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Abstract

Collaborative Filtering (CF) Recommender Systems (RSs)
ease the burden of information overload faced by online users
who browse, search, or shop for products and services. Influ-
ential users, known as “power users” are able to exert substan-
tial influence over recommendations made to other users, and
RS operators encourage the existence of power user commu-
nities to help fellow users make informed purchase decisions.
However, the influence power users wield can be used for
both positive (addressing the “new item” problem) or nega-
tive (attack) purposes. Attacks on RSs tend to bias recom-
mendations by introducing fake reviews or ratings and re-
main a key problem area for system operators. In prior work,
we have shown that attackers emulating power users are ef-
fective against user-based, item-based, and SVD-based CF
RSs. Previous research has shown that, in general, attacks
on RSs can be mitigated by detecting the attackers and ei-
ther removing them from the dataset or ignoring them during
the prediction calculations. In live RS environments, how-
ever, these approaches impact legitimate users detected as
attackers (false positives) and can lead to reduced coverage
for those legitimate power users as well as reduced accuracy
for other users that depend on the ratings of those legitimate
power users. Our research is investigating alternative mitiga-
tion approaches to address these issues for power user attacks.
We focus on techniques that remove or reduce the influence
of power users and determine their impact on RS accuracy
and robustness using established metrics. We introduce a new
metric used to assess the trade-off between accuracy and ro-
bustness when our mitigation approaches are applied. And
our results show that, for user-based systems, reducing power
user influence is more effective than removing power users
from the dataset.

1 Introduction
Recommender Systems help users decide what products and
services to buy from online providers. Influential “power”
users, in the RS context, are those that are able to influ-
ence the largest group of RS users, i.e., power users have
the ability to positively or negatively impact RS predic-
tions for many other users. For white-hat purposes (e.g.,
addressing the “new item” problem), online systems en-
courage the formation of power user communities, e.g.,
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Amazon VineTMinvites trusted reviewers to post opinions
about new and pre-release items.1 In previous work (Wil-
son and Seminario 2014; Seminario and Wilson 2014), we
have shown that attackers emulating power users are ef-
fective against user-based, item-based, and SVD-based rec-
ommenders. In the literature, mitigating RS attacks usu-
ally consists of detecting the attackers and either remov-
ing them from the dataset or ignoring them during the
prediction calculations (Chirita, Nejdl, and Zamfir 2005;
Mehta and Nejdl 2009). While removing attack user profiles
from recommendation calculations is a straightforward ap-
proach to eliminating the attacker’s influence in a laboratory
environment, in live RS environments this approach could
also have unwanted side effects (Mehta and Nejdl 2009). For
instance, in cases where a legitimate power user is mistak-
enly identified as an attacker (false positive) and is removed,
two issues could occur: (1) the removed legitimate power
user would no longer receive recommendations, and (2) the
users that rely on that legitimate power user’s neighborhood
influence may be impacted. These approaches also assume
that all attackers will be detected, i.e., no provision is pro-
vided for attackers that are not detected (false negatives).

This study investigates the potential for more effective
mitigation approaches against Power User Attacks (PUAs),
as compared to 100% removal of identified power users.
PUA mitigation seeks to balance the trade-offs between ac-
curacy (too many power user profiles are removed) and ro-
bustness (too few power user profiles are removed) impacts.
Our hypothesis is that reducing the influence of power users
is a more effective and less impactful mitigation strategy
than removing the profiles of identified power users.

The following research questions are used as a guide:
RQ1: What happens to RS accuracy/robustness when power
user profiles are removed from recommendation calculations
to mitigate the power user attack impacts?
RQ2: What happens to RS accuracy/robustness when power
user influence is reduced during similarity calculations?
RQ3: What are the trade-offs between accuracy and robust-
ness when power user attacks are mitigated?

1http://www.amazon.com/gp/vine/help
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2 Related Work
Power users are of particular interest to RS operators and
their client companies when launching a new item, because
a positive endorsement (high rating) can result in making
item recommendations to many other users. This “market-
based” use of RS has been previously promoted as a solu-
tion to the “cold-start” or “new item” problem (Anand and
Griffiths 2011). A viral marketing perspective to exploit the
network value of customers was studied in (Domingos and
Richardson 2001).

Attacks on RSs by providing false ratings are known as
“shilling attacks” (Lam and Riedl 2004), or “profile injec-
tion attacks” (Mobasher et al. 2007b; O’Mahony, Hurley,
and Silvestre 2005). Research in attacks on recommender
systems began in 2002 (O’Mahony, Hurley, and Silvestre
2002); a recent summary in (Burke, O’Mahony, and Hur-
ley 2011) describes RS attack models, attack detection, and
algorithm robustness. In (Wilson and Seminario 2013), we
defined a novel Power User Attack (PUA) model as a set
of power user profiles with biased ratings that influence
the results presented to other users. The PUA relies criti-
cally on the method of power user identification/selection,
so we also developed and evaluated a novel use of degree
centrality concepts from social network analysis for identi-
fying influential RS power users for attack purposes (Wil-
son and Seminario 2013). In (Wilson and Seminario 2014;
Seminario and Wilson 2014), we have shown that attack-
ers emulating power users are effective against user-based,
item-based, and SVD-based recommenders.

Previous research has shown that, in general, attacks on
RSs can be mitigated by detecting the attackers (Mobasher
et al. 2007a; Williams, Mobasher, and Burke 2007; Sandvig,
Mobasher, and Burke 2008; Burke, O’Mahony, and Hurley
2011) and either removing them from the dataset or ignoring
them during the prediction calculations (Chirita, Nejdl, and
Zamfir 2005; Mehta and Nejdl 2009). However, removing
attack user profiles from recommendation calculations can
also have unwanted side effects (Mehta and Nejdl 2009) that
result in reduced accuracy and coverage.

Therefore, a gap in the research is that attack mitigation
strategies that preserve adequate accuracy, coverage, and ro-
bustness have largely been ignored. And this remains an
open question in RS attack research that we continue to ex-
plore in this study.

3 Power User Attack Background
In order to study RS attacks based explicitly on measures of
influence, we previously defined a Power User Attack model
as a set of power user profiles with biased ratings that influ-
ence the results presented to other users (Wilson and Sem-
inario 2013). The PUA consists of one or more user pro-
files containing item ratings (called attack user profiles) that
“push” (promote) or “nuke” (disparage) a specific item. The
PUA relies critically on the method of power user identifi-
cation/selection, so we implemented a set of heuristic ap-
proaches for comparative purposes, as follows:
In-Degree Centrality (InDegree): Our approach based on
in-degree centrality where power users are those that partic-

ipate in the largest number of neighborhoods (Wasserman
and Faust 1994; Lathia, Hailes, and Capra 2008). In our im-
plementation, for each user i compute similarity with every
other user j applying significance weighting ncij/50, where
ncij is the number of co-rated items and 50 items was deter-
mined empirically by (Herlocker et al. 1999) to optimize RS
accuracy. Next, discard all but the top-k neighbors for each
user i. Count the number of similarity scores for each user j
(# neighborhoods user j is in), and select the top-k user j’s.
Aggregated Similarity (AggSim): The Most Central heuris-
tic from (Goyal and Lakshmanan 2012) selects top-k users
with the highest aggregate similarity scores as the selected
set of power users. This method requires at least 5 co-rated
items between user i and user j and does not use significance
weighting.2
Number of Ratings (NumRatings): This method is based on
(Herlocker et al. 2004) where “power user” refers to users
with the highest number of ratings; it also is called the Most
Active heuristic in (Goyal and Lakshmanan 2012). We se-
lected the top-k users based on the total number of ratings
they have in their user profile.

4 Mitigation Strategies
Removing 100% of the power user attackers as a mitiga-
tion strategy could result in (1) reduced coverage for the “re-
moved” users including legitimate users (false positives), 2)
reduced accuracy for users whose similarity neighborhoods
no longer benefit from the influence of the “removed” users
including legitimate users (false positives), and (3) no provi-
sion for attackers that are not detected (false negatives) and
assumes that all (true) power user attackers will be detected.
To address these issues, the following mitigation strategies
were initially evaluated in this study:

• Remove attackers incrementally from 0% to 100%.
• Reduce the similarity weighting factor of all attackers in-

crementally from 1.0 to 0.0.
• Combine removal and influence reduction.

Our analysis of these initial mitigation strategies deter-
mined the following:
When removing power user attackers incrementally from
the dataset, removal sequence matters. From the attacker’s
standpoint, it would be better to remove starting from least
influential to most influential; while from the system oper-
ator’s standpoint, removing starting from most influential
to least influential would be better. And we also analyzed
the impacts when removing power user attackers randomly.
Since this is a mitigation study, we decided to use a removal
sequence that favored system operators. Our analysis indi-
cated that removing power users starting from most influen-
tial to least influential improves robustness at a faster rate
than the other two methods.
When mitigating the PUA, the type of target item mat-
ters. We used “New” target items (those with one rating)
and “New and Established” target items (those with one or
more ratings). From previous research (Seminario and Wil-
son 2014), we knew that New target items are more vulnera-

2Based on personal communication with the authors.
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ble to attack than New and Established targets. We analyzed
the impacts of the PUA and found that, for New targets,
robustness metrics were relatively high until the weighting
was set to zero (ignore power user influence). For New and
Established targets we found that robustness measures were
significantly lower between weightings from 1.0 to 0.1, in-
dicating that the PUA was not as effective with these target
items.
Combining power user attacker removal and influence re-
duction resulted in outcomes similar to the removal ap-
proach when the similarity weighting was greater than
zero. Robustness was at a minimum only when the similarity
weighting was zero. So, this approach did not provide addi-
tional information regarding power user attack mitigation.

In our initial approach, all injected attackers were also
considered to be power users (even when they were not) so
that removing and/or reducing the influence of power users
assumed a perfect power user attacker detection method.
This was not a very realistic assumption so we decided to
use our power user selection methods (§ 3) to allow for a mix
of real and synthetic power user attackers. Consequently, the
final mitigation strategies (MS) for this study are:
MS1: Remove selected power users incrementally from 0%
to 100%, starting from most influential to least influential.
MS2: Reduce the similarity weighting factor of all selected
power users incrementally from 1.0 to 0.0.
MS3: Reduce the number of power users that influence pre-
dictions. The percentage of power users selected is reduced
incrementally from 100% to 0% and the similarity weight-
ing is set to one if selected, zero otherwise.

To implement these mitigation strategies, the following
methodology was used:

1. Generate power user lists from selected datasets using
power user selection techniques from Section 3: InDe-
gree, NumRatings, and AggSim. This generates a list of
real power users (RPUs).

2. Generate synthetic power user (SPU) attack profiles based
on power user statistical characteristics (Wilson and Sem-
inario 2014) and insert them into the dataset. Select power
users from the updated dataset using power user selection
techniques described in Section 3. The top-k list of power
users is expected to be a combination of RPUs and SPUs.

3. Select target items from a given dataset: New (items
with one rating), New and Established (randomly-selected
items with a range of popularity and likeability values).

4. Create incremental datasets with most-to-least-influential
power users removed from the top of the top-k list.

5. Execute attacks for each mitigation strategy for the se-
lected target items and calculate averaged metrics over all
target items. Only SPUs will be used for attack purposes,
leaving RPUs to provide their influence but not be part of
the attack. Note that some SPU attack profiles will remain
in the dataset after the top-k power users are removed dur-
ing the experiments described in Section 5.

6. Compare accuracy, coverage, and robustness metrics for
variations of the mitigation strategy to determine impacts
of removing and reducing influence of power users.

Other parameters such as recommender algorithms, datasets,
and metrics are also specified in Section 5.

5 Experimental Design
To address our research questions and hypothesis, we con-
ducted three main experiments to correspond with the three
final mitigation strategies (MS1-MS3) described in § 4:

• E1: Power User Removal
• E2: Power User Influence Reduction: All power users
• E3: Power User Influence Reduction: Selected power

users

Evaluation Metrics: Evaluations were performed before
and after the attacks. We use Mean Absolute Error (MAE)
for accuracy and prediction coverage (Herlocker et al. 2004;
Shani and Gunawardana 2011) using a holdout-partitioned
70/30 train/test dataset. To compare MAE before and af-
ter attacks, we use δMAE = MAEafter − MAEbefore.
For robustness metrics (Mobasher et al. 2007b; Burke,
O’Mahony, and Hurley 2011), we use Hit Ratio (HR), Av-
erage HR (HR), Prediction Shift (PS), Average PS (PS),
Rank (R), and Average R (R), where a high Hit Ratio and a
low Rank after the attack indicate that the attack was suc-
cessful (from the attacker’s standpoint) assuming that the
target item had a lower Hit Ratio and higher Rank before
the attack. The top-N list of recommendations for Hit Ra-
tio calculations is N=40. Also, when the PUA being evalu-
ated uses “new” target items (items with 1 rating), the Pre-
diction Shift is expected to be close to the maximum rat-
ing as defined by the RS. For “new and established” tar-
get items, the Prediction Shift may also be high because
some of the SPUs may fall below the threshold of power
users to be removed or have their influence reduced; the
SPUs that remain after removal or influence reduction are
still used in the attack and may contribute to the high Pre-
diction Shift. Finally, to assist in the assessment of the ef-
fectiveness of the mitigation strategies and the trade-offs be-
tween accuracy and robustness, we developed the new Ac-
curacy/Robustness/Mitigation measure (ARM),

ARM = (2 ∗ MAEafter∗HR

MAEafter+HR
) ∗ (1− ρ), where ρ is the per-

centage of power users or influence being evaluated. ARM
varies between 0 and 1 and a higher ARM indicates a more
effective mitigation for a given experiment. The major mo-
tivation behind the ARM metric is to find a measure that
determines the level of removal or influence reduction that
is best for mitigating the PUA. The ARM metric combines
MAE and Hit Ratio in such a way that it balances the in-
crease in MAE with the reduction in Hit Ratio as power user
influence is removed or reduced.

Datasets and Algorithms: We used MovieLens3

ML100K4 and ML1M5 datasets. The CF user-based
weighted algorithm (UBW) (Desrosiers and Karypis 2011)
uses Pearson similarity with a threshold of 0.0 (positive
correlation), neighborhood size of 50, and significance

3http://www.grouplens.org
4nominal 100,000 ratings, 1,682 movies, and 943 users.
5nominal 1,000,209 ratings, 3,883 movies, 6,040 users.
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weighting of n/50 where n is the number of co-rated items
(Herlocker et al. 1999). We used UBW from Apache
Mahout6 and added functionality to implement the MS2 and
MS3 strategies (§ 4).

Power User Selection: The InDegree (ID), NumRatings
(NR), and AggSim(AS) methods described in § 3 were used.

Target Item Selection: Fifty target items with no more
than one rating, regardless of their rating value, were se-
lected randomly as “New” (New) target items. We also used
50 “New and Established” (New/Est) target items, i.e., target
items were selected randomly and had the following aver-
age number of ratings, average rating, and average rating en-
tropy, respectively: ML100K (73.780, 3.133, 1.769), ML1M
(280.399, 3.296, 1.883).

Attack Parameter Selection: The Attack Intent is Push,
i.e., target item rating is set to max (= 5). The Attack
Size or number of SPUs in each attack varied by dataset:
up to 50 for ML100K and up to 300 for ML1M. Attack
sizes, also expressed as (#attackers

#users ∗ 100)%, were se-
lected based on previous research (Mobasher et al. 2007b;
Burke, O’Mahony, and Hurley 2011), where a 5-10% attack
size was shown to be effective; we use a 5% attack size for
each dataset. Power user attack profiles were generated as
described in (Wilson and Seminario 2014) and target item
ratings were injected at run time.

Test Variations: We used 3 experiments to evaluate the
final set of mitigation strategies using one prediction algo-
rithm, 2 datasets, 3 power user selection methods, 2 target
item types, and 8 attack sizes.

Figure 1: E1 – Hit Ratio and MAE as 0% to 100% of Power
Users (Real & Synthetic) are removed using ML100K

6 Results and Discussion
(E1) Power User Removal: Consisted of removing power
users from the dataset (incrementally from 0% to 100%)
prior to recommendation calculations (similarity and predic-
tion). We conducted a series of PUAs against the user-based
CF algorithm. Each PUA in this experiment uses a dataset
with a specified number of SPU attackers (§ 5). The SPU
profiles are injected with New or New/Est target items at

6http://mahout.apache.org

Figure 2: E2 – Hit Ratio and MAE as Power Users’ (Real &
Synthetic) Influence reduced from 1.0 to 0.0 using ML1M

runtime; the 50 targets are evaluated one at a time for each
PUA, then the HR/Rank/PS metrics are averaged across all
50 target items. We use the most-to-least-influential SPU
removal approach since that better mitigates the attack ef-
fectiveness, from a system operator’s perspective, i.e, HR
drops off faster as the most influential power users are re-
moved first.
HR before the attack is 0% for New target items and 2%

for New/Est target items for ML100K across all power user
removal levels; these values serve as the HR baseline and
indicate that without attackers, the target items appear in
few, if any, top-N lists of recommendations. Figure 1 shows
the results for ML100K as the percentage of power users
removed increases from 0% to 100% (0-50 power users).
The drop in HR is modest as power users are removed be-
cause some SPU attackers remain in the dataset, i.e., they
were below the specified power user selection threshold and
contributed to increasing the HR. New/Est target items (not
shown) are more difficult to attack compared to New tar-
gets and have a lower HR starting at 50% for ID and NR,
4% for AS. Removing 100% of the power users still leaves
SPU attackers in the dataset, hence HR remains high; the
PUA with AS is not effective at any level of removal. And
as power users are removed, MAE varies between 0.80 to
0.83 for New and New/Est target items across all power user
selection methods and all removal levels. PS for ML100K
and New target items averaged 4.9 for all power user selec-
tion methods across all removal levels; for New/Est target
items PS was 4.5 for InDegree and NumRatings, across all
removal levels; 3.0 for AggSim. R for ML100K and New
target items varied between 3 and 4 for all power user selec-
tion methods across all removal levels; for New/Est target
items R varied between 13 and 15 across all selection meth-
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ods and removal levels, indicating a less effective attack.
We observed similar results with ML1M except that for

ID, HR increased slightly as power users were removed,
most likely due to the influence characteristics of the SPUs.
R for New target items varied between 7 and 9, and for
New/Est target items varied between 16 and 21 for all power
user selection methods across all removal levels. The ARM
measure indicated that 100% removal is the best mitigation
for all attacks in E1.

Figure 3: E3 – Hit Ratio and MAE as 100% to 0% of
Power Users’ (Real and Synthetic) Influence is applied using
ML1M

Figure 4: E3 – ARM Measure as 100% to 0% of Power
Users’ (Real and Synthetic) Influence is applied using
ML1M

(E2) Influence Reduction, all Power Users: Consisted
of varying the similarity weighting (incrementally from 0.0
to 1.0) applied to all power users (selected RPUs and SPUs)
who are nearest neighbors during the prediction calcula-
tion. Each PUA in this experiment uses a dataset with the

same number of power users, i.e., there is no removal of
power users in this experiment. HR before the attack is 0%
for New target items and 1% for New/Est target items for
ML1M across all power user influence reduction levels. New
target item results in Figure 2 for ML1M indicate that as
similarity weighting is reduced from 1.0 to 0.1,HR remains
flat for ID (81%), NR (74%), and AS (4%). When similarity
weighting is set to zero, HR drops significantly for ID (to
16%) and for NR (to 9%), while remaining flat for AS (4%).
HR is flat for ID and NR as similarity weighting is reduced
from 1.0 to 0.1 and can be attributed to the fact that the SPUs
are, in most cases, the only users that have rated the New tar-
get items; therefore, the SPUs dominate the influence within
the neighborhoods keeping HR high and R low. The influ-
ence of power users (a mix of RPUs and some SPUs) can be
observed in the significantly higher MAE results (lower ac-
curacy) when similarity weighting is set to zero, i.e., without
the power user influence, accuracy becomes much worse.
The non-zero HR when similarity weighting is set to zero
indicates that not all attackers (SPUs) have been removed
from the prediction calculations. PS for ML1M and New
target items was >4 and R ranged between 9 and 14 for all
power user selection methods across all reduction levels.

For New/Est targets (not shown), HR begins at a much
lower level (40% for ID and NR, 4% for AS) and remains flat
until similarity weighting drops to 0.0, mainly because SPU
influence is not very dominant within the neighborhoods as
many other users have rated established items. As similarity
weighting is reduced from 1.0 to 0.1, MAE increases for ID
and NR, and remains flat for AS; at 0.0 similarity weighting
MAE also rises significantly. PS was >3.8 for New/Est tar-
get items andR ranged between 14 and 22 over all similarity
weightings and selection methods.

We observed similar results with ML100K except that
HR starts slightly higher (90%) and R ranges lower (4-6
for New, 15-17 for New/Est targets) for ID and NR. For all
attacks in E2, the ARM measure indicated that a similar-
ity weighting reduction setting of 0.1 is the best mitigation
for ID and NR, avoiding the spike in MAEafter albeit with
high HR, and 0.0 for AS.

(E3) Influence Reduction, selected Power Users: There
is no power user removal in this experiment and only a per-
centage (varied from 0% to 100%) of power users are in-
volved in the prediction calculation. The power users are se-
lected randomly and have a similarity weighting of 1.0 if
selected and 0.0 if not selected, during the prediction calcu-
lation. HR before the attack (not shown) is 0% for New tar-
get items and 1% for New/Est target items for ML1M across
all power user influence reduction levels. For ML1M with
New target items shown in Figure 3, as the percentage of
power users is reduced from 100% to 10%, HR decreases
from 80% to 20% for both ID and NR; for AS, HR remains
flat at 4%. When the percentage of power users is zero, HR
goes to 15% and 10% for ID and NR, and no change for
AS. As the percentage of power users is reduced from 100%
to 10%, MAE increases for ID and NR, remains flat (0.79)
for AS. PS for ML1M and New target items was >4 for all
power user selection methods and power user percentages.
R ranges between 9 and 17 over all power user percentages
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and selection methods. For ML1M with New/Est targets (not
shown), we observed a similar set of results except that HR
begins at a lower level (40% for ID and NR, 3% for AS), PS
is >3.8, and R ranges between 13 and 25 for all power user
percentages and selection methods.

We observed very similar results with ML100K except
that HR starts slightly higher (90%) and R ranges lower
(3-6 for New, 13-18 for New/Est targets) for ID and NR. For
New target items, the ARM measure (see Figure 4) indicated
that a percentage of power user reduction of 20-40% is the
best mitigation for ID and NR (avoiding the larger values of
MAEafter) and 0.0 for AS. ARM results were the same for
New/Est target items (not shown).

Based on our results and using the ARM metric, the mit-
igation strategy that best balances accuracy and robustness
for ID and NR PUAs is MS3; the AS PUA was not an ef-
fective attack in this study and did not require mitigation.
For MS1, the ARM metric indicates 100% removal which
leaves a very high Hit Ratio. And MS2 is marginally bet-
ter than MS1, with the ARM metric indicating a similarity
weighting of 0.1. Our hypothesis is accepted for MS3, par-
tially accepted for MS2, and rejected for MS1.

7 Conclusion
This paper evaluated power user attack mitigation ap-
proaches to address issues encountered when legitimate in-
fluential users (false positives) are removed along with at-
tackers. We have shown that reducing similarity weighting
during prediction calculation is an improvement over re-
moval. We showed that there is a trade-off between accu-
racy (MAE) and robustness (Hit Ratio) when implementing
mitigation strategies and have developed a metric to assist in
evaluating this trade-off. Consistent with our previous work
using user-based recommenders, we also showed that reduc-
ing the influence of power users contributes to a reduction in
recommender system accuracy indicated by an increase in
MAE; this shows how power users can impact recommen-
dations. Our future work in this area will examine other rec-
ommender system algorithms and datasets.
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