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Abstract

In this paper, we describe the range of sentences that we
synthesize from a knowledge base (KB) using a natural lan-
guage generation (NLG) system. We give an overview of
our NLG system, and then focus on the specific challenge in
handling overly general classes such as Tangible-Entity and
Physical-Object. Such classes are unavoidable in the KB,
and it is undesirable to show them in an output for end users.
Our approach has been implemented in an intelligent text-
book application that helps students learn better.

Introduction
To perform well at the Jeopardy! task, it was not necessary
for the Watson system to synthesize novel sentences because
94.7% of the correct answers are the titles of the Wikipedia
pages (Chu-Carroll and Fan 2011), and for the remaining
5.3% of the correct answers, the answer was limited to a
word or a short phrase. In contrast, the focus of the current
paper is on a question answering system that synthesizes
novel sentences from a knowledge base (KB).

Our overall goal in creating this KB has been to support
explanation, reasoning and dialog (Chaudhri, Dinesh, and
Inclezan 2013). Previous work has reported the use of KB
for reasoning (Chaudhri et al. 2014b; Chaudhri, Dinesh, and
Heller 2013). The focus of the present paper is on the use
of the KB in generating natural language sentences needed
for answering questions. We describe example sentences
produced by the system, give an overview of the computa-
tions that needed to be performed to integrate NLG into the
overall system, and consider in detail the problem of pre-
senting overly general classes. By an overly general class,
we mean a domain-independent class (e.g., Tangible-Entity,
Physical-Object) usually found in upper ontologies (Borgo
and Masolo 2009; Spear 2006). Because the end users, who
are students of biology, cannot be expected to have an under-
standing of such classes, it is not desirable to present overly
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general classes in the output. We analyze why such classes
are present in a domain-specific KB, and present a prelimi-
nary approach for handling overly-general classes. The task
of thoroughly evaluating our approach for onverly general
classes remains a subject for future work.

This work was performed in the context of Project Halo
which resulted in KB Bio 101 (Chaudhri, Wessel, and
Heymans 2013; Chaudhri et al. 2013c). KB Bio 101 rep-
resents knowledge about biological processes and mecha-
nisms from an introductory college-level biology textbook
(Reece et al. 2011). KB Bio 101 is integral to a prototype
of an intelligent textbook called Inquire that was designed
to help students learn better (Chaudhri et al. 2013a). Inquire
answers questions (Chaudhri et al. 2013c), gives explana-
tions and engages in dialog through NLG (Banik, Kow, and
Chaudhri 2013).

Several innovative NLG systems have been recently built.
For example, QUILL is targeted at generating stories from
the database facts in domains such as finance, sports, civics,
etc (Birnbaum 2013). Our work differs from QUILL in that
we are working from a first order logic KB as opposed to
working from database facts. Using NLG for KBs in Web
Ontology Language (OWL) is also of interest (Androut-
sopoulos, Lampouras, and Galanis 2013; Liang et al. 2013;
Stevens et al. 2011). These prior systems present the taxo-
nomic information in English, as does our system; our sys-
tem can also present rich descriptions of events and entities.
Cyc uses a template-based generation system that converts
one axiom at a time into English (Lenat 1995). In contrast,
our approach extracts information from multiple rules to
synthesize sentences. Thus, the primary contributions of our
work consist of (1) presenting an application that requires
synthesizing English sentences with a much greater range
and sophistication than any of the previous NLG systems,
and (2) identifying an important challenge of overly general
classes for the construction of robust NLG systems and pre-
senting an initial approach for meeting that challenge.

We begin with some background and then give example
sentences that the NLG system produces. Next, we consider
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Figure 1: Concept Graph for Pyruvate Oxidation

the problem of overly general classes and our approach for
addressing it. We conclude by identifying open challenges.

Background
We explain the relevant aspects of KB Bio 101 and Inquire
by examples. The graph in Figure 1 represents an existen-
tial rule (Baget et al. 2011) from KB Bio 101 in which
Pyruvate-Oxidation is universally quantified (shown in
white) and every other node (shown in gray) is existentially
quantified. Specifically, this graph represents that for ev-
ery instance of Pyruvate-Oxidation, a Chemical-Reaction,
a Redox-Reaction and another Chemical-Reaction ex-
ist; that these reactions are related to the instance of
Pyruvate-Oxidation by the subevent relation; and further,
that the first Chemical-Reaction is also related to the in-
stance of Pyruvate-Oxidation by the first-subevent rela-
tion. Other relationships in this graph can be explained
in an analogous manner. Here, the relationships such as
first-subevent, subevent, agent, and base. are designed
by the knowledge engineers (Chaudhri, Dinesh, and In-
clezan 2013). This graph also represents cardinality con-
straints (e.g., there is a cardinality constraint that every
Pyruvate-Oxidation has at least one Chemical-Entity as the
value of the raw-material and result relationships).

The representation in KB Bio 101 supports standard

features such as class hierarchy, relation hierarchy, dis-
jointness between classes, cardinality constraints and rules
(Chaudhri et al. 2013b). The biologists encoded 11 chap-
ters of a biology textbook (Reece et al. 2011) resulting in
KB Bio 101. Inquire supports question answering meth-
ods that can query KB Bio 101(Chaudhri et al. 2013c;
2014b). For example, users can ask questions such as: “What
are the steps of Pyruvate Oxidation? what is the difference
between oxidation and reduction?”

Inquire is an integrated system that leverages question an-
swering over KB Bio 101 (Chaudhri et al. 2013a). Figure 2
presents a sample answer page that is a response to a concept
description question in Inquire. In this answer, the sentence
labeled as A is human authored, but sentences B-E are ma-
chine generated by the NLG system from the representation
shown in Figure 1.

Sentence Classes Produced
We now consider different sentence classes produced by
the current NLG system. The sentence classes considered
here, obviously, do not cover all possible sentence classes
that may be required. (A later section discusses the sentence
classes that are not currently supported.)

S1. Super class statement: Sentences of this type state the
super classes of a class. For example, the sentence marked

157



as B in Figure 2 is an example of a super class statement.
S2. Property value statement: Sentences of this type state

a property value. In most cases, such sentences are short
fragments. The sentence fragment marked C in Figure 2 is an
example of a property value statement. In some cases, prop-
erty value statements can lead to complete sentences (e.g.,
“The denseness of a bio membrane is inversely proportional
to the fluidity of the bio membrane.”).

S3. Event summary statement: Sentences of this type
summarize an event and its participants. Three sentences
that are in the section marked E are event summary state-
ments. The first and the third sentences in that section
are subtly different: although the first sentence begins by
“Chemical reaction consumes ...”, the second sentence has
a parenthetic construction that begins by “Chemical reac-
tion – a multi-enzyme ...”. These two sentences each have a
different form because for the second chemical reaction in
Figure 1, the representation specifies an explicit agent re-
lationship leading to a parenthetic construction. The event
summary statements have two further special cases.

S3a. Event summary in the context of an entity: Sentences
of this type summarize an event that occurs only in the con-
text of a specific entity. For example, “In liver cell, alcohol,
a barbiturate and a drug are detoxified by a liver cell using
protein enzymes in a smooth endoplasmic reticulum.” Here
the detoxification event happens only in a liver cell.

S3b. Event summary in the context of another event: Sen-
tences of this type summarize an event that occurs as a sub-
step of another event. For example, “In secretion of insulin
by pancreas cell, polypeptide and a water molecule are con-
verted by a bound ribosome and a tRNA using an amino
acid, a GTP and two monomers.” Here, the conversion hap-
pens as a sub-step of the larger process of secretion of insulin
by a pancreas cell.

S4. Energy statements: Sentences of this type state energy
change during a reaction. The second sentence marked D in
Figure 2 is an energy statement.

S5. Role example statement: Sentences of this type begin
with an event and a specific role that an entity in that event
plays. An example of such a sentence is: “Oxidation – an
electron transfers from an acetyl CoA to oxaloacetate. Here,
the acetyl CoA is an electron donor. ”

S6. Spatial statement: Sentences of this type describe a
spatial relationship between two entities. For example, “A
glycoprotein is inside a phospholipid bilayer.”

S7. Solute and solvent identification: Sentences of this
type are applicable when presenting chemical solutions and
they identify which entity is a solute vs a solvent. For ex-
ample, when queried for the parts of a solution, the system
returns the following parts: “a chemical that acts as a solvent
and a chemical that acts as a solute.”

For each of the sentence class shown above, the system
always produces multiple alternative realizations that are
ranked to select the most appropriate realization. Alternative
realizations can emphasize different words in a sentence. For
example, consider the following two different realizations
E1 and E2: (E1) Cellulose synthase converts a chemical in a
cell to cellulose; (E2) Chemicals in a cell are converted into
cellulose by cellulose synthase. Here, E1 emphasizes cellu-

Figure 2: An Example Answer in Inquire

lose synthase, and E2 emphasizes conversion into cellulose.
Choice of realization is context-sensitive. For example, if the
question asks for a concept summary of cellulose synthase,
E1 will be preferred. If the question asks for how chemicals
are converted to cellulose, E2 will be preferred.

Let us consider the space of sentences in relation to
the knowledge representation language, ontology and lin-
guistic forms. A representation language includes taxo-
nomic axioms (e.g., class-subclass relationships); cardinal-
ity constraints; disjointness statements; slot values; etc.
Each of these axiom forms leads to a different input and
corresponds to a different sentence type. In the examples
above, S1 presents a taxonomic axiom, and S2 presents
a slot value that is a property. Although we do not gen-
erate sentences for cardinality constraints on their own,
some event descriptions do take the number constraints
into account (e.g., Energy investment phase of glycoly-
sis in a cell using 2 ATP and glucose resulting in 2
ADPs and 2 glyceraldehyde-3-phosphate. This sentence
includes the cardinality constraints on ATP, ADP, and
glyceraldehyde-3-phosphate.) In our current system, we
have chosen not to render cardinality constraints and dis-
jointness statements as standalone sentences because they
can as easily be shown using a tabular display.

Key distinctions in the ontology are Event, Entity, and
Role. Each of these distinctions requires a different sentence
type. In the examples above, sentences S3, S3a, and S3b cor-
respond to events; S5 to roles; and S4, S6, and S7 to entities.
Multiple sentence types for events and for entities illustrate
that each ontological category needs to be handled differ-
ently, with several special cases covered.
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Orthogonal to the space of representational axiom forms
and ontological categories are the linguistic forms of sen-
tences. For every sentence, our system generates both an ac-
tive and a passive form. Sentence forms S4 and S5 always in-
volve two sentences so that the second sentence adds further
detail about the information introduced in the first sentence.
Sentence S7 is an example of parenthetical construction in
which an extra level of detail is added in the sentence.

The range of representational axioms, ontological cate-
gories, and linguistic phenomena considered here motivate
and require a powerful NLG system of the kind we discuss
here. It constitutes a substantial advance in the capabilities
of the NLG systems built to date.

Overview of the NLG System
Synthesizing sentences from the KB involves three ma-
jor computations: content selection, surface realization, and
sentence finalization. These computations use three linguis-
tic resources: concept word frames, a grammar, and a mor-
phological lexicon. We first explain the linguistic resources,
followed by a discussion of the computations involved in
generating the sentences.

Concept word frames provide a mapping from an AURA
concept to words and their syntactic requirements. For ex-
ample, the concept Pyruvate-Oxidation is mapped to the
verb convert, and its grammatical subject is indicated as
agent, and grammatical object as raw-material. We cap-
ture the usage of preposition: for example, the result relation
is associated with the preposition “to”. The concept word
frames are curated by the knowledge encoder biologists.

The generation grammar consists of a set of Tree Adjoin-
ing Grammar elementary trees (Joshi and Schabes 1997). It
contains at least four trees for each verb: canonical, active,
passive, and a complex noun phrase. Different combinations
of input parameters can lead to additional trees. A tree can
be thought of as a template with underspecified participant
slot names and underspecified prepositions.

The morphological lexicon contains root forms for words
and phrases and their inflected forms. For nouns, it contains
singular, plural, the type of the noun (e.g., whether it is a
mass noun, count noun, proper name, acronym), and its de-
terminer. For verbs, it contains present tense form, past tense
form, progressive form, nominalization, etc.

We now address the computations involved in synthesiz-
ing a sentence. The first step in the process is content selec-
tion. The goal of the content selection is to extract appropri-
ate information from the KB that is needed for synthesizing
an answer. For example, for producing the answer shown in
Figure 2, the content selection module needs to extract the
information required to produce all the sentences A-E. The
content selection module is part of the query answering sub-
system and produces an answer bundle, which is passed on
to an answer presentation module. The answer presentation
produces the page shown in Figure 2 by making appropriate
calls to the NLG module.

When the NLG module is invoked, it processes the events
to detect duplicate participants, aggregates triples that have
an identical range, handles constraints, and deletes implied

participants. Duplicate participants do not lead to fluent out-
put, and it therefore picks one of the participant relations
drawing on a heuristic order that captures their importance.
The relation values that involve the same relation are aggre-
gated so that they lead to a coordinated sentence (e.g., in
sentence S3a, the sentence fragment “In liver cell, alcohol, a
barbiturate and a drug are detoxified ...”, is a result of range
aggregation.). The constraint handling enables the system
to produce sentence fragments such as: “Selective degrada-
tion by a protein enzyme in a cell using a water molecule
resulting in at least 2 monomers, an organic molecule and
a polypeptide. Here, the constraint that the selective degra-
dation produces at least two monomers is immediately fol-
lowed by two monomers. Implicit participants are factored
out when the name of the verb already implies a participant
(e.g., polymerization implies that the result is a polymer).

The task of surface realization, which is to create sentence
templates consists of three main steps: (1) lexical selection
in which elementary trees are selected from the grammar,
(2) tree assembly in which the selected elementary trees are
combined into derived trees, with the tree combinations that
fail filtered out, and (3) ranking of the generated outputs ac-
cording to optimality-theoretic ranking constraints.

The sentence finalization module carries out two main
tasks: morphological realization and referring expression
generation. The morphological realization module performs
verb and noun inflection by looking up the morphological
lexicon and, if no entry is found, by using morphological
rules. The referring expression generation module fills the
holes in the sentence templates from the previous step by
generating noun phrases based on the discourse context.

A more detailed technical description of the NLG system
is available elsewhere (Banik, Kow, and Chaudhri 2013).

Problem of Overly General Classes
We define an overly general class as any class name that
is not in the vocabulary of the end user (i.e., is not intro-
duced in the textbook). The biologist encoders of the KB
curate a list of classes that are considered overly general
(e.g., Tangible-Entity, Spatial-Entity). Many situations ex-
ist where such classes are present in the domain-specific
rules of KB Bio 101. When such concept names are used
in Inquire, they lead to negative feedback from the users.
Consider the following sentences E3 and E4: (E3) A bio
membrane blocks a spatial entity; (E4) Energy is stored at
a tangible entity. Sentence E3 is generated for a Block event
in which the value of the object relationship has been spec-
ified as Spatial-Entity. Sentence E4 is produced for a Store
event for which the value of the base relationships has been
specified as Tangible-Entity.

Occurrence of an overly general class from an upper on-
tology in an answer leads to negative feedback because the
students have never been introduced to such classes. Such
classes cannot be eliminated from the upper ontology, be-
cause they are essential for cross-domain applicability. We
see below that in some cases overly general classes exist in
the KB because the knowledge in the textbook itself is ab-
stract and too general. Under such circumstances, the overly
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general classes need to be presented to the users, but a suit-
able NLG scheme must be designed for that presentation.
In our analysis below we show that at least four reasons ac-
count for the existence of overly general classes that an NLG
system needs to handle.

Reasons for the use of overly general concepts
In a recent version of KB Bio 101, we analyzed all the de-
scriptions of functions of entities, and found 3,148 occur-
rences. Because KB Bio 101 contains 3,700 classes in to-
tal, this suggests that, on average, an overly general function
will appear for 85% of the classes. We analyzed a sample of
these occurrences and classified the reasons of their occur-
rence into the four broad categories discussed below. The
categorization we present does not change the definition of
an overly general class; it provides insight about why they
occur, and justification for why they cannot be eliminated
from the KB.

Knowledge gaps The first reason for using overly general
classes is knowledge gaps (i.e., the textbook contains more
specific knowledge than is encoded in the KB). On occasion,
such gaps arise because more specific knowledge is present
in a later chapter of the textbook that has not yet been en-
coded. Because we had encoded only 11 of the textbook’s
55 chapters, we had no systematic way to eliminate such
knowledge gaps.

Abstraction and Generalization The textbook uses ab-
straction and generalization for explaining things. For ex-
ample, the textbook says that a membrane allows different
things to pass through it. Only in a more specific context are
we given information about which things it might allow to
pass through. For example, for diffusion, the membrane al-
lows solute molecules to pass through. In some situations,
the textbook states knowledge only at an abstract level (e.g.,
a cell wall blocks some things, but the textbook does not
offer information about which specific things are blocked).
Thus, in such situations, the representation uses an overly
general class such as Physical-Object to indicate that a cell
wall blocks things. Use of general classes for such abstract
situations is unavoidable.

Inherited values from upper ontology For many of the
concepts in the upper ontology, we specify default values
for some of the relationships. Some of these relationships
are required whereas others are optional. The first reason for
providing the default values is to clarify to the domain ex-
perts what they need to specify for each concept. For exam-
ple, for the concept Move-Into, object and base are required
relationships, whereas origin and destination are optional
relationships. The second reason for providing default val-
ues is that rules exist that use these values (e.g., a rule exists
in the KB that requires that the value of the base relationship
be different from the value of the origin and destination re-
lationships). When using this concept in the domain-specific
KB, specializing all of the slot values is occasionally impos-
sible, especially the optional slot values, but these inherited
values remain in the KB.

General classes with domain specific values Many ex-
amples exist of the use of overly general classes that are
specialized by adding more specific slot values, but do
not have a domain-specific name. For example, consider a
Detoxification for which the value of the object relationship
is Tangible-Entity. In this case, the Tangible-Entity has a re-
lation plays with a value of Toxin (i.e., the Tangible-Entity
plays the role of a toxin). Thus, in this case, we have spe-
cialized Tangible-Entity by adding a value restriction on
the plays relationship, but we have not created a domain-
specific class name for it.

Handling overly general classes in NLG output
One could argue that the correct approach for handling
overly general classes is to invest the knowledge engineering
effort necessary to eliminate them from the KB. Our practi-
cal experience, however, suggests that no matter how many
resources we invest, overly general classes will remain. Only
some knowledge gaps can be eliminated. Because the use
of abstractions is a fundamental aspect of textbook descrip-
tions, abstract concepts must be handled in the knowledge
representation and, hence, in the output of the NLG system.
More generally, the NLG system needs to be robust because
it is unreasonable to expect a perfect input all the time.

Our approach for handling overly general classes caused
by KB gaps is to first use their appearance in the NLG output
as a debugging tool. We implemented a tool that identifies
such classes in the NLG output and show them as warnings
to the knowledge encoder. The knowledge encoder can then
pay special attention to such classes and appropriately spe-
cialize them if possible. In spite of supporting such a tool,
we acknowledge that a large evolving KB will never be com-
plete, and general classes that have not been specialized will
always remain.

Our approach for classes that may have domain-specific
values was to strengthen our content-selection algorithm.
For an overly general class, we check its relation values, and
if we find at least one relation value that is not overly gen-
eral (i.e., domain-specific), we extract it as part of content
selection. With the availability of a domain-specific relation
value, the NLG system can generate a good sentence that is
acceptable to the end users. For the example considered ear-
lier, instead of generating a sentence such as Tangible-Entity
playing the role of a Toxin is detoxified, the system can gen-
erate the sentence Toxins are detoxified.

To handle the overly general classes that cannot be further
specialized, we select additional content from the KB and
then summarize it as follows: whenever we have a statement
that contains overly general classes, we first present it in En-
glish followed by several examples in which the overly gen-
eral class has been further specialized. The overly general
class is given a name that is friendly to the end users. We il-
lustrate our approach by taking the example of the functions
of bio membrane.

In Figure 3, we show a summary of the functions of a bio
membrane. At the most abstract level, its functions are “A
chemical is moved through a bio membrane and a chemi-
cal is blocked by a bio membrane.” These general functions
are further specialized in the subclasses of bio membrane.
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Figure 3: Summary of the Functions of Bio Membrane

Because numerous bio membrane specializations may ex-
ist, we organize bio membrane functions by each subclass
that further specializes the function. The detailed functions
can be viewed by clicking on the drill down button labeled
as “4 functions”. The result of expanding all the functions
is shown in Figure 4. In Figure 4, we can see that one of
the specialized functions of a Plasma-Membrane is to trans-
port organic molecules. Here, transport is a specialization
of Move-Through. Another function of Plasma-Membrane
is to recognize other cells. This is a new function that is
defined only for Plasma-Membrane, and is not a special-
ization of any of the inherited functions from bio mem-
brane. In this case, such taxonomic organization of functions
helps a user understand how special forms of bio membrane
could have additional functions. Presenting the overly gen-
eral statements along with their specialization affords much
better insight into the knowledge in the KB.

Future Work
A thorough evaluation of the approach for handling overly
general classes presented in the previous section is a prob-
lem open for future research. We present some data below
on the functional evaluation of the use of NLG system in the
overall application, and identify several functional improve-
ments for its further evolution.

To measure the question answering performance of In-
quire, we assembled a test suite of 1961 questions spread
over the first 11 chapters of the textbook. Those questions
contained instantiations of 25 different question templates
including concept description questions and several other
templates (Chaudhri et al. 2014b; Chaudhri, Dinesh, and
Heller 2013). The teacher biologists, who were responsible
for quality assurance, and were not the biologists who en-
tered knowledge into the KB, graded 76% of the answers to
be correct. Such a high rate of correctness would not have
been possible without a well-functioning NLG module. The
primary success in using NLG so far has been in presenting
event descriptions in English that significantly enhanced the
usability of the KB.

Even though our NLG module functions well, room for
improvement exists. Several sentence forms required for an-
swers are not currently handled. An example is a relation-
ship question: “What is the relationship between a carbo-

Figure 4: Details of the Functions of Biomembrane

hydrate and a bio membrane?” The system displays an an-
swer to this question graphically (Chaudhri et al. 2013a), but
one that is not easily understood by the end users. The sys-
tem also uses the KB to generate questions (Chaudhri et al.
2014a) that are currently being synthesized into English us-
ing question templates. Clearly that approach is not scalable
and requires the NLG to be generalized. Finally, the system
must generate paragraphs and chapters not just sentences.

As part of an NLG challenge called KBGen (Banik et al.
2012; Banik, Gardent, and E.Kow 2013), four systems com-
peted on generating sentences from KB Bio 101. When
human experts rated the outputs on a scale of -50 to +50, the
outputs received a score of 32.49 for fluency, and 37.5 for
grammatical correctness. The results of KBGen have shown
that even state-of-the-art NLG systems need to improve be-
fore they can produce human-like English from a KB and
are already inspiring the development of novel techniques
(Gyawali and Gardent 2014).

Summary
In this paper, we argued that an ability to synthesize novel
English sentences is a critical capability for question an-
swering systems that go beyond Watson. To generate sen-
tences that have not been previously authored by a human,
the system needs to work from a conceptual model of do-
main knowledge. Our work differs from prior work on gen-
eration systems for ontologies because of the variety of dif-
ferent sentence forms it produces and because the expres-
siveness of knowledge representation that it works from. We
illustrated this by giving the range of sentences generated by
the system in the context of an electronic textbook applica-
tion. We presented an overview of the computations needed
to integrate the NLG into the overall system, and we con-
sidered in detail the problem of presenting overly general
classes. Mundane and specific as the problem may seem, it
is an important requirement for a robust NLG system.

Our work brings new insights into the KB verbalization
systems in two ways: First, KB verbalization systems must
provide for appropriate content-selection schemes so that the
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overly general classes can be displayed to end users in terms
meaningful to them. Second, the surface realizations mod-
ules for KB verbalization must look beyond presenting tax-
onomic axioms because richness in linguistic construction is
required when considering a broad spectrum of concepts.

A futuristic goal for intelligent textbooks is to first cre-
ate a conceptual model of the textbook, and then generate
the textbook content from that model. That new model for
textbook authoring could facilitate automatic customization
of textbooks for grade levels, across teaching standards in
different states, and also in different languages. The current
system capabilities are a stepping stone toward such a goal.
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