

Assessing Supply Chain Robustness Through Stress Testing

Slava Shekh and Luke Marsh

Defence Science and Technology Group, Edinburgh, South Australia
slava.shekh@dsto.defence.gov.au

Abstract

Military logistics planning is a complex and time consuming
process, and ultimately many factors can impact the devised
plan. We have developed a way of assessing the robustness
of a logistics plan and associated supply chain by consider-
ing the occurrence of disruptive negative events. These
events may occur in isolation or simultaneously. Each event
is associated with a plan variable and the impact of a nega-
tive event can then be assessed by measuring whether the
modification of its associated variable causes any stockouts
in the plan during simulation. By modifying any two varia-
bles simultaneously, we can identify the minimum values of
those two variables, which in combination cause a stockout.
These minimum values are called breakpoints, and a set of
breakpoints is referred to as a breakpoint front. We have in-
vestigated various approaches of calculating or estimating
breakpoint fronts, including brute force search, the Monte
Carlo method, 2D binary search and the multi-objective op-
timization methods, SPEA2 and NSGA-II. Our experiments
showed that 2D binary search performed best overall, due to
its low computation time and accuracy in calculating a
range of breakpoint fronts.

 Introduction

Military logistics planning is a complex and time consum-

ing process. The formulated plans determine the expected

demand in terms of food, fuel, ammunition etc., the supply

chain and the transports needed to meet the demand. How-

ever, as the old saying goes: “no plan survives contact with

the enemy” (Hughes 2009). This is primarily due to the

extremely dynamic and volatile environment surrounding

military operations. Many variables and factors can change

and make the original plan obsolete. For example: What if

the proposed logistics routes are denied and alternative

routes are required? What if the force size or operational

tempo increases and more resources are required to support

the force? What if another activity requiring support occurs

concurrently? What if nodes in the supply chain experience

a reduction in capacity or become unavailable? What if the

Copyright © 2016, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

prescribed logistics transports become unavailable? What

if the stock loading and unloading times of the transports

increase? What if the duration of the required logistics

support increases? What if there are weather events or oth-

er occurrences which delay the delivery of stock? All of

these questions are valid and reflect likely occurrences in

military operations. Is there a way to cater for these poten-

tial occurrences during the planning process?

 The aim of this research is to develop a method to ana-

lyse the strengths and weaknesses of a given logistics plan

against possible disruptive negative events. The in-

formation derived from this analysis can then be used dur-

ing the planning process to create a more robust plan.

Problem Description

In order to analyse the robustness of a given logistics plan,

we need to define a measure of success or failure for a giv-

en plan. For this study we will use the measure of “out of

stock” events, which are also referred to as stockouts. If

any stock (food, fuel, ammunition etc.) runs out at any

point in the operation, a stockout occurs and we deem the

logistics plan to have failed. To determine whether stock-

outs will occur in a given logistics plan, we have created a

movement simulation. For the purposes of this paper, the

simulation can be considered a black box which takes a

plan consisting of stock demand, routes, nodes, and trans-

ports as inputs, and determines whether that plan is a suc-

cess or failure. A plan is considered to be a failure if the

stock level of any logistics node falls below zero at any

time during the simulation.

 To represent the negative events that could occur during

a military operation, certain plan variables in the simula-

tion can be modified. The plan variables denoted as

�� �����which can be changed include: increase in the

lengths of routes; increase in the amounts of daily demand

required; increase in the duration of the military operation;

reduction in the capacity of logistics nodes to hold stock;

reduction in the initial amounts of stock held on transports

at the start of the simulation; reduction in the availability of

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

191

transports during the simulation; and finally, an increase in

the stock loading/unloading time for transports. The au-

thors have determined that changes in these plan variables

cover many likely real world events by representing the

specific implications they have on a logistics plan. For

example, material handling equipment faults, high sea

states, and delays in delivery of certain stocks at ports all

ultimately affect the loading time of ships, and can be rep-

resented by changes to this single plan variable.

 In order to find when a stockout occurs for each plan

variable, the authors initially implemented a simple brute

force search algorithm. Focusing on one plan variable at a

time, the brute force search incrementally increases or de-

creases the plan variable by one percent, runs the move-

ment simulation, and records any stockouts. For example,

for the “increased daily demand” plan variable, the daily

demand for all stocks is increased in one percent incre-

ments. To avoid excessive runtimes of the brute force

search algorithm and due to the fact that some plans never

stock out, the brute force search is limited to searching up

to 200 increments of the plan variables. If a stockout oc-

curs, the value of the plan variable is recorded and the

brute force search moves to the next plan variable. The

outcome is that brute force search finds the exact ‘break-

point’ of each variable in the plan. From this analysis, a

military planner can determine the strengths and weak-

nesses of a plan against possible negative events. However,

this kind of analysis only considers the occurrence of one

negative event at a time, but what if multiple negative

events occur simultaneously during an operation?

 In the case of two simultaneous negative events, we

want to find the value combinations of the two associated

plan variables that would cause stockouts in the plan. If the

value of one variable is fixed and the other is increased,

there will be a point at which the plan stocks out (i.e. the

breakpoint). The calculation of all breakpoints for the dif-

ferent values of the variables defines a breakpoint front.

The brute force search algorithm, which was used for one

plan variable, was extended to calculate this breakpoint

front for combinations of plan variables. However, the

brute force search was found to be far too inefficient, and

therefore other approaches to calculate the breakpoint front

were investigated. The brute force search and other ap-

proaches are discussed in more detail in the Approaches

section.

Related Work

The relevant literature for this research is in the modelling

and simulation of supply chains (Terzi and Cavalieri 2004)

and supply chain resilience (Ponis and Koronis 2012;

Christopher and Peck, 2004). (Spiegler, Naim, and Wikner

2012) provide a thorough review of related literature and a

detailed exploration of the resilience and robustness of

supply chains. (Jain and Leong 2005) stress test a supply

chain in a simulation environment with double and quad-

ruple the volume of demand required, in order to show that

the supply chain can meet unforeseen spikes in demand.

(Schmitt and Singh 2009) analyse disruptions in supply

chains using discrete-event simulation, and explore ways to

mitigate these disruptions with proactive planning. (Fa-

lasca, Zobel, and Cook 2008) conducted research in devel-

oping a quantitative approach for assessing supply chain

resilience to disasters. They explored various factors such

as the density, complexity and node criticality of supply

chains and their effects on the likelihood of disruptions, the

impact of disruptions, and the ability of the supply chain to

return to normalcy. (Thiagarajan et al. 2011) investigate

the impact of losing critical transports on the supply chain

via simulation. Although the mentioned literature is rele-

vant to our work, to the best of the author’s knowledge,

using breakpoint front calculation to assess supply chain

robustness is a novel approach.

Approaches

The authors have explored a number of approaches for

calculating breakpoint fronts, including brute force search,

the Monte Carlo method, 2D binary search and multi-

objective optimization. In order to calculate a breakpoint

front, each approach must have a way of generating com-

binations of values for two variables. For instance, “in-

creased daily demand” and “increased duration of military

operation” are two plan variables. A possible value combi-

nation for these variables is a 10% increase in daily de-

mand and a 20% increase in the duration of the operation.

Each value combination can be assessed using the move-

ment simulation described in the Problem Description to

determine whether that combination causes the plan to

stock out. Once a number of combinations have been gen-

erated and assessed, the breakpoint front is simply the set

of points separating the value combinations that cause

stockouts and those that do not.

Brute Force Search

A simple way of generating combinations of variable val-

ues is to simply enumerate all of them using a brute force

or exhaustive search. Since this approach covers the entire

search space, it will yield an exact solution (assuming a

discrete search space). However, looking at all combina-

tions of variable values will have an impact on computa-

tional performance, particularly in larger search spaces

where variables can take on a wide range of values.

192

Monte Carlo Method

The Monte Carlo method is a form of random sampling

that can be used to approximate the solution to some prob-

lems (Metropolis and Ulam 1949). This can be applied to

our breakpoint problem by repeatedly generating random

combinations of variable values within the search space.

Since this is a random process, the Monte Carlo method

will generally yield an approximate solution, the quality of

which will depend on the number of random samples. The

Monte Carlo method can be much faster than brute force,

especially with a small number of samples, but using too

few samples can result in poor quality results that do not

sufficiently cover the search space.

2D Binary Search

Binary search is a logarithmic time algorithm for finding a

value in a sorted list by iteratively eliminating half of the

remaining data where the value is known not to exist

(Knuth 1998). In the context of breakpoint calculation, we

can’t directly use this method because our problem is two

dimensional, and we don’t actually know the value that

we’re looking for (the breakpoint). Therefore, we have

developed a variant of binary search, adapted for our par-

ticular problem. Our approach assumes that the number of

stockouts is monotonically increasing (i.e. an increased

variable value will result in an equal or greater number of

stockouts). This assumption holds for the plan variables

that we have investigated, but may not necessarily hold for

other variables found in real world problems. Exploring

alternative techniques that don’t make this assumption is

therefore an area for future work.

Our two-dimensional (2D) binary search works by fix-

ing a variable ���(initially to zero), and performing a 1D

binary search over the other variable���. Since the specific

value that needs to be found is unknown, the algorithm

maintains a lower bound value that is known to be stock-

out-free, and an upper bound value that is known to cause

stockout. The algorithm then iteratively calculates the mid-

point of these bounds. If the midpoint is stockout-free, the

midpoint becomes the lower bound; otherwise, the mid-

point becomes the upper bound. This process is repeated

until the difference between the upper bound and lower

bound is 1, which means the exact breakpoint has been

found. ���is then fixed to the value of the lower bound, and

a 1D binary search, as described above, is performed over

��. This process of alternating 1D binary searches is re-

peated until the entire breakpoint front is found.

 This binary search variant was developed to try to over-

come the performance limitations of a fully exhaustive

search. By focusing the search along the breakpoint front

and taking advantage of a binary search strategy, our

method examines much fewer combinations of variable

values than a brute force search. More specifically, the

time complexity of brute force search for two variables

is��	
��, while our 2D binary search is��		�
�
���, re-

sulting in a reduction from quadratic to polylogarithmic

time. In addition, since our 2D binary search is based on

1D binary search, it is able to find the exact solution. This

assertion is further validated through our experiments.

Multi-Objective Optimization

In cases where even the 2D binary search is not fast

enough, another option is to apply a multi-objective opti-

mization algorithm to the problem. Multi-objective meth-

ods are used for problems where multiple objective func-

tions need to be optimized simultaneously. In these kinds

of problems, there can be many optimal solutions, known

as Pareto optimal solutions, which correspond to different

trade-offs of the objective functions. A multi-objective

optimization algorithm can be used to estimate the entire

set of Pareto optimal solutions, which is also known as the

Pareto front.

Our breakpoint problem can be represented as a multi-

objective problem by modelling each of our plan variables

�� �����as a decision variable��� ����, which together

form a solution��. Our goal is to find solutions with varia-

ble values that are as high as possible, yet don’t encounter

stockouts during simulation. These kinds of solutions con-

tain variable values that represent the limits or breakpoints

of the variables, and collectively these solutions form the

breakpoint front.

Given some solution��, the solution can be evaluated us-

ing our movement simulation to produce a result����, which

identifies the number of stockouts that occurred during the

simulation. The quality of solution�� can then be evaluated

using � objective functions, which are defined as:

��	�� � ���� �� � �
�� ���������

The goal is to maximize these � objective functions:

 !" �#��	��� � � ��	��$

Experiments and Results

We have run a number of experiments to assess each of the

discussed approaches on their solution quality and compu-

tational performance. All experiments were performed on

an Intel Core i7-920 Processor (2.66 GHz) with 6GB RAM

running Windows 7. All algorithms were implemented in

Java.

For the multi-objective optimization, we used a Java-

based framework called jMetal (Durillo and Nebro 2011),

which implements a range of metaheuristics and multi-

objective algorithms. In particular, we experimented with

two popular multi-objective algorithms: SPEA2 (Zitzler,

193

Laumanns, and Thiele 2001) and NSGA-II (Deb et al.

2002). Both are evolutionary algorithms that evolve a pop-

ulation of solutions over many generations to try to find a

good approximation of the Pareto front. However, SPEA2

takes the approach of maintaining an external population of

non-dominated solutions that is regularly mixed with the

active population, while NSGA-II repeatedly sorts the

population into fronts based on the non-dominance of solu-

tions.

Our experiments are based on a two-node supply chain

consisting of ten different supply items with distinct de-

mand profiles, supported by multiple air and sea transports

with varying capabilities. Using this supply chain, we have

devised three scenarios that correspond to different combi-

nations of two plan variables. The breakpoint fronts in

these scenarios are approximately representative of the

kinds of breakpoint fronts that can occur across all scenari-

os. In particular, the scenarios are:

• An increase in the amount of daily demand, and a surge
in demand for some period of time (Scenario 1).

• An increase in the length of routes, and an increase in
the duration of the operation (Scenario 2).

• An increase in the amount of daily demand and a reduc-
tion in the capacity of logistics nodes to hold stock (Sce-
nario 3).

Since brute force search and 2D binary search produce

exact solutions to the breakpoint problem, we wanted to

compare these two methods on computational perfor-

mance. We ran the algorithms over the three scenarios and

the results are shown in Table 1.

Brute force search 2D binary search

Scenario 1 29.611 seconds 0.755 seconds

Scenario 2 49.049 seconds 0.052 seconds

Scenario 3 31.157 seconds 0.903 seconds

Table 1: Performance of brute force vs. 2D binary search.

The results show that 2D binary search is able to compute

the breakpoint front for each scenario in under a second,

which is significantly faster than a brute force search. The

performance exhibited by 2D binary search is fast enough

for calculating an individual breakpoint front, but what if

we need to calculate a range of breakpoint fronts corre-

sponding to different variable combinations? Perhaps one

of the approximation algorithms can provide even better

performance at the cost of some solution accuracy.

Based on this premise, we ran a number of experiments

to compare 2D binary search with the Monte Carlo meth-

od, and the multi-objective optimization algorithms,

SPEA2 and NSGA-II. Initially, we compared the break-

point fronts that each algorithm could produce given the

same amount of computation time. Using the execution

time of 2D binary search as a benchmark, we gave the oth-

er algorithms the same amount of time and recorded the

breakpoint fronts that they produced. Examples of the kind

of breakpoint fronts produced by each method for Scenario

1 are shown in Figure 1. The comparison shows that

SPEA2 and NSGA-II are able to produce good approxima-

tions for the breakpoint front, while the Monte Carlo solu-

tion has a number of gaps due to the limited number of

simulations that could be run within the given time win-

dow. The results for Scenarios 2 and 3 were comparable.

 The results from the previous experiment show that

SPEA2 and NSGA-II can produce good approximations

for breakpoint fronts in the same amount of time that 2D

binary search can produce an exact solution. However,

perhaps these multi-objective methods can produce similar

quality approximations in a much shorter time. This idea

provides the motivation for our next experiment, where we

limit the amount of computation time allowed for each

approximation algorithm and record the overall breakpoint

error. This is achieved by running each algorithm for dif-

ferent numbers of runs (for Monte Carlo this is the number

of simulations, and for multi-objective optimization this is

the number of generations). The results of this experiment

across the three scenarios are shown in Table 2, where

each result is the average of 100 runs. The results from

brute force are included to validate the accuracy of 2D bi-

nary search.

 The breakpoint area (BPA) is calculated as the area of

the polygon bounded by the breakpoint front (the left part

of the graph), which represents the combinations of varia-

ble values that don’t cause stockouts (see Figure 1 for

some examples). The error is calculated as the percentage

difference between the breakpoint area of a given algo-

rithm and the breakpoint area produced by an exact meth-

od, such as brute force. More generally, breakpoint area

can also be used as a measure to compare two given logis-

tics plans, where a larger breakpoint area is indicative of a

more robust plan.

 The results in Table 2 show that the effectiveness of the

algorithms greatly depends on the scenario. In Scenario 2,

the 2D binary search is at least twice as fast as the other

methods, even when these methods are only run for a small

number of evaluations (100). However, in Scenario 1, if a

20-25% error is acceptable, NSGA-II can find a suitable

breakpoint front in almost 1/10th of the time compared to

2D binary search. Similarly, the results for Scenario 3 sug-

gest that computation times faster than 2D binary search

are possible if a certain amount of breakpoint error is al-

lowed.

194

 Overall, we would recommend 2D binary search for

most breakpoint front calculations, due to its accuracy and

comparably good performance. Multi-objective optimiza-

tion may be applicable in situations where dozens or hun-

dreds of breakpoint front calculations are needed very

quickly and a relatively high breakpoint error is acceptable.

Scenario 1

Algorithm Runs Comp. Time BPA Error

Brute force - 28.786 seconds 17744 -

2D binary - 0.676 seconds 17744 0.0%

Monte Carlo 400 0.284 seconds 11144.79 37.2%

 200 0.143 seconds 9922.35 44.1%

 100 0.071 seconds 9166.12 48.3%

SPEA2 400 0.307 seconds 16199.24 8.7%

 200 0.154 seconds 14673.39 17.3%

 100 0.074 seconds 12987.53 26.8%

NSGA-II 400 0.297 seconds 16241.74 8.5%

 200 0.153 seconds 15050.19 15.2%

 100 0.077 seconds 13883.52 21.8%

Scenario 2

Algorithm Runs Comp. Time BPA Error

Brute force - 48.602 seconds 32534 -

2D binary - 0.051 seconds 32534 0.0%

Monte Carlo 400 0.481 seconds 20848.3 35.9%

 200 0.241 seconds 18387.33 43.5%

 100 0.119 seconds 16974.12 47.8%

SPEA2 400 0.501 seconds 31640.22 2.7%

 200 0.255 seconds 29924.1 8.0%

 100 0.124 seconds 27666.6 15.0%

NSGA-II 400 0.496 seconds 31866.06 2.1%

 200 0.253 seconds 30366.16 6.7%

 100 0.128 seconds 28571.69 12.2%

Scenario 3

Algorithm Runs Comp. Time BPA Error

Brute force - 31.063 seconds 7248 -

2D binary - 0.889 seconds 7248 0.0%

Monte Carlo 400 0.319 seconds 3986.67 45.0%

 200 0.162 seconds 3723.46 48.6%

 100 0.081 seconds 3383.37 53.3%

SPEA2 400 0.358 seconds 6085.04 16.0%

 200 0.173 seconds 5020.54 30.7%

 100 0.080 seconds 3908.13 46.1%

NSGA-II 400 0.337 seconds 6202.6 14.4%

 200 0.169 seconds 5349.2 26.2%

 100 0.082 seconds 4633.83 36.1%

Table 2: Comparative breakpoint error of different algorithms.

Figure 1: Examples of breakpoint front calculation

using different methods (Scenario 1).

195

We have also considered the problem of solving �-

variable breakpoint problems for�� % &. Binary search

could be adapted to a larger number of variables, albeit at

rapidly increasing algorithmic complexity. However, mul-

ti-objective algorithms, such as SPEA2 or NSGA-II, can be

adapted quite easily to more variables by simply defining �

decision variables and � objective functions (see Multi-

Objective Optimization section). In the 2-dimensional

problem, the error is calculated based on the area of the

polygon bounded by the breakpoint front. In � dimensions,

the error could be based on the volume of the polytope

bounded by the breakpoint hypersurface. Although this is a

non-trivial problem, there are known techniques for com-

puting the volume of convex polytopes (Büeler, Enge, and

Fukuda 2000).

Conclusion and Future Work

We have presented a way of assessing the robustness of a

military logistics plan by considering the occurrence of

disruptive negative events. These events may occur in iso-

lation or simultaneously. Each event has a corresponding

plan variable and the impact of a negative event can be

assessed by measuring whether the modification of its as-

sociated variable causes any stockouts in the plan. By mod-

ifying any two variables simultaneously, we can identify

the minimum value of those two variables, which in com-

bination cause a stockout. The set of these combinations

defines a breakpoint front. Ultimately, this breakpoint front

can assist military planners in determining the exact point

where the logistics plan fails. This knowledge can inform

the planning process and help to create a more robust logis-

tics plan.

We have investigated various approaches of calculating

or estimating breakpoint fronts, including brute force

search, the Monte Carlo method, 2D binary search and the

multi-objective optimization methods, SPEA2 and NSGA-

II. Our experiments showed that the best overall method

was 2D binary search, due to its accuracy and low compu-

tation times. The multi-objective methods may potentially

have even lower computation times, if some breakpoint

error is acceptable, and therefore may be applicable in situ-

ations where dozens or hundreds of breakpoint front calcu-

lations are needed very quickly.

Future work could consider the problem of solving

breakpoint problems containing more than two variables,

since it’s possible for more than two negative events to

occur simultaneously. Either a �-dimensional binary search

or one of the multi-objective methods could be adapted for

this purpose. The latter would be a simple extension of the

approach described in this paper using � objective func-

tions, though it may be difficult to effectively visualise and

present these results to a military planner.

References

Büeler, B.; Enge, A; and Fukuda, K.. 2000. Exact volume compu-
tation for polytopes: a practical study. Polytopes—combinatorics

and computation. 29: 131–154.

Christopher, M., and Peck, H. 2004. Building the resilient supply
chain. International Journal of Logistics Management 15(2): 1–
14.

Deb, K.; Pratap, A.; Agarwal, S.; and Meyarivan, T. A. M. T.
2002. A fast and elitist multiobjective genetic algorithm: NSGA-
II. IEEE Transactions on Evolutionary Computation 6(2): 182–
197.

Durillo, J. J., and Nebro, A. J. 2011. jMetal: A Java framework
for multi-objective optimization. Advances in Engineering Soft-
ware 42(10): 760–771.

Falasca, M.; Zobel, C. W.; and Cook, D. 2008. A decision sup-
port framework to assess supply chain resilience. In Proceedings
of the 5th International ISCRAM Conference, 596–605.

Hughes, D. ed. 2009. Moltke on the art of war: Selected writings.
Presidio Press.

Jain, S., and Leong, S. 2005. Stress testing a supply chain using
simulation. In Proceedings of the 2005 Winter Simulation Con-

ference, 1650–1657.

Knuth, D. E. 1998. The art of computer programming: sorting
and searching. Pearson Education.

Metropolis, N., and Ulam, S. 1949. The Monte Carlo method.
Journal of the American statistical association 44(247): 335–341.

Ponis, S. T., and Koronis, E. 2012. Supply chain resilience: Defi-
nition of concept and its formative elements. Journal of Applied
Business Research 28(5): 921–930.

Schmitt, A. J., and Singh, M. 2009. Quantifying supply chain
disruption risk using Monte Carlo and discrete-event simulation.
In Proceedings of the 2009 Winter Simulation Conference, 1237–
1248.

Spiegler V. L.; Naim, M. M.; and Wikner, J. 2012. A control
engineering approach to the assessment of supply chain resili-
ence. International Journal of Production Research 50(21):
6162–6187.

Terzi, S., and Cavalieri, S. 2004. Simulation in the supply chain
context: a survey. Computers in Industry 53(1): 3–16.

Thiagarajan, R.; Kwok, H. W.; Calbert, G.; Gossink, D.; Shekh,
S.; and Allard, T. 2011. A simulation-based risk analysis tech-
nique to determine critical assets in a logistics plan. In 19th Inter-

national Congress on Modelling and Simulation, 503–509.

Zitzler, E.; Laumanns, M.; and Thiele, L. 2001. SPEA2: Improv-
ing the strength Pareto evolutionary algorithm.

196

