Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

Testing Independencies in Bayesian Networks with i-Separation

Cory J. Butz
butz@cs.uregina.ca
University of Regina
Canada

Jhonatan S. Oliveira
oliveira@cs.uregina.ca
University of Regina
Canada

Abstract

Testing independencies in Bayesian networks (BNs) is a
fundamental task in probabilistic reasoning. In this pa-
per, we propose inaugural-separation (i-separation) as
a new method for testing independencies in BNs. We
establish the correctness of i-separation. Our method
has several theoretical and practical advantages. There
are at least five ways in which i-separation is simpler
than d-separation, the classical method for testing inde-
pendencies in BNs, of which the most important is that
“blocking” works in an intuitive fashion. In practice, our
empirical evaluation shows that i-separation tends to be
faster than d-separation in large BNs.

Introduction

Pearl (1993) states that perhaps the founding of Bayesian
networks (BNs) (Pearl 1988) made its greatest impact
through the notion of d-separation. Directed-separation (d-
separation) (Pearl 1986) is a graphical method for decid-
ing which conditional independence relations are implied by
the directed acyclic graph (DAG) of a BN. To test whether
two sets X and Z of variables are conditionally indepen-
dent given a third set Y of variables, denoted I(X,Y, Z),
d-separation checks whether every path from X to Z is
“blocked” by Y. This involves classifying every variable be-
tween X and Z on each of these paths into one of three cat-
egories. This classification may involve consulting variables
not appearing on the path itself. Unfortunately, many have
had difficulties in understanding d-separation (Pearl 2009),
perhaps due to the following two drawbacks. First, the same
variable can assume different classifications depending on
the path being considered. Second, sometimes a path is not
“blocked” by Y even though it necessarily traverses Y .
This paper puts forth inaugural-separation (i-separation)
as a novel method for testing independencies in BNs. We in-
troduce the notion of an inaugural variable, the salient fea-
ture of which is that in testing I(X,Y, Z), any path from
X to Z involving an inaugural variable is “blocked.” This
means that paths involving inaugural variables can be ig-
nored. On the paths not involving inaugural variables, only

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

644

André E. dos Santos
dossantos @cs.uregina.ca
University of Regina
Canada

Christophe Gonzales
christophe.gonzales @lip6.fr
Université Pierre et Marie Curie
France

those variables belonging to Y need to be classified as to
whether they belong to one category. Our method has several
theoretical and practical advantages. On the theoretical side,
i-separation is simpler than d-separation. Rather than test-
ing all paths between X and Z, i-separation tests only those
paths not involving inaugural variables. On these paths, in-
stead of classifying all variables, i-separation classify only
those variables that are members of Y. As compared to d-
separation, which classifies variables into three categories,
i-separation only requires binary classification. And classifi-
cation in i-separation only involves consulting variables on
the path itself. Thus, i-separation involves fewer paths, fewer
variables, and fewer categories. In addition, “blocking” is
intuitive in i-separation, namely, a path is “blocked” by Y
if and only if it traverses through Y. From a practical per-
spective, our experimental results indicate that i-separation
is especially effective in large BNs.

Background

Let U = {v1,v9,...,v,} be a finite set of variables. Let
B denote a directed acyclic graph (DAG) on U. A directed
path from vy to v is a sequence v1,vs, ..., v With arcs
(vi,vi41) in B, ¢ = 1,2,...,k — 1. For each v; € U, the
ancestors of v;, denoted An(v;), are those variables having
a directed path to v;, while the descendants of v;, denoted
De(v;), are those variables to which v; has a directed path.
For a set X C U, we define An(X) and De(X) in the ob-
vious way. The children Ch(v;) and parents Pa(v;) of v;
are those v; such that (v;,v;) € B and (vj,v;) € B, re-
spectively. An undirected path in a DAG is a path ignoring
directions. A directed edge (v;,v;) € B may be written as
(vj,v;) in an undirected path. A singleton set {v} may be
written as v, {v1,va,..., Uy} @S V1V - Uy, and X UY as
XY.

A Bayesian network (BN) (Pearl 1988) is a DAG B
on U together with conditional probability tables (CPTs)
P(vi|Pa(v1)), P(ve|Pa(va)), ..., P(v,|Pa(vy,)). For ex-
ample, Figure 1 shows a BN, where CPTs P(a), P(b), ...,
P(j|i) are not provided. We call B a BN, if no confusion
arises. The product of the CPTs for B on U is a joint proba-
bility distribution P(U) (Pearl 1988). The conditional inde-
pendence (Pearl 1988) of X and Z given Y holding in P(U)

Figure 1: A DAG B.

is denoted Ip(X,Y, Z). It is known that if 1(X,Y, Z) holds
in B, then Ip(X,Y, Z) holds in P(U).

d-Separation (Pearl 1988) tests independencies in DAGs
and can be presented as follows (Darwiche 2009). Let X,
Y, and Z be pairwise disjoint sets of variables in a DAG 5.
We say X and Z are d-separated by Y, denoted I(X,Y, Z),
if at least one variable on every undirected path from X to
Z is closed. On a path, there are three kinds of variable v:
(1) a sequential variable means v is a parent of one of its
neighbours and a child of the other; (ii) a divergent variable
is when v is a parent of both neighbours; and (iii) a con-
vergent variable is when v is a child of both neighbours. A
variable v is either open or closed. A sequential or divergent
variable is closed, if v € Y. A convergent variable is closed,
if (v U De(v)) NY = 0. A path with a closed variable is
blocked; otherwise, it is active.

Example 1. Let us test I(a,de,g) in the DAG B of Fig-
ure 1 using d-separation. It can be verified that there are 17
undirected paths from a to g. Path (a,d), (d,g) is blocked,
since sequential variable d is closed. Similarly, the path
(a,c), (¢, f), (d, f), (d,g) is blocked, since divergent vari-
able d is closed. Moreover, the path (a,c), (¢, f), (f,h),
(g, h) is blocked, since convergent variable h is closed. It
can be verified that the other 14 paths are blocked. There-
fore, 1(a,de, g) holds. It can be verified that I(a,d, g) does
not hold in B.

i-Separation

Inaugural-separation (i-separation) is proposed as a novel
method for testing independencies in BNs.

A variable vy, is called a v-structure (Pearl 2009) in a DAG
B, if BB contains directed edges (v;, vx) and (v;, vx), but not
a directed edge between variables v; and v;. For example,
variable h is a v-structure in DAG B of Figure 1, since B
contains directed edges (f, h) and (g, h), and does not con-
tain a directed edge between variables f and g. Variable f is
also a v-structure, since B contains directed edges (¢, f) and
(e, f), and does contain a directed edge between variables ¢
and e. Similarly, d and g are also v-structures.

Given an independence I(X,Y, Z) to be tested in a DAG
B, a variable v is inaugural, if either of the following two

645

conditions are satisfied: (i) v is a v-structure and

({v}UDe(w))NXYZ = 0 (1)

or (ii) v is a descendant of a variable satisfying (i). We de-
note by V' the set of all inaugural variables.

Example 2. Consider testing I(a,de, g) in the DAG B of
Figure 1. Variable f is inaugural, since it is a v-structure

and, by (1),
{fru{nh)nia,d,e,gt = 0.

Consequently, by condition (ii), h is also inaugural, since
h is a descendant of f. On the contrary, variable d is a v-
structure, but is not inaugural, since

({d}U{f,g,h})ﬂ{m(Le,g} # .

The concept of a serial variable is needed in i-separation.

Definition 1. Consider any undirected path
ooy (Vi v5), (vj,v),... passing through variable v,
in a DAG B. We call v; serial, if at most one of v; and vy, is
in Pa(v;).

Example 3. Referring to the DAG in Figure 1, consider
the path (a,d), (d,g) passing through variable d. Since
a € Pa(d) and g ¢ Pa(d), d is serial. On the other
hand, variable d is not serial on the path (a, d), (d,b), since
a,b € Pa(d).

Note that sequential variables are serial, as are divergent
variables. We now formally introduce i-separation.

Definition 2. Ler X, Y, and Z be pairwise disjoint sets of
variables in a DAG B. Then i-separation tests I(X,Y,Z)
by first pruning inaugural variables from B. For every undi-
rected path from X to Z in the resulting sub-DAG, if there
exists a variable in'Y that is serial, then 1(X,Y, Z) holds;
otherwise, I(X,Y, Z) does not hold.

Example 4. Let us test I(a,de, g) in the DAG B of Figure 1
using i-separation. Inaugural variables f and h are pruned,
vielding the sub-DAG in Figure 2 (i). Here, there are four
undirected paths from a to g, as shown in (ii)-(v) of Figure 2.
In (ii) and (iv), e € Y and e is serial. In (iii) and (v), d € Y
and d is serial. Therefore, 1(a,de, g) holds. It can be verified
that I(a,d, g) does not hold in BB by i-separation.

We now present the main result of our paper.

Theorem 1. Independence I(X,Y, Z) holds in a DAG B
by d-separation if and only if I(X,Y, Z) holds in B by i-
separation.

Proof. (=) Suppose I(X,Y, Z) holds in B by d-separation.
By definition, all paths in B from X to Z are blocked.
Thereby, all paths in B from X to Z not involving inaugural
variables are blocked. By definition, I(X,Y, Z) holds in B
by i-separation.

(<) Suppose I(X,Y, Z) holds in B by i-separation. By
definition, all paths in B from X to Z not involving inaugu-
ral variables are blocked. Let V' be the set of all inaugural
variables in B. Consider any undirected path in 3 from X to

LN

/

AN
/ \/

i g g
(@) (i)
a b a
N\ \
d e d
/ \

g g g
(iv) ™)

/

c—>d

\

(iii)

Figure 2: i-Separation prunes inaugural variables f and h
from the DAG B of Figure 1 when testing I(a, de, g), and
then classifies only variables d and e in the four paths in

(i1)-(v).

Z involving at least one inaugural variable v € V. Without
loss of generality, there are two cases to consider.

i) (v1,v),(v,v2), where vi,v2 ¢ V. This means that
(v1,v) and (vg,v) are directed edges in B; otherwise, vq
and vo are members of De(v), which, by (1), means that
vi,v2 € V. By (1), (vU De(v)) NY = (. Thus, v is a
closed convergent variable. Therefore, this path involving an
inaugural variable v is blocked in d-separation.

(i) (vi,v),(v,v2), where vy ¢ V and vo € V. Here,
vy ¢ V means that (vy,v) is a directed edge in B. First,
suppose that (ve,v) is a directed edge in B. Therefore, v
is a closed convergent variable. Thus, this path involving
an inaugural variable v is blocked in d-separation. Sec-
ond, suppose that (v,vs) is a directed edge in B. By (1),
De(v) N XYZ = (). Thus, any undirected path from X
using (v1,v),(v,v2) and continuing to Z necessarily tra-
verses a convergent variable v’. Now, v’ € De(v). Since
v" is inaugural, by (1), (v U De(v')) N XY Z = (). Thus,
(v"UDe(v"))NY = 0. By definition, v’ is a closed conver-
gent variable. Thus, this path involving an inaugural variable
v is blocked in d-separation.

By (i) and (ii), I (X, Y, Z) holds in B by d-separation. [

Example 5. I(a,de,g) holds in B of Figure 1 by d-
separation in Example 1, and I(a,de, g) holds in B by i-
separation in Example 4. On the other hand, I(a,d, g) nei-
ther holds by d-separation, nor by i-separation.

Corollary 1. When testing independence I(X,Y,Z) in
a DAG B, if an undirected path ..., (v;,v;),(vj, Vk),. ..
passes through an inaugural variable v in B, then this path
is blocked by a closed convergent variable.

Example 6. When testing I(a,de, g) in the DAG B of Fig-
ure 1 with d-separation, the path (a,c), (¢, f), (f,h), (g, h)
passes through inaugural variable f, for instance. By Corol-
lary 1, this path is blocked in d-separation by a closed con-

646

a a\ /b\ /a
d d /e c\ /d\
g g f g
@ (i) (iii)
Figure 3: In d-separation, when testing I(a, de, g) in B of
Figure 1, variable d is closed sequential in (i), open conver-
gent in (ii), and closed divergent in (iii).

vergent variable, which is variable h in this instance.

Advantages

Salient features of i-separation are described.
When testing I(X,Y, Z) in a BN B, by Theorem 1, any
path involving an inaugural variable can be ignored.

Example 7. When testing I(a, de, g) in the BN in Figure 1,
there are 17 undirected paths from a to g. By Theorem 1, 13
of these paths can be ignored, since they involve inaugural
variables f or h. Only the four undirected paths of Figure 2
(ii)-(v) need to be considered when testing I(a,de, g).

In the paths not involving inaugural variables, i-separation
classifies a variable only if it belongs to Y.

Example 8. Recall the path in Figure 2 (ii) when testing
I(a,de, g). d-Separation will classify variables ¢, d, b, and
e but i-separation will classify only d and e, since d,e € Y.

For the variables in Y on the paths not involving inaugural
variables, i-separation classifies only for serial variables.

Example 9. Recall testing 1(a,de,g) in B of Figure 1.
i-Separation classifies only whether d and e are serial in
Figure 2 (ii) and (iv), and whether d is serial in Figure 2
(iii) and (v).

Recall that d-separation classifies a variable into one of
three categories, namely, sequential, divergent, and conver-
gent. It should be noted that in d-separation a variable can
assume different classifications depending upon the path be-
ing considered. When testing I(a, de, g) in B of Figure 1,
variable d can be closed sequential, open convergent, and
closed divergent, as illustrated in Figure 3, respectively.

Most importantly, the notion of “blocking” is sometimes
counter-intuitive in d-separation.

Example 10. Recall the three paths in Figure 3 consid-
ered by d-separation when testing I(a,d, g) in B of Figure
1. Even though each of the three paths from variable a to
variable g necessarily traverses through variable d, only the
paths in (i) and (iii) are considered “blocked.”

Example 10 emphasizes that even though the path in Fig-
ure 3 (ii) necessarily traverses through variable d, the path
is not considered as “blocked” by d. In i-separation, “block-
ing” works in the intuitive fashion.

Example 11. In testing I(a,de, g), i-separation checks for
a serial variable in Y blocking each path of Figure 2 (ii)-(v).
Variable e blocks the paths in (ii) and (iv), since e € Y and
e is serial. Variable d blocks the paths in (iii) and (v), since
d €Y and d is serial.

One last advantage in testing whether a path is active or
blocked is that i-separation only considers the variables on
this path, whereas d-separation may necessarily consult de-
scendants of some of these variables. For example, when
testing I(a, f,e) in B of Figure 1, consider the path (a, d),
(b,d), (b, e). Here, i-separation will only examine variables
b and d on the path, but d-separation will also consult vari-
ables f, g, and h that are not on the path, since checking
whether convergent variable d is closed requires examining
De(d).

Experimental Results

Geiger at al. (1989) provide a linear-time complexity algo-
rithm for implementing d-separation. Rather than checking
whether every path between X and Z is blocked, the imple-
mentation determines all variables that are reachable from X
on active paths. If a variable in Z is reached, then I (X, Y, Z)
does not hold.

The linear implementation of d-separation given in Algo-
rithm 1 (Koller and Friedman 2009) has two phases. Phase
I determines the ancestors An(Y’) of Y in the DAG B us-
ing the algorithm ANCESTORS (not shown). Phase II, uses
the output of Phase I to determine all variables reachable
from X via active paths. This is more involved, since the al-
gorithm must keep track of whether a variable v is visited
from a child, denoted (f,v), or visited from a parent, de-
noted ({,v). In Algorithm 1, L is the set of variables to be
visited, R is the set of reachable variables via active paths,
and V is the set of variables that have been visited.

Example 12. Let us apply Algorithm 1 to test
I(nedbarea, markgrm,dgv5980) in the Barley BN
(Kristensen and Rasmussen 2002) partially illustrated in
Figure 4. Phase I determines A = {partigerm, jordinf,
frspdag, saatid, markgrm} in line 4. In Phase II, lines 6
and 7 set L = {(1, nedbarea)}. After initializing V and R
to be empty, the main loop starts on line 10.

Select (T,nedbarea) on line 11. As (T,nedbarea) ¢ V
online 13 and nedbarea ¢ Y on line 14, variable nedbarea
is reachable, yielding R = {nedbarea} on line 15. Next,
set V.= {(1,nedbarea)} on line 16. Since (T, nedbarea)
satisfies line 17, on lines 18 and 19, L = {(1, komm)}.
Then, lines 20 and 21 set L = {(1, komm), (},nmin)}.
This ends the iteration for (1, nedbarea).

Starting the next iteration of the while loop, select
(1, komm). It can be verified at the end of this iteration, we
have L = {({,nmin), (},nedbarea), ({,aar_-mod)} and
R = {nedbarea, komm}.

Select (], nmin) on line 11 for the next iteration. Again,
it can be verified that at the end of the iteration, we will have
obtained L = {(},nedbarea), ({,aar_mod), ({,jordn),
(4, mod_nmin)} and

R

{nedbarea, komm,nmin}.)

647

Algorithm 1 (Koller and Friedman 2009) Find nodes reach-
able from X given Y via active paths in DAG B

1: procedure REACHABLE(X,Y,B)

2: > Phase I: insert Y and all ancestors of Y into A

3 An(Y') + ANCESTORS(Y, B)

4: A+~ An(Y)UY

5: > Phase II: traverse active paths starting from X

6: for v € X do > (Node,direction) to be visited
7 L« LU{(1,0)}

8

: V0 > (Node,direction) marked as visited
9: R+ > Nodes reachable via active path
10 while L £) do > While variables to be checked

11: Select (d,v) in L

12: L+ L—{(dv)}

13: if (d,v) ¢ V then

14: ifv ¢ Y then

15: R+ RU{v} > v is reachable
16: V « Vu{(d,v)} >Mark (d,v) as visited
17: ifd=tandv ¢ Y then

18: for v; € Pa(v) do

19: L+ LU{(t,u)}

20: for v; € Ch(v) do

21: L+~ LUu{({,v)}

22: else if d =] then

23: ifv ¢Y then

24: for v; € Ch(v) do

25: L+ LU{{,v)}

26: if v € A then

27: for v; € Pa(v) do

28: L+ LU{(t,v)}

29: return R

The rest of the example follows similarly, yielding all
reachable variables

R

{nedbarea, komm, nmin, aar_mod, jordn,
(3)

It can be verified that dgv5980 ¢ R. Therefore, the indepen-
dence I(nedbarea, markgrm, dgv5980) holds.

mod_nmin,ntilg, ..., aks_vgt}.

The linear implementation of d-separation considers all
active paths until they become blocked. Our key improve-
ment is the identification of a class of active paths that are
doomed to become blocked. By Corollary 1, any path from
X to Z involving an inaugural variable is blocked.

Given an independence I(X,Y, Z), Algorithm 2 deter-
mines the set of inaugural variables in B.

Example 13. Consider the Barley BN partially de-
picted in Figure 4. With respect to the independence
I(nedbarea, markgrm, dgv5980), algorithm 2 returns all
inaugural variables, including nmin and aar_mod.

Algorithm 2 can be inefficient, since some inaugurals
may not be reachable from X using active paths. For in-
stance, in Figure 4, inaugural variable ngtilg is not reach-
able from nedbarea using active paths. Thereby, a more ef-
ficient approach is to mimic the linear implementation of

Figure 4: When testing I (nedbarea, markgrm,dgv5980) in the Barley BN (only partially depicted), the traversal of paths
from nedbarea to dgv5980 can be stopped once they encounter either inaugural variables aaar_mode or nmin.

Algorithm 2 Find all inaugural variables in 3, given inde-
pendence I(X,Y, 7).

procedure ALL-INAUGURALS(X,Y,Z,B)

1:

2: Z+ 0 > all inaugural
3 A > temporary result
4: V' « all v-structures in B

5: An(XY Z) < ANCESTORS(XY Z, B)

6: VeV —(An(XYZ)UXYZ)

7 for v € V do

8: An(v) < ANCESTORS({v}, B)

9: if An(v) NV = () then

10: "« T* U {v}

11: T+« T"UDe(T*)

12: return 7

d-separation, except stopping the traversal of an active path
if it encounters an inaugural variable or it becomes blocked.

In an active path, a variable is neither closed, nor inau-
gural. Therefore, a variable v to be tested can be considered
inaugural, if it is a v-structure and v ¢ XY Z U An(XY Z).
This test is given in Algorithm 3.

Algorithm 3 Test if a reachable variable v is inaugural.

1: procedure INAUGURAL(v,A,B)

2: if v ¢ A then >Ifvnotin XYZ U An(XY Z)
3 if Pa(v) > 1 then > If v is a v-structure
4: return true > v is inaugural
5

return false

The implementation of i-separation is presented in Algo-
rithm 4.

Example 14. Let us apply Algorithm 4 to test
I(nedbarea, markgrm,dgv5980) in the Barley BN
partially depicted in Figure 4. Phase I is the same as
in Example 12. In Phase II, lines 5 and 6 determine
A = {komm, partigerm, jordinf, frspdag, saatid,

648

rokap, jordtype, nedbarea, markgrm,dgv5980}.
Phase III, lines 8 and 9 set L = {(T,nedbarea)}. After
setting V = () and R = 0, the main loop starts on line 12.

Select (1, nedbarea) in line 13. Now R = {nedbarea}.
Here, (1,komm) is added to L, but not ({,nmin),
since nman € ZI. It can be verified that selecting
(1, komm) results in R = {nedbarea, komm} and L =
{(}, nedbarea)}. Hence, selecting (|,nedbarea), results
in L (). Since dgvb980 ¢ R, the independence
I(nedbarea, markgrm, dgv5980) holds.

Observe that, in Example 14, i-separation does not add
variable nmin to the set of nodes to be visited, since nmin
is inaugural. In contrast, d-separation adds nmsn to the set
of nodes that are reachable as in (2), then subsequently adds
jordn and mod_nmin to the reachable set R in (3).

Table 1: Comparison of d-separation and i-separation with
1000 randomly generated independencies in each BN.

Time Time Time
BN IN] d-Sep (s) i-Sep (s) Savings
Child 20 0.751 1.003 -34%
Insurance 27 1.544 1.876 -22%
Water 32 1.374 1.742 -27%
Mildew 35 1.272 1.287 -1%
Alarm 37 0.9698 1.077 -11%
Barley 48 2.838 3.259 -15%
Hailfinder 56 1.620 1.9876 -23%
Hepar2 70 3.9817 6.438 -62%
Win95pts 76 1.3366 1.4293 -7%
Pathfinder | 135 7.964 14.2821 -79%
Muninl 186 12.9175 11.1387 14%
Andes 223 24.607 23.0223 6%
Diabetes 413 134.571 120.0226 11%
Pigs 441 16.739 10.7111 36%
Link 724 91.707 56.661 38%
Munin2 1003 57.536 38.396 33%
Munin4 1038 145.388 76.899 47%
Munin3 1041 140.15 63.163 55%

We now report an empirical comparison of d-separation

Algorithm 4 Find nodes reachable from X given Y via ac-
tive paths in DAG B.

1: procedure I-REACHABLE(X,Y ,BB)

2: > Phase I: compute all ancestors of ¥’

3 An(Y') + ANCESTORS(Y, B)

4: > Phase II: insert all ancestors of XY Z into A
5: An(XY Z) + ANCESTORS(XY Z,)
6.

7

8

A+ XYZUAn(XYZ)
> Phase III: traverse active paths starting from X

: for v € X do

9: L+ {LU(tv)} > visit v from child
10: Vi

11: R«

12: while L # () do

13: Select (d, v) from L

14: L+ L—{(d,v)}

15: if (d,v) ¢ V then

16: V<« Vu{(dv)}

17: > Is v serial?

18: ifv ¢ Y then

19: R+ RU{v}
20: if d =1 then > up from child
21: for v; € Pa(v) do
22: if |(INAUGURAL(v;, A, B)) then
23: L+ LU{(t,v)}
24: for v; € Ch(v) do
25: if |(INAUGURAL(v;, A, B)) then
26: L+ LU{{,v)}
27: else > down from parent
28: for v; € Ch(v) do
29: if |(INAUGURAL(v;, A, B)) then
30: L+ LU{({,v)}
31: > Is v convergent?
32: ifd=landv € (Y UAn(Y)) then
33: for v; € Pa(v) do
34: L+ LU{(t,u)}

35: return R

and i-separation. Both methods were implemented in the
Python programming language. The experiments were con-
ducted on a 2.3 GHz Inter Core i7 with 8 GB RAM. The
evaluation was carried out on 18 real-world or benchmark
BNss listed in first column of Table 1. The second column
of Table 1 reports characteristics of each BN. For each BN,
1000 independencies I(X,Y, Z) were randomly generated,
where X, Y, and Z are singleton sets, and tested by d-
separation and by i-separation. The total time in seconds re-
quired by d-separation and i-separation are reported in the
third and fourth columns, respectively. The percentage of
time saved by i-separation is listed in the fifth column.
From Table 1, the implementation of i-separation is
slower than that of d-separation on all BNs with 135 or fewer
variables. The main reason is that Algorithm 1 only com-
putes An(Y'), while Algorithm 4 computes An(Y) as well
as An(XY Z). In small networks, the time required to com-
pute An(XY Z) is greater than the time saved by exploiting

inaugural variables.

Table 1 also shows that i-separation is faster than d-
separation on all BNs with 186 or more variables. Time
savings appear to be proportional to network size, as larger
networks can have more paths. Thus, the time taken by i-
separation to computes An(XY Z) is less than the time
required to check paths unnecessarily. For example, con-
sider the Barley network in Figure 4. One randomly gener-
ated independence was I(nedbarrea, markrm,dgv5980).
Here, nmin and aarmode are inaugural variables. Thus,
i-separation only consider 4 tests, namely (1, nedbarrea),
(}, nmin), (1, komm), (},, aarmod). No other nodes can be
reached via active paths while ignoring inaugural variables.
In sharp contrast, d-separation would consider these 4 tests
as well as ({, mod_nmin), since both nmin and aarmod
are open sequential variables. Thus, d-separation will con-
tinue exploring reachable variables along these active paths,
until eventually determining each active path is blocked by
a closed convergent variable.

Conclusion

We proposed i-separation as a new method for testing in-
dependencies in BNs. Any path from X to Z in I(X,Y, Z)
involving an inaugural variable is blocked. Therefore, these
paths do not need to be checked and can be safely removed
from the BN. In the remaining paths, only variables in Y
of I(X,Y, Z) need to be considered. Only one kind of vari-
able, called serial, is utilized in i-separation. Finally, block-
ing works in the intuitive way. Our experimental results in-
dicate that i-separation is especially effective in large BNs.

Acknowledgements
Research supported by NSERC Discovery Grant 238880.

References
Darwiche, A. 2009. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press.
Geiger, D.; Verma, T. S.; and Pearl, J. 1989. d-separation:
From theorems to algorithms. In Fifth Conference on Un-
certainty in Artificial Intelligence, 139—148.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press.
Kristensen, K., and Rasmussen, I. A. 2002. The use of a
Bayesian network in the design of a decision support system
for growing malting barley without use of pesticides. Com-
puters and Electronics in Agriculture 33(3):197 — 217.
Pearl, J. 1986. Fusion, propagation and structuring in belief
networks. Artificial Intelligence 29:241-288.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.
Pearl, J. 1993. Belief networks revisited. Artificial Intelli-
gence 59:49-56.
Pearl, J. 2009. Causality. Cambridge University Press.

