe space that the learner would not
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have seen, were it to be trained strictly on elements drawn
from R. In other words, the target distribution for the
classifier would not match the distribution of examples on
which it was trained. To remedy this, we supplemented the
set R with recipes that were generated by choosing between
6 and 12 ingredients uniformly at random from the set I .
We carefully curated these randomly generated recipes,
eliminating those that seemed even remotely palatable;
others, that were obviously bad ingredient pairings, were
assigned a 1-star rating and added to the set R. Figure 1
shows a couple of examples of these 1-star combinations.
In all, 1894 such 1-star recipes were added to our initial
recipe set, creating an augmented recipe set R′, of size 3696.

Recipe 1: Butter, condensed tomato soup, lemon zest,
mustard, strawberry, tomato sauce

Recipe 2: Baby arugula, potato, corn chip, cucumber,
flour, orange flavored jello, pineapple, watermelon,
white wine

Figure 1: Examples of randomly generated 1-star recipes.

We extracted network centrality features to describe
each recipe based on the complement and flavor compound
graphs. Following the approach of Teng, Lin, and Adamic,
we computed four centrality measurements for each ingre-
dient: betweenness, degree, PageRank, and eigenvector.
Each ingredient was thus associated with a vector of eight
centrality scores — its betweenness in the complement
network, its betweenness in the flavor network, its degree
centrality in the complement network, its degree centrality
in the flavor network, and so on. A recipe’s centrality
features were computed by summing up the centrality
vectors of its ingredients.

Network community features were also extracted using
the prescription of Teng, Lin, and Adamic. Starting with
the adjacency matrix W of a network, its rank-k approxima-
tion Wk = UkΣkV

T
k was computed using the singular value

decomposition. A recipe’s full ingredient bit vector ~b was
transformed into a lower-dimensional vector ~b′ = Σ−1k V T

k
~b

that encoded the community information in the network.
This dimensionality-reduction process was carried out with
both the complement and the flavor networks to produce two
separate network community vectors, that were then con-
catenated together. The appropriate value for k was selected
based on the classifier’s performance on the validation set.
We found that k = 60 was optimal for the complement net-
work, while k = 80 worked best for the flavor compound
network. By representing each recipe as a vector of central-
ity and community features, and with the augmented train-
ing set, we were able to construct a predictive model that
achieved an accuracy of 82% on the held-out test data. This
surpasses the accuracy of the model constructed by Teng,
Lin, and Adamic (79.2%).

5 Scoring New Recipes
In order to evaluate a newly generated recipe, we used the
following scoring function f that maps any given recipe r to
a real number:

f(r) =

∑
w∈W s(w)−

∑
l∈L(5− s(l))

5 · |R′|
Here, W ⊆ R′ is the set of recipes that the learned classi-

fier deems are “worse” than the recipe r, and L ⊆ R′ is the
set of recipes that the classifier deems are “better” than r.
The function s(k), where k ∈ R′, denotes the star rating of
recipe k on allrecipes.com (or the value 1, in case k was one
of the artificially generated recipes). Intuitively, f awards a
high score to a recipe r if it consistently “beats” highly rated
recipes from R′. Similarly, it awards a low score to a recipe
that consistently loses out to lowly rated recipes in R′. Thus,
every newly generated recipe is scored in a consistent man-
ner by running pair-wise comparisons against a standardized
set of curated recipes (namely, the set R′).

6 Results
Simulation Results
In our final step, we investigated effective search strategies
to explore the salad recipe space so as to discover high-
scoring, novel ingredient combinations. As a baseline, we
generated 800 random recipes, each with seven, eight, and
nine ingredients, and ranked them with our scoring function
f . We chose these particular recipe lengths since the aver-
age length of a recipe in R is eight. Our initial plan was to
use these 2400 recipes as the seed population for a genetic
algorithm that would seek to iteratively improve on them.
Surprisingly, we discovered that the top ranked recipes from
this seed population were already of high quality. The av-
erage score of the top 20 generated recipes was 0.39 (as
computed using the scoring function f ), with a maximum
score of 0.56. In comparison, the average score of the top
20 salads from the set R was 0.09, with a maximum score of
0.38. As such, attempting to improve on the seed population
using hill-climbing methods proved to be unnecessary. Sim-
ply building thousands of random recipes and retaining the
top ranked ones was sufficient. However, while our program
believed that these top recipes were “good”, we needed to
validate this with one final metric: human tastebuds.

Taste Test Results
To verify the quality of our computationally generated salad
recipes, we organized a blind human taste test. For this test,
we selected three recipes at random from the 20 top ranked
salads in R. We supplemented these with three computer-
generated recipes. The latter were randomly drawn from
a set of twenty recipes, each of which was the top ranked
one in an independently generated population. All of the
salads were then prepared by the staff in the Davidson Col-
lege Dining Services. The human designed salads were pre-
pared by following the instructions on allrecipes.com. For
the computer-generated recipes, the chefs were instructed to
strictly adhere to the following guidelines:

40



• Every ingredient listed was to be used.
• No extra ingredients were to be added.
• Every ingredient was to make “its presence felt”, i.e., its

flavor was to be clearly discernible.

The six salads were placed in a randomly permuted order,
with the ingredient lists placed next to the respective salads.
Volunteers were invited to sample the six salads and filled
out a questionnaire that asked them to rate the taste and
the novelty of the ingredient combinations of each salad
on a Likert scale from 1 to 5. The prompts used on the
questionnaire are shown in figure 2. Participants were not
told which of the salad recipes were human-designed and
which were computer-generated, but in the spirit of the
Turing Test, were invited to make their best guess.

Taste Rating: 1: Strongly disliked it, 2: Disliked it, 3:
Indifferent, 4: Liked it, 5: Strongly liked it

Novelty Rating: 1: Extremely common combination
(I’ve seen this before), 2: Somewhat common (I’ve
seen variants of this before), 3: Fairly common, with
some interesting twists , 4: Somewhat uncommon
(It’s quite different from anything I’ve seen before),
5: Extremely uncommon combination (I would have
never thought to combine those)

Figure 2: Human taste test questionnaire prompts.

Here are the six salads that were used, with the letter H/C
indicating the source of the recipe (human and computer re-
spectively).
Salad 1 (H): Paprika, poppy seed, sesame seed, spinach,

strawberry, vegetable oil, white sugar, white wine
Salad 2 (C): Cherry, chive, granny smith apple, mushroom,

onion powder, pine nut, salsa, salt
Salad 3 (C): Bok choy, feta cheese, green onion, mango,

radish, red onion, rotini pasta
Salad 4 (H): Bacon, celery, egg, mayonnaise, onion, pep-

per, salt, red potato
Salad 5 (H): Bacon, broccoli, mayonnaise, red onion,

raisin, sunflower seed, white sugar, white whine vinegar
Salad 6 (C): Black-eyed pea, chive, egg, granny smith

apple, mustard seed, peanut, roma tomato, salad dressing

In all, 62 volunteers sampled our salads. The highest
scoring computer salad (Salad 3) received a mean rating
of 3.72, which was competitive with the worst performing
human salad (Salad 5) that received a rating of 4.06 as seen
in figure 3. However, the score for Salad 3 was notice-
ably lower than the score of the best performing human
salad (Salad 1, 4.56). The computer-generated salads
did, however, consistently rank higher in novelty than the

human-designed salads (figure 4). The two top-rated com-
puter salads by novelty, Salads 2 and 6, scored significantly
higher than the most novel human one (Salad 1). Only
9 participants (14.5%) correctly guessed the appropriate
labeling for every salad. Furthermore, participants mistook
the highest rated computer salad for a human designed one
56% of the time. Overall, our computer-generated recipes
were competitive in taste with the human recipes, but did
score lower. However, in novelty, the computer-generated
recipes excelled against the human ones.

Figure 3: The mean taste rating of each salad.

Figure 4: The mean novelty rating of each salad.

7 Conclusions
This paper investigated the possibility of building machines
that could exhibit creativity in the domain of cooking. We
improved upon prior work on creating predictive models
for ranking recipes. We then used this ranking function
as a search heuristic for discovering novel ingredient
combinations. Surprisingly, we discovered that there was
little need for search in finding novel, tasty salad recipes.

We envision multiple ways in which this work can be
extended. One could try alternate machine learning ap-
proaches, particularly regression techniques — rather than
attempting to predict pairwise recipe winners, we could in-
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stead directly predict the star rating of a recipe. Further fea-
ture engineering could also improve the performance of the
system. At present, we ignore many other features that could
potentially be relevant, including nutritional information, in-
gredient color, and texture. Our approach also ignores the
relative quantities of ingredients, which is a crucial deter-
minant of whether a recipe will succeed. In the future, we
would also like to expand the scope of the project to a wider
class of recipes — soups, drinks, desserts, etc.
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