
Prioritization of Risky Chats for Intent Classifier Improvement

Ian Beaver and Cynthia Freeman
NextIT Corporation,

12809 E Mirabeau Pkwy, Spokane Valley WA 99216 USA
http://www.nextit.com

Abstract

When reviewing a chatbot’s performance, it is desirable to
prioritize conversations involving misunderstood human in-
puts. A system for measuring the posthoc risk of missed in-
tent associated with a single human input is presented. Using
defined indicators of risk, the system’s performance in identi-
fying misunderstood human inputs is given. These indicators
are given weights and optimized on real world data. By ap-
plication of our system, language model development is im-
proved.

Introduction

NextIT is a company in Spokane, WA, USA that deploys
chatbots in several domains where they interact with human
users. These chatbots will be referred to as virtual agents as
they perform tasks essential in the customer service realm.
These virtual agents map user inputs, or chats, to a derived
intent. In the context of Natural Language Processing, intent
is defined by Dumoulin as ”an interpretation of a statement
or question that allows one to formulate the ’best’ response
to the statement” (Dumoulin 2014). There are multiple ap-
proaches to intent recognition, such as [(Cohen, Morgan,
and Pollack 1990), (Holtgraves 2008), (Montero and Araki
2005)], but we assume the pre-existence of chatbots which
perform such tasks.

The collection of rules that defines how input language
maps to an intent is referred to as a language model within
this paper. While there exists methods to introduce con-
fidence scoring within language models used by speech
recognition systems, they rely on features present in the
acoustic models, word lattice density, etc [(Pradhan and
Ward 2002), (Wessel et al. 2001)]. Our topic is that of mea-
suring posthoc risk of missed intent in a conversation turn
for the purpose of language model development, in which
there is no existing literature.

To improve the language models, human-to-computer in-
teractions need to be continuously reviewed. In our existing
process, semi experts in a domain are given a random sample
of recent chats collected from a live system for review. They
manually grade them in an effort to find intents which need
improvement. These reviewers need only be familiar with

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Augmented Language Model Development Cycle

any domain specific terminology to be qualified to review
chats. If a reviewer decides that an intent was not appropri-
ate given the user input, they may recommend a different
intent. The result of the reviewing process is a set of chats
and their grades, which are passed to the domain experts.
Only poorly graded chats are analysed by domain experts to
make the necessary changes to the language models.

As this is a manual and time consuming process, the re-
viewers are only able to view a limited number of chats. The
result is also subjective since reviewers may disagree on the
appropriate intent for a chat. In addition, as the language
model improves, miscategorized chats become more diffi-
cult to identify in a random sample due to their dwindling
numbers.

To increase the efficiency and coverage of the develop-
ment process, we created the Chat Review System (CRS).
The CRS augments the review cycle by preprocessing the
entire chat history from a virtual agent, and prioritizing chats
for the reviewers. It ranks chats by risk of missed intent,
which we define as riskiness. The individual chat risk score
is derived from the presence of one or more risk indicators
which will be described in detail below.

The CRS is placed between the virtual agents and the re-
viewers as shown in Figure 1. Reviewers are presented with
the riskiest chats first, and they vote on if a given chat was

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

167

assigned to the best intent, in place of grading. The CRS then
determines actions to be taken on chats and intents based on
riskiness and reviewer feedback. The chats that are deter-
mined to be correctly mapped by the language model after
review are fed back into the CRS as training data. The set
of chats, associated voting outcomes, and recommended ac-
tions are then given to the domain experts for detailed guid-
ance on language model improvements.

In the following sections we describe the CRS architec-
ture, how the chat risk score is derived from risk indicators,
development process improvements, and performance mea-
surements.

Chat Review System

Since a large number of reviewers may not be on-site, the
CRS was designed as a web application. Each language do-
main is isolated in the CRS as a project, which may contain
multiple deployments of a language model. The language
models under review were previously deployed to a live vir-
tual agent which may be exposed to human users over chan-
nels such as a website, Short Message Service, Interactive
Voice Response, or native mobile applications. Each deploy-
ment is given a unique version number that allows the CRS
to evaluate chats from the live system against the exact lan-
guage model used.

Dataset Creation

When a language model is to be reviewed, it is uploaded to
a project along with the entire live chat history using that
language model version and the set of regression chats.

Regression chats are used by domain experts to verify lan-
guage model behaviour during construction and refinement.
Each intent has a set of chats assigned by a domain expert
as an example of language that maps to it. These regression
chats may be constructed by the designers or come from a
live system and saved after review. The number of regres-
sion chats varies greatly by maturity of language model, but
more mature sets may have hundreds per intent.

The versioned language model and chat history pair are
referred to as a dataset. The live chats are exported from a
virtual agent’s reporting database into a dataset. These ex-
ports retain the user input, intent hit, conversation identifier,
and order in conversation. Optionally, they may include any
user survey results, if collected. A real conversation from a
live virtual agent is given in Table 1.

Aggregating data from all deployed virtual agents re-
quires the CRS datastore and queries to scale horizontally as
even a single agent may see several million chats in a month.
MongoDB was chosen for these properties (Horowitz 2011)
and its built in MapReduce framework which the CRS uses
heavily. It has been shown to handle aggregating large vol-
ume chat data and subsequent querying well (Beaver and
Dumoulin 2014).

Chat Analysis Overview

The CRS performs several passes of risk analysis. In each
pass, indicators of risk discovered are added to a list associ-
ated to the individual chat. Each recurrence of an indicator is

Chat Text Intent Hit Conversation ID Entry #

My TV is not working I
need to have it fixed.

TV Support 26789 1

My TV will not start I
want to talk with support
staff

Contact Informa-
tion Deflection

26789 2

I cannot get my tv to
work

TV Support 26789 3

How can I get a person
to help me get the TV
started?

TV Services 26789 4

How can I speak with a
support staff to get my
TV to work?

TV Support 26789 5

There are no links show-
ing my problem what
now?

I Don’t Know 26789 6

Table 1: Conversation with Risky Inputs

added to the list. Specific indicators of risk and how they are
combined will be covered in a following section. In the first
pass, the CRS looks at conversation level features. These are
indications of risk in the structure of the conversation. The
second pass looks at chat level features, which are indica-
tions of risk at the individual chat level.

In parallel to this process, the CRS builds classifiers for
use in the analysis. Any supervised learning method that
supports multi-class classification may be used, and multiple
classification methods are used if present. When using mul-
tiple methods, each classifier is trained on the same training
data. This training step is done in parallel so that the train-
ing period is only as long as the slowest training interval. By
training multiple classification methods from the same data,
we theorize that any disagreement in the highest ranked in-
tent between a single classifier and the language model is
an indicator of risk. The CRS then runs chats through each
available classifier and compares its highest ranked intent to
the one originally selected by the language model.

After the classification pass, the risk indicators present are
combined into a singular risk score for each chat. The scores
are then normalized to obtain a ranking from highest to low-
est risk within the dataset.

Voting Process

The chats are selected for review in order of highest risk first,
and a threshold is set for the number of chats to be reviewed.
This threshold is configured by the domain experts and can
be changed at any time if they feel they need more data for
their investigation. The reviewers are asked if a chat belongs
to the intent it was mapped to, and are given the possible
responses of Yes, No, or Not Sure. They are presented sup-
plementary information to inform their choice; including the
full conversation in which the chat appeared, the regression
chats assigned to that intent for comparison, and a list of in-
tents that are related by similarity of input language to the
current one. To control for the subjective nature of voting,
each chat is presented to a minimum of three reviewers. The
majority vote is calculated and used as the basis for missed
intent.

Risk Indicators

The categories of risk that we attempt to detect and the risk
indicators within them are defined in Table 2. Each risk indi-

168

I Don’t Know (IDK) response risk indicators

input triggers idk This input directly triggered an
IDK response

input preceeds idk The input directly preceded an
interaction that included an IDK
response

idk in conversation The input was involved in a con-
versation that contained an IDK
response

input triggers impasse This input directly triggered an
impasse

Instances of multiple hits risk indicators

input triggers seq This input triggers a response
that is directly involved in a se-
quential hit

seq in conversation The input is involved in a conver-
sation that contained a sequential
hit

mult in conversation The input is involved in a con-
versation that contained multiple
hits to the same intent (but were
not sequential)

User feedback score risk indicators

usr score 1 Rating score of 1
usr score 2 Rating score of 2
usr score 3 Rating score of 3
usr score 4 Rating score of 4
usr score 5 Rating score of 5

Classifier agreement

ci predictor: Probability of not being the orig-
inal intent

pni origin: Penalty given to the intent a Po-
tential New Input (PNI) origi-
nated from

Table 2: Risk Indicators

cator is given a weight w ∈ [0, 1], initially 1, that determines
the impact the indicator has on the overall risk of a chat. The
selection of these indicators was done by conducting inter-
views with experienced reviewers on attributes they look for
in chats that are graded poorly. For example, in Table 1, it
is easy for a human to see that the user is not getting a sat-
isfactory response from the virtual agent. In order to train a
system to reach the same conclusion, we attempt to extract
from human reviewers what features of such a conversation
they observe.

We consulted domain experts for which of the proposed
indicators from the interviews were of the most importance
to detect language model errors. These indicators in Table 2
reflect the tribal knowledge of our existing reviewer base.
Other indicators may exist, and this is a subject of future
research.

I Don’t Know (IDK) response risk indicators The first
category in Table 2 applies to what we call ”I Don’t Know”
(IDK) responses. These occur when the language model
does not find an intent that satisfies the input. An IDK in-
tent may return a response such as ”I’m sorry, I don’t un-
derstand you. Please revise your question.”. An example of

this is seen at entry 6 in Table 1. Therefore all chats in that
conversation would be tagged with idk in conversation, en-
try 6 would be additionally tagged with input triggers idk,
and entry 5 with input preceeds idk.

A language model may also contain intents that are used
as ”intelligent” IDKs. An example response to one of these
may be: ”I see that you are asking about liability insurance,
but I do not have detailed knowledge in that area.”.

Another type of IDK occurs when the same intent is hit
more than two successive times within a conversation. This
is an impasse, since it is clear we cannot give the user a
satisfactory response. It may indicate that the input mapping
associated to the impasse intent is too broad, or the virtual
agent is missing domain knowledge.

Instances of multiple hits risk indicators The second
category applies to multiple hits, where the same intent was
returned multiple times in a conversation. This is an indica-
tion of risk within a customer service conversation as it is
unlikely the user would want to see a specific response more
than once. An example of this are entries 1, 3, and 5 in Ta-
ble 1. If two hits are successive, we label the interactions as
sequential hits. This usually indicates that the response to
the first input did not satisfy the user so they are rewording
their questions to get a different response.

User feedback score risk indicators The third category is
derived from ratings given by the human users themselves.
Typically, customer service interactions present surveys on
user satisfaction after a conversation is complete. If these
ratings are present, they can be used as an indicator of risk. If
the user reported he/she was unhappy with the conversation,
it may indicate the intents present within that conversation
need improvement. The ratings are normalized into a range
[1,5] where 1 would represent a poor response and 5 would
represent an excellent one. Each rating score is given its own
risk indicator in order to weigh them individually.

Classifiers agreement The final category is used by clas-
sifier models to indicate risk based on the class score of
the intent that was assigned by the language model. As de-
scribed previously, all chats are ran through classifiers, and
the chats are tagged with a ci predictor indicator per classi-
fier, which carries a weight derived from the probability of
class membership.

For simplicity’s sake, we consider a single classifier. We
use Scikit Learn’s Support Vector Classifier (SVC) with a
linear kernel and C = .5 as our classification method. It im-
plements a ”one-vs-rest” multi-class strategy. To determine
a weight for risk ci predictor, we use SciKit Learn’s deci-
sion function method which returns the signed distance of
a sample to the hyperplane. Using this distance d, we can
calculate the probability P of class membership. We use the
following estimation method since datasets may have input
counts in the millions and calculations must be performed
on each input:

P =
d

2
+ .5 (1)

As we need an estimation method that will perform at a
consistent and efficient speed with a large number inputs,

169

and we do not require a high degree of precision, we use
the estimation technique in (1) over other techniques such
as Platt scaling (Platt 1999). Platt scaling has been shown to
be an expensive operation on large datasets (Chang and Lin
2011). Note that if d does not satisfy

ε ≤ d

2
+ .5 ≤ 1− ε (2)

where ε = .0001 in our case, then P will take on the value
ε or 1− ε, whichever is closer.

Let 1 − P be the value of ci predictor for the assigned
intent. If a classifier returns a high P , the assumed risk of
missed intent is low.

A second way classifiers are used in the CRS is to help
predict which intent is correct, given the classifier does not
agree with the original mapping. If a classifier returns a dif-
ferent intent ranked highest, and it has a confidence in its
choice that is greater than 0.6, the CRS generates a new input
associated to its top ranked intent with the same text. These
are named Potential New Inputs (PNIs), and will be voted
on along with the original intent mapping. The original chat
from the live system will be tagged with a pni origin indica-
tor. The threshold of 0.6 was arbitrarily chosen, and one of
the future directions for this research will be to optimize it.

If an intent has a large number of chats tagged with a
pni origin indicator, it is evident that the intent is consuming
too broad of language and needs investigation. If an intent
has a large number of PNIs assigned to it, the evidence sug-
gests that it has too narrow of language or is redundant and
also needs investigation.

Chat Risk Score

The score for risk of missed intent is computed from the
risk indicators present in a chat as follows. Let C be the set
consisting of all input chats. Assume that a chat c ∈ C has n
risk indicators present. Let wj represent the weight for risk
indicator j. The risk score for chat c, known as zc, is defined
as:

zc =

j=n∑
j=1

wj (3)

We then normalize the chat risk scores across the dataset
as follows. Let MaxScore be the maximum chat risk score.
The normalized chat risk score is defined by:

z′c =
zc

MaxScore
∗ 100 (4)

This normalized value, z′c, is assigned to the chat as its
risk score. It is its measure of risk relative to the riskiest chat
in the dataset.

CRS Output

After the risk analysis and voting stages have been com-
pleted, the CRS exports the voting data and additional rec-
ommendations to the domain experts to facilitate language
model development. The CRS flags an intent to be reviewed
in the following circumstances:

• A chat-to-intent map is voted to be incorrect

• The majority votes Not Sure
• There is no majority consensus
• A PNI is voted to belong to the suggested intent

There is a situation when a PNI is generated and a ma-
jority agrees the chat belongs to both intents. These chats
are surfaced by the CRS, and the domain experts can choose
to re-release them for voting. If not, the CRS will flag both
intents for review. If a chat-to-intent map was voted to be
correct, no action is needed. As seen in Figure 1, the vot-
ing data is fed back to the CRS as training data for future
classifiers, as well as weight optimization.

Evaluation Dataset Creation

To measure the performance of the CRS we constructed
three datasets, each from a different language domain. The
CRS must work well in any domain so we are motivated to
train weights in a domain agnostic way. Each dataset was
generated from a random sample of approximately 150 full
conversations taken from a live virtual agent. All chats were
selected for voting and released to a group of 15 reviewers.
After voting, the average number of chats per dataset with
a clear majority was 860. If there was no clear majority, the
chat was not used as an evaluation chat.

The language models for these datasets differ in their ma-
turity. The maturity of a language model is dependent on its
length of refinement. As we have virtual agents with various
refinement time, we created three categories and selected a
domain from each:

Dataset Refinement Time Domain # Chats
1 0-12 months Airline Service 921
2 12-36 months Retail Support 871
3 36+ months WebForm Help 788

To account for maturity differences, Dataset 1 and 3 were
used for training risk indicator weights, and Dataset 2 was
used for CRS evaluation. Analysis was limited to a small
number of conversations as the construction of a gold stan-
dard with multiple reviews per chat is a very expensive un-
dertaking. However, the CRS was designed to scale and has
processed tens of millions of chats in production use.

Optimization of Risk Indicator Weights

Weights associated with each risk indicator are optimized
using the training datasets. Chats marked as incorrect by a
majority of voters are pushed to the top of the review prior-
ity list as a result of their risk score. The following sections
describe the process of discovering which risk indicators are
the most influential in determining risky chats.

Determination of Weights Using ORs

Odds Ratios (ORs) are commonly used in many fields of
social science and medical research to compare the impact
of risk factors on a selected outcome [(Parrish et al. 2011),
(Etchegaray et al. 2012)]. The odds ratio represents the odds
that an outcome will occur given a particular exposure, com-
pared to the odds of the outcome occurring in the absence of
that exposure (Szumilas 2010).

170

Figure 2: Comparison of Risk Scores

From our voter evaluated datasets, odds ratios for every
risk indicator are calculated. Statistically insignificant risk
indicators are eliminated using a 95% confidence interval.
Remaining indicators are then ranked by their ORs where
a higher OR indicates a larger magnitude of effect. Finally,
ORs are normalized between 0 and 1 to obtain weights for
their respective indicators.

To calculate ORs, dichotomized exposures must be delim-
ited. An input chat is risky if the majority of voters disagreed
with the intent it was mapped to, otherwise it is labelled as
safe.

Risky Safe()Risk Indicator a b
No Risk Indicator c d

OR =
a/c

b/d
(5)

Since ci predictor is a probability returned from a classi-
fier, it is a continuous variable from 0 to 1. To dichotomize
ci predictor, we perform the following: If the classifier and
language model agree on the top intent, ci predictor will
not be considered present. If they disagree, ci predictor is
present. The value of the OR indicates the effect the risk
indicator has on the riskiness of the chat: an OR � 1 signi-
fies that the indicator positively affects riskiness. If the 95%
confidence interval of the OR includes 1, we deem it a statis-
tically insignificant result. The lower and upper bounds for
the 95% confidence interval are calculated in the following
manner (Szumilas 2010) :

eln(OR)±1.96∗
√

(1
a+ 1

b+
1
c+

1
d) (6)

Finally, weights are given to risk indicators by normaliz-
ing the ORs.

If risk indicators are not independent, an adjusted OR can
be calculated with logistic regression (Santos 1999). We ob-
served that risk indicators tend to occur individually without
the presence of other risk indicators in our datasets. Thus,
unadjusted ORs are used.

Result of Optimizations

Two evaluated datasets are considered for weight optimiza-
tion. We test these obtained weights on a third dataset. Equal
weights are initially set for each risk indicator. An accept-
able input for the determination of ORs must have at least
three voters and a majority vote of either Yes or No.

The ORs and confidence intervals are evaluated for the
risk indicators determined by Dataset 1. Insignificant risk
indicators are removed, and weights of risk indicators are
obtained by normalizing the ORs:

Risk Indicator Weight
input triggers idk 1.0
ci predictor 0.4184
usr score 1 0.0871
input preceeds idk 0.0546
idk in conversation 0.0475
usr score 2 0.0395
input triggers seq 0.0279
usr score 4 0.0021
usr score 5 0.0

This process is repeated for Dataset 3:

Risk Indicator Weight
usr score 2 1.0
idk in conversation 0.5841
ci predictor 0.4917
input triggers idk 0.3981
input preceeds idk 0.2000
input triggers seq 0.0

No weights are obtained for Mult in conversation,
seq in conversation, input triggers impasse, and
usr score 3 due to their insignificance in both Datasets 1
and 3. If a risk indicator weight only exists in one dataset,
it is the weight that is used. Otherwise, we average the
weights. Averaged weights from Dataset 1 and 3 follow:

Risk Indicator Averaged Weight
input triggers idk 0.7341
usr score 2 0.4639
ci predictor 0.4508
idk in conversation 0.2846
input preceeds idk 0.1188
usr score 1 0.0871
input triggers seq 0.0156
usr score 4 0.0021
usr score 5 0.0

These averaged weights are applied to our test set. Perfor-
mance with equal weights is compared to performance with
optimized weights using the chat risk score, z′c, in (4).

If optimized weights are working appropriately, z′c should
be higher for chats labelled as risky and lower for chats la-
belled as safe. This exact behavior is displayed in Figure 2
where the median risk score for risky chats shifts up as a
direct result of our implementation. An even more dramatic
change is evidenced with safe chats, where the risk score
plummets. With equal weights, the distribution of risk scores
for safe chats is rather large. Optimized weights tighten the
distribution making z′c a more valuable metric.

171

Figure 3: Comparison of Review Selection Processes

CRS Performance

Our primary measure of CRS performance is the prioritiza-
tion of chats with missed intent. Reviewers are given a fixed
number of chats to review due to time constraints; therefore,
maximizing the number of chats with missed intent in a fixed
sample size is our goal. To do this, Dataset 2 was processed
by the CRS using the optimized indicator weights previously
determined. There are 278 chats with missed intent out of
the 871 in Dataset 2, or 32%. For evaluation of our methods,
200 chats were selected using the original random process,
and 200 were selected by top risk scores from the CRS.

Random selection is used as there is no literature on this
specific topic to compare against. For the random process,
correct intent and missed intent counts were averaged over 3
independent selections, using Python’s random.randint
function to select chat IDs from the database.

As Figure 3 demonstrates, the percent of missed intents
found in the selection increased from 31.5% to 82% using
the CRS risk score in place of a random sample. This is a
very significant increase in productivity for the reviewers,
as the majority of their work is now directed to chats that
legitimately need review.

Through further research on features of risky chats, our
goal is to replace human voters altogether as risk detection
improves, thereby allowing the CRS to process the chats in
real time without the delay of the voting process. When to
replace the voters is subjective, as it is dependent on the tol-
erances of the domain experts for false positives; research is
ongoing into when voting can be safely removed and how
domains affect risk thresholds.

Conclusions

We have presented a system for autonomously evaluating
chat data and prioritizing language model improvements for
chatbots, regardless of their implementation. We introduced
indicators of risk and a method to weight them. This system
alleviates the subjective nature of individual human review-
ers. All of the data is processed but only the riskiest is pre-
sented to humans for review. With weighted risk indicators,
we demonstrate a significant improvement in locating chats

with missed intent in a fixed sample size. The subjective na-
ture of human suggestions for correct intent is removed, as
the CRS generates PNIs only if confident, and verifies them
with a voter majority. Thus, language model development is
improved by surfacing chats with missed intent and provid-
ing reviewed suggestions to guide repair.

References
Beaver, I., and Dumoulin, J. 2014. Scaling user preference
learning in near real-time to large datasets. In Modern Ar-
tificial Intelligence and Cognitive Science Conference 2014,
volume 1144, 68–73. CEUR-WS.org.
Chang, C.-C., and Lin, C.-J. 2011. Libsvm: A library for
support vector machines. ACM Transactions on Intelligent
Systems and Technology (TIST) 2(3):27.
Cohen, P. R.; Morgan, J. L.; and Pollack, M. E. 1990. Inten-
tions in communication. MIT press.
Dumoulin, J. 2014. Using multiple classifiers to improve
intent recognition in human chats. In Inoue, A., and De-
Palma, P., eds., Modern Artificial Intelligence and Cognitive
Science Conference 2014, number 1144 in CEUR Workshop
Proceedings, 10–21.
Etchegaray, J. M.; Ottenbacher, A. J.; Sittig, F.; and McCoy,
A. B. 2012. Understanding evidence-based research meth-
ods: Survey analysis, t-tests, and odds ratios. HERD: Health
Environments Research & Design Journal 6(1):143–147.
Holtgraves, T. 2008. Automatic intention recognition in
conversation processing. Journal of Memory and Language
58(3):627–645.
Horowitz, E. 2011. The secret sauce of sharding. MongoSF.
Available online at http://www.mongodb.com/presentations/
secret-sauce-sharding.
Montero, C. A., and Araki, K. 2005. Enhancing com-
puter chat: Toward a smooth user-computer interaction. In
Knowledge-Based Intelligent Information and Engineering
Systems, 918–924. Springer.
Parrish, J. W.; Young, M. B.; Perham-Hester, K. A.; and
Gessner, B. D. 2011. Identifying risk factors for child mal-
treatment in alaska: A population-based approach. American
Journal of preventive medicine 40(6):666–673.
Platt, J. C. 1999. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood meth-
ods. In Advances in large margin classifiers. Citeseer.
Pradhan, S. S., and Ward, W. H. 2002. Estimating seman-
tic confidence for spoken dialogue systems. In Acoustics,
Speech, and Signal Processing (ICASSP), 2002 IEEE Inter-
national Conference on, volume 1, I–233. IEEE.
Santos, S. I. 1999. Cancer epidemiology: principles and
methods. IARC.
Szumilas, M. 2010. Explaining odds ratios. Journal of
the Canadian Academy of Child and Adolescent Psychiatry
19(3):227.
Wessel, F.; Schlüter, R.; Macherey, K.; and Ney, H.
2001. Confidence measures for large vocabulary continu-
ous speech recognition. Speech and Audio Processing, IEEE
Transactions on 9(3):288–298.

172

