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Abstract 

Military logistics planning is a complex and time consuming 
process, and ultimately many factors can impact the devised 
plan. We have developed a way of assessing the robustness 
of a logistics plan and associated supply chain by consider-
ing the occurrence of disruptive negative events. These 
events may occur in isolation or simultaneously. Each event 
is associated with a plan variable and the impact of a nega-
tive event can then be assessed by measuring whether the 
modification of its associated variable causes any stockouts 
in the plan during simulation. By modifying any two varia-
bles simultaneously, we can identify the minimum values of 
those two variables, which in combination cause a stockout. 
These minimum values are called breakpoints, and a set of 
breakpoints is referred to as a breakpoint front. We have in-
vestigated various approaches of calculating or estimating 
breakpoint fronts, including brute force search, the Monte 
Carlo method, 2D binary search and the multi-objective op-
timization methods, SPEA2 and NSGA-II. Our experiments 
showed that 2D binary search performed best overall, due to 
its low computation time and accuracy in calculating a 
range of breakpoint fronts. 

 Introduction   

Military logistics planning is a complex and time consum-

ing process. The formulated plans determine the expected 

demand in terms of food, fuel, ammunition etc., the supply 

chain and the transports needed to meet the demand. How-

ever, as the old saying goes: “no plan survives contact with 

the enemy” (Hughes 2009). This is primarily due to the 

extremely dynamic and volatile environment surrounding 

military operations. Many variables and factors can change 

and make the original plan obsolete. For example: What if 

the proposed logistics routes are denied and alternative 

routes are required? What if the force size or operational 

tempo increases and more resources are required to support 

the force? What if another activity requiring support occurs 

concurrently? What if nodes in the supply chain experience 

a reduction in capacity or become unavailable? What if the 
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prescribed logistics transports become unavailable? What 

if the stock loading and unloading times of the transports 

increase? What if the duration of the required logistics 

support increases? What if there are weather events or oth-

er occurrences which delay the delivery of stock? All of 

these questions are valid and reflect likely occurrences in 

military operations. Is there a way to cater for these poten-

tial occurrences during the planning process? 

 The aim of this research is to develop a method to ana-

lyse the strengths and weaknesses of a given logistics plan 

against possible disruptive negative events. The in-

formation derived from this analysis can then be used dur-

ing the planning process to create a more robust plan. 

Problem Description 

In order to analyse the robustness of a given logistics plan, 

we need to define a measure of success or failure for a giv-

en plan. For this study we will use the measure of “out of 

stock” events, which are also referred to as stockouts. If 

any stock (food, fuel, ammunition etc.) runs out at any 

point in the operation, a stockout occurs and we deem the 

logistics plan to have failed. To determine whether stock-

outs will occur in a given logistics plan, we have created a 

movement simulation. For the purposes of this paper, the 

simulation can be considered a black box which takes a 

plan consisting of stock demand, routes, nodes, and trans-

ports as inputs, and determines whether that plan is a suc-

cess or failure. A plan is considered to be a failure if the 

stock level of any logistics node falls below zero at any 

time during the simulation.  

 To represent the negative events that could occur during 

a military operation, certain plan variables in the simula-

tion can be modified. The plan variables denoted as 

�� �����which can be changed include: increase in the 

lengths of routes; increase in the amounts of daily demand 

required; increase in the duration of the military operation; 

reduction in the capacity of logistics nodes to hold stock; 

reduction in the initial amounts of stock held on transports 

at the start of the simulation; reduction in the availability of 
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transports during the simulation; and finally, an increase in 

the stock loading/unloading time for transports. The au-

thors have determined that changes in these plan variables 

cover many likely real world events by representing the 

specific implications they have on a logistics plan. For 

example, material handling equipment faults, high sea 

states, and delays in delivery of certain stocks at ports all 

ultimately affect the loading time of ships, and can be rep-

resented by changes to this single plan variable. 

 In order to find when a stockout occurs for each plan 

variable, the authors initially implemented a simple brute 

force search algorithm. Focusing on one plan variable at a 

time, the brute force search incrementally increases or de-

creases the plan variable by one percent, runs the move-

ment simulation, and records any stockouts. For example, 

for the “increased daily demand” plan variable, the daily 

demand for all stocks is increased in one percent incre-

ments. To avoid excessive runtimes of the brute force 

search algorithm and due to the fact that some plans never 

stock out, the brute force search is limited to searching up 

to 200 increments of the plan variables. If a stockout oc-

curs, the value of the plan variable is recorded and the 

brute force search moves to the next plan variable. The 

outcome is that brute force search finds the exact ‘break-

point’ of each variable in the plan. From this analysis, a 

military planner can determine the strengths and weak-

nesses of a plan against possible negative events. However, 

this kind of analysis only considers the occurrence of one 

negative event at a time, but what if multiple negative 

events occur simultaneously during an operation? 

 In the case of two simultaneous negative events, we 

want to find the value combinations of the two associated 

plan variables that would cause stockouts in the plan. If the 

value of one variable is fixed and the other is increased, 

there will be a point at which the plan stocks out (i.e. the 

breakpoint). The calculation of all breakpoints for the dif-

ferent values of the variables defines a breakpoint front. 

The brute force search algorithm, which was used for one 

plan variable, was extended to calculate this breakpoint 

front for combinations of plan variables. However, the 

brute force search was found to be far too inefficient, and 

therefore other approaches to calculate the breakpoint front 

were investigated. The brute force search and other ap-

proaches are discussed in more detail in the Approaches 

section. 

Related Work 

The relevant literature for this research is in the modelling 

and simulation of supply chains (Terzi and Cavalieri 2004) 

and supply chain resilience (Ponis and Koronis 2012; 

Christopher and Peck, 2004). (Spiegler, Naim, and Wikner 

2012) provide a thorough review of related literature and a 

detailed exploration of the resilience and robustness of 

supply chains. (Jain and Leong 2005) stress test a supply 

chain in a simulation environment with double and quad-

ruple the volume of demand required, in order to show that 

the supply chain can meet unforeseen spikes in demand. 

(Schmitt and Singh 2009) analyse disruptions in supply 

chains using discrete-event simulation, and explore ways to 

mitigate these disruptions with proactive planning. (Fa-

lasca, Zobel, and Cook 2008) conducted research in devel-

oping a quantitative approach for assessing supply chain 

resilience to disasters. They explored various factors such 

as the density, complexity and node criticality of supply 

chains and their effects on the likelihood of disruptions, the 

impact of disruptions, and the ability of the supply chain to 

return to normalcy. (Thiagarajan et al. 2011) investigate 

the impact of losing critical transports on the supply chain 

via simulation. Although the mentioned literature is rele-

vant to our work, to the best of the author’s knowledge, 

using breakpoint front calculation to assess supply chain 

robustness is a novel approach. 

Approaches 

The authors have explored a number of approaches for 

calculating breakpoint fronts, including brute force search, 

the Monte Carlo method, 2D binary search and multi-

objective optimization. In order to calculate a breakpoint 

front, each approach must have a way of generating com-

binations of values for two variables. For instance, “in-

creased daily demand” and “increased duration of military 

operation” are two plan variables. A possible value combi-

nation for these variables is a 10% increase in daily de-

mand and a 20% increase in the duration of the operation. 

Each value combination can be assessed using the move-

ment simulation described in the Problem Description to 

determine whether that combination causes the plan to 

stock out. Once a number of combinations have been gen-

erated and assessed, the breakpoint front is simply the set 

of points separating the value combinations that cause 

stockouts and those that do not. 

Brute Force Search 

A simple way of generating combinations of variable val-

ues is to simply enumerate all of them using a brute force 

or exhaustive search. Since this approach covers the entire 

search space, it will yield an exact solution (assuming a 

discrete search space). However, looking at all combina-

tions of variable values will have an impact on computa-

tional performance, particularly in larger search spaces 

where variables can take on a wide range of values. 
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Monte Carlo Method 

The Monte Carlo method is a form of random sampling 

that can be used to approximate the solution to some prob-

lems (Metropolis and Ulam 1949). This can be applied to 

our breakpoint problem by repeatedly generating random 

combinations of variable values within the search space. 

Since this is a random process, the Monte Carlo method 

will generally yield an approximate solution, the quality of 

which will depend on the number of random samples. The 

Monte Carlo method can be much faster than brute force, 

especially with a small number of samples, but using too 

few samples can result in poor quality results that do not 

sufficiently cover the search space. 

2D Binary Search 

Binary search is a logarithmic time algorithm for finding a 

value in a sorted list by iteratively eliminating half of the 

remaining data where the value is known not to exist 

(Knuth 1998). In the context of breakpoint calculation, we 

can’t directly use this method because our problem is two 

dimensional, and we don’t actually know the value that 

we’re looking for (the breakpoint). Therefore, we have 

developed a variant of binary search, adapted for our par-

ticular problem. Our approach assumes that the number of 

stockouts is monotonically increasing (i.e. an increased 

variable value will result in an equal or greater number of 

stockouts). This assumption holds for the plan variables 

that we have investigated, but may not necessarily hold for 

other variables found in real world problems. Exploring 

alternative techniques that don’t make this assumption is 

therefore an area for future work. 

Our two-dimensional (2D) binary search works by fix-

ing a variable ���(initially to zero), and performing a 1D 

binary search over the other variable���. Since the specific 

value that needs to be found is unknown, the algorithm 

maintains a lower bound value that is known to be stock-

out-free, and an upper bound value that is known to cause 

stockout. The algorithm then iteratively calculates the mid-

point of these bounds. If the midpoint is stockout-free, the 

midpoint becomes the lower bound; otherwise, the mid-

point becomes the upper bound. This process is repeated 

until the difference between the upper bound and lower 

bound is 1, which means the exact breakpoint has been 

found. ���is then fixed to the value of the lower bound, and 

a 1D binary search, as described above, is performed over 

��. This process of alternating 1D binary searches is re-

peated until the entire breakpoint front is found. 

 This binary search variant was developed to try to over-

come the performance limitations of a fully exhaustive 

search. By focusing the search along the breakpoint front 

and taking advantage of a binary search strategy, our 

method examines much fewer combinations of variable 

values than a brute force search. More specifically, the 

time complexity of brute force search for two variables 

is��	
��, while our 2D binary search is��		�
� 
���, re-

sulting in a reduction from quadratic to polylogarithmic 

time. In addition, since our 2D binary search is based on 

1D binary search, it is able to find the exact solution. This 

assertion is further validated through our experiments. 

Multi-Objective Optimization 

In cases where even the 2D binary search is not fast 

enough, another option is to apply a multi-objective opti-

mization algorithm to the problem. Multi-objective meth-

ods are used for problems where multiple objective func-

tions need to be optimized simultaneously. In these kinds 

of problems, there can be many optimal solutions, known 

as Pareto optimal solutions, which correspond to different 

trade-offs of the objective functions. A multi-objective 

optimization algorithm can be used to estimate the entire 

set of Pareto optimal solutions, which is also known as the 

Pareto front. 

Our breakpoint problem can be represented as a multi-

objective problem by modelling each of our plan variables 

�� �����as a decision variable��� ����, which together 

form a solution��. Our goal is to find solutions with varia-

ble values that are as high as possible, yet don’t encounter 

stockouts during simulation. These kinds of solutions con-

tain variable values that represent the limits or breakpoints 

of the variables, and collectively these solutions form the 

breakpoint front. 

Given some solution��, the solution can be evaluated us-

ing our movement simulation to produce a result����, which 

identifies the number of stockouts that occurred during the 

simulation. The quality of solution�� can then be evaluated 

using � objective functions, which are defined as: 

��	�� � ���� �� � �
�� ��������� 

The goal is to maximize these � objective functions: 

 !" �#��	��� � � ��	��$ 

Experiments and Results 

We have run a number of experiments to assess each of the 

discussed approaches on their solution quality and compu-

tational performance. All experiments were performed on 

an Intel Core i7-920 Processor (2.66 GHz) with 6GB RAM 

running Windows 7. All algorithms were implemented in 

Java. 

For the multi-objective optimization, we used a Java-

based framework called jMetal (Durillo and Nebro 2011), 

which implements a range of metaheuristics and multi-

objective algorithms. In particular, we experimented with 

two popular multi-objective algorithms: SPEA2 (Zitzler, 
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Laumanns, and Thiele 2001) and NSGA-II (Deb et al. 

2002). Both are evolutionary algorithms that evolve a pop-

ulation of solutions over many generations to try to find a 

good approximation of the Pareto front. However, SPEA2 

takes the approach of maintaining an external population of 

non-dominated solutions that is regularly mixed with the 

active population, while NSGA-II repeatedly sorts the 

population into fronts based on the non-dominance of solu-

tions. 

Our experiments are based on a two-node supply chain 

consisting of ten different supply items with distinct de-

mand profiles, supported by multiple air and sea transports 

with varying capabilities. Using this supply chain, we have 

devised three scenarios that correspond to different combi-

nations of two plan variables. The breakpoint fronts in 

these scenarios are approximately representative of the 

kinds of breakpoint fronts that can occur across all scenari-

os. In particular, the scenarios are: 

• An increase in the amount of daily demand, and a surge 
in demand for some period of time (Scenario 1). 

• An increase in the length of routes, and an increase in 
the duration of the operation (Scenario 2). 

• An increase in the amount of daily demand and a reduc-
tion in the capacity of logistics nodes to hold stock (Sce-
nario 3). 

Since brute force search and 2D binary search produce 

exact solutions to the breakpoint problem, we wanted to 

compare these two methods on computational perfor-

mance. We ran the algorithms over the three scenarios and 

the results are shown in Table 1. 

Brute force search 2D binary search 

Scenario 1 29.611 seconds 0.755 seconds 

Scenario 2 49.049 seconds 0.052 seconds 

Scenario 3 31.157 seconds 0.903 seconds 

Table 1: Performance of brute force vs. 2D binary search. 

The results show that 2D binary search is able to compute 

the breakpoint front for each scenario in under a second, 

which is significantly faster than a brute force search. The 

performance exhibited by 2D binary search is fast enough 

for calculating an individual breakpoint front, but what if 

we need to calculate a range of breakpoint fronts corre-

sponding to different variable combinations? Perhaps one 

of the approximation algorithms can provide even better 

performance at the cost of some solution accuracy. 

Based on this premise, we ran a number of experiments 

to compare 2D binary search with the Monte Carlo meth-

od, and the multi-objective optimization algorithms, 

SPEA2 and NSGA-II. Initially, we compared the break-

point fronts that each algorithm could produce given the 

same amount of computation time. Using the execution 

time of 2D binary search as a benchmark, we gave the oth-

er algorithms the same amount of time and recorded the 

breakpoint fronts that they produced. Examples of the kind 

of breakpoint fronts produced by each method for Scenario 

1 are shown in Figure 1. The comparison shows that 

SPEA2 and NSGA-II are able to produce good approxima-

tions for the breakpoint front, while the Monte Carlo solu-

tion has a number of gaps due to the limited number of 

simulations that could be run within the given time win-

dow. The results for Scenarios 2 and 3 were comparable. 

 The results from the previous experiment show that 

SPEA2 and NSGA-II can produce good approximations 

for breakpoint fronts in the same amount of time that 2D 

binary search can produce an exact solution. However, 

perhaps these multi-objective methods can produce similar 

quality approximations in a much shorter time. This idea 

provides the motivation for our next experiment, where we 

limit the amount of computation time allowed for each 

approximation algorithm and record the overall breakpoint 

error. This is achieved by running each algorithm for dif-

ferent numbers of runs (for Monte Carlo this is the number 

of simulations, and for multi-objective optimization this is 

the number of generations). The results of this experiment 

across the three scenarios are shown in Table 2, where 

each result is the average of 100 runs. The results from 

brute force are included to validate the accuracy of 2D bi-

nary search. 

 The breakpoint area (BPA) is calculated as the area of 

the polygon bounded by the breakpoint front (the left part 

of the graph), which represents the combinations of varia-

ble values that don’t cause stockouts (see Figure 1 for 

some examples). The error is calculated as the percentage 

difference between the breakpoint area of a given algo-

rithm and the breakpoint area produced by an exact meth-

od, such as brute force. More generally, breakpoint area 

can also be used as a measure to compare two given logis-

tics plans, where a larger breakpoint area is indicative of a 

more robust plan. 

 The results in Table 2 show that the effectiveness of the 

algorithms greatly depends on the scenario. In Scenario 2, 

the 2D binary search is at least twice as fast as the other 

methods, even when these methods are only run for a small 

number of evaluations (100). However, in Scenario 1, if a 

20-25% error is acceptable, NSGA-II can find a suitable 

breakpoint front in almost 1/10th of the time compared to 

2D binary search. Similarly, the results for Scenario 3 sug-

gest that computation times faster than 2D binary search 

are possible if a certain amount of breakpoint error is al-

lowed. 
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 Overall, we would recommend 2D binary search for 

most breakpoint front calculations, due to its accuracy and 

comparably good performance. Multi-objective optimiza-

tion may be applicable in situations where dozens or hun-

dreds of breakpoint front calculations are needed very 

quickly and a relatively high breakpoint error is acceptable. 

Scenario 1  

Algorithm Runs Comp. Time BPA Error 

Brute force  - 28.786 seconds 17744 - 

2D binary - 0.676 seconds 17744 0.0% 

Monte Carlo 400 0.284 seconds 11144.79 37.2% 

 200 0.143 seconds 9922.35 44.1% 

 100 0.071 seconds 9166.12 48.3% 

SPEA2 400 0.307 seconds 16199.24 8.7% 

 200 0.154 seconds 14673.39 17.3% 

 100 0.074 seconds 12987.53 26.8% 

NSGA-II 400 0.297 seconds 16241.74 8.5% 

 200 0.153 seconds 15050.19 15.2% 

 100 0.077 seconds 13883.52 21.8% 

Scenario 2  

Algorithm Runs Comp. Time BPA Error 

Brute force  - 48.602 seconds 32534 - 

2D binary  - 0.051 seconds 32534 0.0% 

Monte Carlo 400 0.481 seconds 20848.3 35.9% 

 200 0.241 seconds 18387.33 43.5% 

 100 0.119 seconds 16974.12 47.8% 

SPEA2 400 0.501 seconds 31640.22 2.7% 

 200 0.255 seconds 29924.1 8.0% 

 100 0.124 seconds 27666.6 15.0% 

NSGA-II 400 0.496 seconds 31866.06 2.1% 

 200 0.253 seconds 30366.16 6.7% 

 100 0.128 seconds 28571.69 12.2% 

Scenario 3     

Algorithm Runs Comp. Time BPA Error 

Brute force  - 31.063 seconds 7248 - 

2D binary  - 0.889 seconds 7248 0.0% 

Monte Carlo 400 0.319 seconds 3986.67 45.0% 

 200 0.162 seconds 3723.46 48.6% 

 100 0.081 seconds 3383.37 53.3% 

SPEA2 400 0.358 seconds 6085.04 16.0% 

 200 0.173 seconds 5020.54 30.7% 

 100 0.080 seconds 3908.13 46.1% 

NSGA-II 400 0.337 seconds 6202.6 14.4% 

 200 0.169 seconds 5349.2 26.2% 

 100 0.082 seconds 4633.83 36.1% 

Table 2: Comparative breakpoint error of different algorithms. 

Figure 1: Examples of breakpoint front calculation 

using different methods (Scenario 1). 
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We have also considered the problem of solving �-

variable breakpoint problems for�� % &. Binary search 

could be adapted to a larger number of variables, albeit at 

rapidly increasing algorithmic complexity. However, mul-

ti-objective algorithms, such as SPEA2 or NSGA-II, can be 

adapted quite easily to more variables by simply defining � 

decision variables and � objective functions (see Multi-

Objective Optimization section). In the 2-dimensional 

problem, the error is calculated based on the area of the 

polygon bounded by the breakpoint front. In � dimensions, 

the error could be based on the volume of the polytope 

bounded by the breakpoint hypersurface. Although this is a 

non-trivial problem, there are known techniques for com-

puting the volume of convex polytopes (Büeler, Enge, and 

Fukuda 2000). 

Conclusion and Future Work 

We have presented a way of assessing the robustness of a 

military logistics plan by considering the occurrence of 

disruptive negative events. These events may occur in iso-

lation or simultaneously. Each event has a corresponding 

plan variable and the impact of a negative event can be 

assessed by measuring whether the modification of its as-

sociated variable causes any stockouts in the plan. By mod-

ifying any two variables simultaneously, we can identify 

the minimum value of those two variables, which in com-

bination cause a stockout. The set of these combinations 

defines a breakpoint front. Ultimately, this breakpoint front 

can assist military planners in determining the exact point 

where the logistics plan fails. This knowledge can inform 

the planning process and help to create a more robust logis-

tics plan. 

We have investigated various approaches of calculating 

or estimating breakpoint fronts, including brute force 

search, the Monte Carlo method, 2D binary search and the 

multi-objective optimization methods, SPEA2 and NSGA-

II. Our experiments showed that the best overall method 

was 2D binary search, due to its accuracy and low compu-

tation times. The multi-objective methods may potentially 

have even lower computation times, if some breakpoint 

error is acceptable, and therefore may be applicable in situ-

ations where dozens or hundreds of breakpoint front calcu-

lations are needed very quickly. 

Future work could consider the problem of solving 

breakpoint problems containing more than two variables, 

since it’s possible for more than two negative events to 

occur simultaneously. Either a �-dimensional binary search 

or one of the multi-objective methods could be adapted for 

this purpose. The latter would be a simple extension of the 

approach described in this paper using � objective func-

tions, though it may be difficult to effectively visualise and 

present these results to a military planner. 
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