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Abstract
This paper presents a novel, unsupervised approach to
detecting anomalies at the collective level. The method
probabilistically aggregates the contribution of the indi-
vidual anomalies in order to detect significantly anoma-
lous groups of cases. The approach is unsupervised in
that as only input, it uses a list of cases ranked accord-
ing to its individual anomaly score. Thus, any anomaly
detection algorithm can be used for scoring individ-
ual anomalies, both supervised and unsupervised ap-
proaches. The applicability of the proposed approach
is shown by applying it to an artificial data set and to
two industrial data sets – detecting anomalously mov-
ing cranes (model-based detection) and anomalous fuel
consumption (neighbour-based detection).

1 Introduction
Anomaly detection is a research field that investigates vari-
ous ways of identifying cases that deviate substantially from
what is considered normal. Since anomaly detection does
not require that all possibly anomalous classes are known
in advance to be useful, it has become a quite popular ap-
proach. Thus, it has been applied in various domains over
the years such as disease outbreak detection (Shmueli and
Burkom 2010), intrusion detection (Garcia-Teodoro et al.
2009; Dey 2009), maritime surveillance (Holst et al. 2012a),
fraud detection (Bolton and Hand 2002), and fault detection
(Zaher et al. 2009; Holst et al. 2012b; Olsson et al. 2014).

The approach taken in this paper is to consider the situa-
tion when we are not interested in detecting individual cases
as anomalies but in assessing the anomaly of groups of cases
that can contain both normal and anomalous cases. The as-
sumption is that cases are related to each other, for instance,
by being geographically close or by being generated from
the same machine, so that they can naturally be divided into
groups. Then, by assessing the anomaly of groups of related
cases, we assess the anomalousness as a collective.

Especially, we are interested in aggregating anomaly
scores from non-statistical methods that do not in them-
selves provide a simple way of assessing the significance of
an anomaly score or a set of anomaly scores. Many applica-
tions do not produce measurements that are easily modelled
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using a statistical probability distribution. Particularly for
anomaly detection, the tail of the data, which contains very
few cases, is often most relevant. Therefore, such data will
not be fitted that easily to a global statistical model. Thus,
this work does not model the individual cases using a prob-
ability distribution, but instead systematically scan through
the empirical distribution to identify anomalies. To show the
applicability of our approach to non-statistical approaches,
we will apply the proposed approach to anomaly scores from
k-nearest neighbour-based and model-based methods.

Collective or group anomalies have been investigated in
some recent work, using statistical models, such as Bayesian
networks (Das, Schneider, and Neill 2009), Gaussian mix-
ture models (Vatanen et al. 2012), and an extension of
the Latent Dirichlet Allocation model (Xiong, Póczos, and
Schneider 2011), and ensembles of decision trees (Liu, Ting,
and Zhou 2010). In contrast to our approach, which is un-
supervised, most of theses are semi-supervised approaches
that assumes the availability of known normal cases and in
addition, do not consider aggregating the output from other
anomaly detection methods. The only work, to our knowl-
edge, on aggregating anomalies from arbitrary methods is
presented in (Das, Schneider, and Neill 2008). In contrast,
it assumes the existence of a training set containing mostly
normal data with only a small fraction of anomalous data.
It also uses a rule-based approach to find groups of cases
that have a common significantly different pattern, while we
assume that groups are naturally formed. In addition, the in-
dividual cases are classified as anomalous based on an in-
dividual (local) anomaly detector using a threshold learned
from automatically selecting a specified false discovery rate,
while our approach do not need to learn such a threshold.

In summary: the main contribution of this paper is a novel,
unsupervised method for detecting anomalies at the collec-
tive level. The method probabilistically aggregates the con-
tribution of the individual anomalies to detecting anoma-
lous groups of cases. The only input to the method is the
anomaly ranking of the individual cases. Then, the method
is able to: (1) aggregate rankings from any anomaly detec-
tion method, (2) produce an aggregated anomaly score for
each group, and (3) assess the significance of the estimated
anomaly score. Thus, it is possible to filter out significantly
anomalous groups from less anomalous groups, even if the
used anomaly detection method does not provide means to
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test the significance of the individual anomalies.
In the following, we first show the applicability of the

approach for an artificial dataset. Then, we apply the ap-
proach in two industrial application. The first application
is for detecting anomalous cranes in a container terminal
by analysing the time it takes to move a crane. The second
application is about detecting anomalous road segments by
analysing the anomalous fuel consumption of vehicles trav-
elling both in and outside cities.

The paper is organised as follows. The first section
presents some background on collective and unsupervised
anomaly detection. Next section describes the approached
proposed in this paper. The section after that contains the
evaluation of the proposed approach to one artificial data set
and two industrial data sets. The last section ends the paper
with some conclusions and future work.

2 Background
Collective Anomalies
The characteristic of detected anomalies can be classified
into three types (Chandola, Banerjee, and Kumar 2009):
point anomalies, context anomalies and collective anoma-
lies. Point anomalies are cases that are deemed anomalous
with respect to the whole data set. Context anomalies are
anomalous when considered in a specific context, but not
necessary in another context. For instance, during the win-
ter in Sweden, it is not unusual that the temperature drops
well below zero degree Celsius but not in the summer, which
would be a anomaly in context of the current season. Collec-
tive anomalies are cases that are only deemed to be anoma-
lous when considered together but not necessary as individ-
uals. This is typically in case of systems that slowly develop
faults due to material wear. Each anomalous measurement
might not indicate a fault but only when several of them
appear together. The latter type of anomaly is the focus of
this paper, while we use both point anomalies and context
anomalies as input to the system. Most of the current re-
search has focused on point and context anomalies.

Unsupervised Anomaly Detection
Unsupervised anomaly detection assumes that no labeled
data is available, but where the normal part of the data is
much larger than the anomalous part (Chandola, Banerjee,
and Kumar 2009). In contrast, a supervised approach would
need labeled cases of both normal and abnormal instances.
A semi-supervised approach typically uses the fact that it
is easier to collect normal cases than anomalous cases, and
thus, builds a model only using the normally labeled cases.
The approach presented in this paper is a unsupervised ap-
proach but can also be applied in a supervised setting.

3 Aggregation of Anomalies
In this section, we first present and discuss a simple and
intuitive but naive anomaly aggregation approach and list
its shortcomings. Thereafter, we will propose a probabilistic
approach that lacks the shortcomings of the naive approach.
Last, we describe how to use the proposed method to iden-
tify and rank anomalous groups.

A Naive Aggregation Scheme
A straightforward approach to aggregating anomaly scores
would be to only look at the top most, say 10 % (or what
ever seems reasonable), of all cases with the highest point
anomaly scores and use the fraction of those in each group
as an aggregated anomaly score. This gives us an aggregated
anomaly score from 0 to 1.0 that also can be used for rank-
ing, but we have no idea of when to consider a group anoma-
lous and we have no way of assessing the significance of the
aggregated anomaly score. For instance, if there are 10 cases
in one group and 3 belong to the to the top 10 %, and another
group with 100 cases of which 30 belong to the top 10 %.
Then, both have a fraction of 0.3, but presumably the lat-
ter is more significant. In the next section, we will describe
a probabilistic approach improving on this simple approach
for which it is possible to also assess the significance of the
aggregated anomaly score.

Probabilistic Aggregation
The assumption behind the naive aggregation scheme above
is an intuitively appealing idea that a more anomalous group
should generate more anomalous cases. However, instead
of using the fraction as a measure of anomaly, we propose
using a probabilistic definition of an anomaly. In this case,
a lower probability means a more anomalous group (high
anomaly score), and a higher probability means a less
anomalous group (low anomaly score). Thus, this approach
gives a clearly defined aggregated anomaly score that can
thereby also be used for assessing the significance.

Definition 1 Let p be a predefined fraction of the top
most anomalous cases among all cases, for instance,
p = 0.1 (that is, 10%). Then, we denote all cases belonging
to this fraction as ”top p-outliers”.

Thus, p is the probability that a randomly drawn case
is a top p-outlier. Then, the probability, by chance alone,
that y number of cases belong to that fraction given n

number of cases is binomially distributed with parameters n
and p:

P (y; p, n) =

✓
n

y

◆
p

y(1� p)n�y (1)

Then, for assessing the normality of a group with n cases
and y outliers, we compute the probability of getting y or
more number of outliers:

Ā(y; p, n) = 1�
y�1X

k=0

P (k) (2)

Intuitively, this means that if the probability to get a larger
value is very small, then this is a very unusual and highly
unlikely number of anomalous cases. Thus, this also means
that it is an unlikely group of cases that can be considered
anomalous.

Identifying Anomalous Groups
The proposed method to identifying anomalous groups is
shown in Algorithm 1. The approach is to scan through the
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data letting the value of p vary from 0 to 1 while counting
the number of times each group is identified as anomalous.
Thus, a group can be identified as anomalous at several dif-
ferent values of p. We use a very restrictive threshold for
accepting a group as anomalous: a probability of less than
10�6, that is, 1 per 1.000.000, which ensures a very low false
discovery rate. Finally, the groups are ranked according to
the number of times they have been identified as anomalous.
Concerning the values for p, in theory, it would be possible
to scan through each individual anomaly score one at a time,
but for large data sets that is not practical. Thus, we have se-
lected a subset of all possible values for p such that the tail
is scanned in smaller step while larger steps are taken for
larger values of p. This is because, as noted in the introduc-
tion, the tail is often more interesting when doing anomaly
detection.

Algorithm 1 Compute a ranked list of anomalous groups
INPUT The set of all groups of cases G
OUTPUT A ranked list of anomalous groups of cases R
P  {0.0001, 0.001, 0.002, . . . , 0.01, 0.02, . . . , 0.1, 0.2,
. . . , 0.9, 0.99} (the top fractions)
R an empty list
for g 2 G do
counter  0
for p 2 P do
n number of cases in g

y  number of top p-outliers in g (Definition 1)
if Ā(y; p, n) < 10�6 then
counter  counter + 1

if counter > 0 then
append tuple (g, counter) to R

Return R sorted on the second element of each pair

4 Evaluation
In this section, we evaluate the proposed group anomaly de-
tection algorithm using an artificial data set generated from
three normal distributions. Then, we apply the approach to
two real world applications. First, we apply it to detecting
anomalous cranes from analysing the predicted move time
compared to the true value. Last, we identify road segments
with anomalous fuel consumption. The experiments were
implemented using the scikit-learn and the minepy libraries
(Pedregosa et al. 2011; Albanese et al. 2013).

Artificial Data Set
We generate artificial cases as follows. Let us pretend that
we have 1000 similar machines and that we have an algo-
rithm that can predict the performance of the machines given
their input. Each prediction is a case. Assuming that the pre-
diction error, that is, the predicted value minus the real value,
is normally distributed – N(0, 1) – for the non-anomalous
cases. In addition, we assume that there is a normally dis-
tributed noise: N(4, 12). Further, we assume that m = 100
of the machines are anomalous with normally distributed
anomalous cases: N(6 + r, 4), where r = 2 ⇤ i/m for each

i 2 {0, . . . ,m � 1} is a value used for separating between
different anomalous machines. The number of cases per ma-
chine is assumed to be Poisson distributed with � = 1000.
The fraction of noise in each group is 1% while the frac-
tion of anomalous cases in an anomalous group is 5%. As
point anomaly score for individual cases we use the absolute
prediction error. Figure 1 shows the histogram of the point
anomaly scores. As can be seen, there is a large number of
anomalous cases up to three standard deviations away from
zero, and just a small number of anomalous cases.

Figure 2 shows the result from applying the proposed
method. The top curve shows the number machines detected
as outliers with non-anomalous cases sampled from N(0, 1)
over different values of p 2 (0, 1). The largest number
of detected outliers is 100 at p = 0.02. The other curves
show what happens when the standard deviation of the non-
anomalous cases increases from 1 to 6, which leads to a
decrease in the number of detected outliers as the differ-
ence between anomalous and non-anomalous machines gets
smaller.

Figure 1: Histogram of anomaly scores of the artificial data.

Figure 2: Outlier detection curves for different value of p

and varying non-anomalous standard deviation. Curves are
close to zero for p > 0.4.

Table 1 compares the proposed approach with a base-
line algorithm in terms of the precision, false discovery rate
(FDR) and recall for the different values of the standard de-
viation. As baseline approach, we fitted the mean prediction
errors of all machines to a normal distribution using a max-
imum likelihood estimation in two steps. First, we removed
outliers with mean prediction error three standard deviations
or more away from the distribution mean. Last, we fitted a
final normal distribution to the remaining mean prediction
errors. Then, all machines with mean prediction errors three
final standard deviations or more away from the final distri-
bution mean are considered anomalous. Notable in Table 1
is that for the proposed algorithm, the FDR is always 0% and
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the precision is always 100%, while the recall is decreasing
as the distinction between anomalous and non-anomalous
cases gets blurred. This is due to the very restrictive thresh-
old we use for accepting a machine as an outlier: 10�6. In
contrast, the baseline shows worse recall up to a standard
deviation of 5, but with a cost of lower precision and higher
FDR after that. We could improve on the number of detected
outlier machines for the proposed approach by increasing
the threshold but that would also lead to an increase in the
number of false positives, which is not desired. Assuming
that anomalies are more prevalent in the tail of the empirical
distribution, an increase of the threshold would lead to an
even larger increase in the false discovery rate.

In order to test the robustness of the proposed approach,
we also let the anomalous cases be normally distributed with
zero mean and with varying standard deviation: N(0, 4+r),
where r is defined as above. The result can be seen in the
last column of Table 1 where for the proposed approach,
the recall is still high 88% with 100% precision and 0%
FDR, while the baseline has a very poor performance. Thus,
the proposed algorithm is more robust to variations of the
anomalies than the baseline that is best suited to detect
anomalies with respect to the mean value only.

Table 1: Performance (in %) for different values of the non-
anomalous standard deviation: Proposed Algorithm (above)
and baseline (below). The last column (*) shows the perfor-
mance of the robustness test.

Std. 1 2 3 4 5 6 1*
Prec. 100 100 100 100 100 100 100
FDR 0 0 0 0 0 0 0

Recall 100 98 73 53 16 5 88
Std. 1 2 3 4 5 6 1*
Prec. 100 100 100 100 96 95 50
FDR 0 0 0 0 4 5 50

Recall 83 67 51 38 26 19 3

Crane Anomaly Detection
This section applies the proposed approach to detecting
anomalous cranes in a container terminal. Each crane is
analysed in terms of the time it takes to move the containers.
As anomaly score, we use the prediction error (difference)
between the true and the predicted time duration for each
move. Then, the prediction error provides a ranked list of
moves that are thereafter aggregated in order to collectively
assess whether a crane is significantly anomalous.

A container terminal consists of one or more container
stacks, where two cranes are working in parallel to move
containers in and out of the stack. One of the cranes is mov-
ing containers from a ship into the container stack and one
crane is moving containers from the stack to waiting trucks
or vice versa. The expected or predicted duration of a move
is computed using a physical model that takes into account
moves in all directions.

Figure 3 shows the plot of the move anomaly scores as a
histogram. There seems to be two types of anomalies: one
type with prediction differences larger than 75 seconds and

another with differences larger than 200 seconds. In order to
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Figure 3: The zoomed tail of the histogram of anomaly
scores of container move durations. The y-axis denotes num-
ber of moves and it is cut at about 20.

visualise the difference between cranes, we plotted the his-
tograms for the individual cranes as shown in Fig. 4 and Fig.
5. Figure 4 shows the histogram for prediction error for the

Figure 4: Histogram of anomaly scores per crane. The x-axis
is cut at 50 sec and each crane has different y-axis scale.

main part of the moves with errors less than 50 seconds. As
can be seen, they are quite similar, except crane 21035 that
looks quite different from the rest for some unknown reason
and crane 21021 that has a heavier tail at the right. However,
since we are also interested in the most anomalous moves,
we take a look at Fig. 5 where the histograms of the anomaly
scores from 20 to 1000 seconds are shown. Now, we can
see that there are some variations between the cranes, but it
is not easy to spot the real differences. The cranes 21003,
21011, 21017, 21021, and 21035 seem to be different from
the other in the 75 to 200 seconds interval, which corre-
sponds to the first type of anomaly defined above. However,
we cannot assess the significance from just looking at the
plots.

In Fig. 6, we can see the outlier detection curve for the
cranes. In total 8 cranes were identified as anomalous, where
at most 6 cranes were identified at any single p. Figure 7
shows the number of times each anomalous crane has been
identified as anomalous. In contrast to the previous visual
identification of anomalous cranes, it is now clear that 21035
indeed is anomalous but not the most anomalous, but the
least. In addition, of the five identified as anomalous in the
tail, only 21021, 21017, 21035 are anomalous while 21003
and 21011 are not anomalous.
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Figure 5: Histogram of anomalies scores for each crane. The
x-axis shows from 20 up to 1000 sec. The y-axis has a uni-
form scale from 0 to 10.

If we only look at the 50 seconds threshold (correspond-
ing to p ⇡ 0.01), then only crane 21021 and 21017 qualify
as truly anomalous cranes. If we do the same for anoma-
lies with duration differences larger than 200 seconds (cor-
responding to p ⇡ 0.002) we do not find any cranes that
deviate significantly from the others, although crane 21021
has the lowest probability.

Figure 6: The outlier detection curve for cranes. The y-axis
is number of identified anomalous cranes. The x-axis is the
different values of p.

Figure 7: The sorted number of times each crane was identi-
fied as an outlier.

Road Segment Anomaly Detection
This section applies the proposed approach to detecting road
segments with anomalous fuel consumption. The data con-
sists of measurement points from five vehicles travelling be-
tween different destinations in northern Germany. As the
data did not appear to adhere to any known probability dis-
tributions, it was decided to use a k-nearest neighbour ap-
proach to predict the instantaneous fuel consumption. In ad-
dition, since, we are foremost interested in detecting anoma-
lous fuel consumption, the absolute prediction error is used
as basic individual anomaly score. The travelled geographi-
cal area was then segmented into 1265 segments of 2⇥2 km2

Figure 8: Outlier detection curve for anomalous road seg-
ments.

corresponding to all measurement points with GPS coordi-
nates in that area. Then, anomaly scores were aggregated for
each geographical segment. We only look at road segments
with more than 100 measurement points, which resulted in
802 road segments.

A k-nearest neighbour algorithm (kNN) was trained to
predict the fuel consumption given a subset of the available
attributes. In order to ensure independence between mea-
surement points, the kNN was trained to predict the fuel
consumption of a vehicle using only the data points of the
other vehicles as training data. As similarity metric, we have
used the weighted Euclidean distance, where the weights
were computed using the maximum information coefficient
(MIC) between the instantaneous fuel consumption and the
other attributes (Murphy 2012). The number of neighbours
was selected using 5-fold cross validation. In addition, by
removing one attribute at a time, only those attributes that
improved the prediction performance were kept.

Figure 8 plots the result from running the proposed algo-
rithm with varying values of p. For each p, we get a number
of anomalous road segments, that is, segments with a prob-
ability less than 1 per 1.000.000 of being normal. This re-
sulted in a total of 243 segments being identified as anoma-
lous for at least one p. This is a quite large percentage
given that we are only looking at 802 segments in total, so
a means for prioritising between outliers is needed. Of the
outlier segments, 63 have been identified as anomalous for
all p  0.01, that is, for the top 1% of the most anomalous
cases. Figure 9 shows the number of times each anomalous
road segment has been identified as an outlier for a p. So, by
ranking the outliers according to number of detections, we
can prioritise between anomalous road segments.

Figure 9: The sorted number of times (y-axis) that each road
segment (x-axis) was identified as an outlier.

5 Conclusions and Future Work
This paper proposes a novel, unsupervised approach to prob-
abilistically aggregating anomaly scores from non-statistical
anomaly detection algorithms for groups of cases. The only
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required input are: (1) a ranked list of cases ordered accord-
ing to the individual anomaly scores and (2) a means to form
natural groups from the cases. By scanning through the top
fraction of the ranked cases, it can then detect groups of
cases that are significantly anomalous at different individ-
ual rank levels. Then, groups can be ranked according to
the number of times they are identified as anomalous when
scanning through the ranking.

Using artificial data, we have shown that the proposed
approach can indeed detect and identify significantly de-
viating groups of cases and we showed that the perfor-
mance was better than a baseline algorithm that assumes
normal distributed mean prediction errors. In addition,
we have shown how to apply the proposed approach to
two industrial applications where one used a model-based
anomaly detection algorithm and the other used an instance-
based (kNN) anomaly detection algorithm. In both applica-
tions, we could identify and prioritise between significantly
anomalous groups of cases. Unfortunately, the ground truth
of the industrial data sets was not available, so the perfor-
mance could not be evaluated.

Nevertheless, comparing the curves in Fig. 2 with the
curves in Fig. 6 and Fig. 8, the artificial data curve looks
quite different, while the industrial data curves are quite sim-
ilar. This indicate that the real data is quite much more com-
plex than the artificial data. Thus, future work would need
to investigate more realistic data where the ground truth is
available. However, notice that the problem for the real data
is not that too few outliers are detected but rather the op-
posite, especially in the second application. So, the problem
of using a too restrictive threshold is not necessary a prob-
lem for real world data. Another research direction would
be to investigate how the detected anomalous groups could
be compared to previously identified anomalous groups us-
ing, for instance, case-based reasoning in order to support
diagnosis of anomalies.
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