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Abstract 
In the age of BigData, producing results quickly while oper-
ating over vast volumes of data has become a vital require-
ment for data mining and machine learning applications to a 
degree that traditional serial algorithms can no longer keep 
up with these constraints. This paper applies different forms 
of parallelization techniques to popular instance-based clas-
sifiers namely, a special form of naive Bayes and k-nearest 
neighbors in an attempt to compare performance and make 
broad conclusions applicable to instance-based classifiers. 
Overall, our experimental results strongly indicate that par-
allelism over test instances provides the most speedup in 
most cases compared to other forms of parallelism. 

 Background   
Data-driven applications are witnessing an unacceptable 
degradation in performance due to rapidly increasing vol-
umes of data. It is now common for applications to be ex-
pected to handle BigData which can be measured in the 
Terabytes, Petabytes and even Exabytes! 
 For many years now, computer architectures have fol-

could be placed on a silicon chip doubled about every two 
years, allowing for continuous improvements in perfor-
mance. In the past ten years, however, this exponential 
growth has slowed down due to three main factors referred 
to as the power wall, instruction-level parallelism (ILP) 
wall, and memory wall. 
 The power wall refers to the fact that since power con-
sumption grows nonlinearly in comparison to clock speeds, 
computer architectures can no longer increase clock speed 
without requiring more power (thus generating more heat) 
than the chip can handle. Instruction-level parallelism re-
fers to computing parallelism that is done implicitly by the 
hardware at runtime; hardware design has hit a wall in that 
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computer architects cannot exploit any more parallelism 
automatically in this manner. Finally, memory wall is a 
trend in which off-chip memory access rates have grown 
much more slowly than processor speeds, meaning that 
performance bottlenecks due to memory latency and 
bandwidth are becoming more apparent (McCool, Robison 
and Reinders, 2012). As a result of these limits to compu-
ting performance, explicit parallelism where software ap-
plications are written to use available hardware parallelism 
has emerged as a necessary method for maintaining ac-
ceptable levels of performance. 
 Parallel computing, in contrast to traditional serial (or 
sequential) computing, allows programmers to specify 
computations that may be executed simultaneously (or in 
parallel). Threading is one technique for parallel compu-
ting; a thread refers to a separate flow of control which 
comes in two forms: hardware and software. A software 
thread can be thought of as a potential unit of parallelism, 
whereas a hardware thread is any hardware unit capable of 
executing a single software thread at a time. While the 
number of hardware threads is limited by the physical ar-
chitecture, one may specify more software threads than 
there are hardware threads available. Any two threads that 
are running simultaneously must be independent of each 
other in order to avoid non-deterministic behavior as well 
as other issues such as deadlocks. 
  Two popular parallel patterns that are utilized in this 
work are the map and reduce patterns. The map pattern ap-
plies the same function to every element in an indexed col-
lection of data. In other words, each iteration of a loop over 
a known number of data elements may be done in parallel. 
This implies that the computation done on the data element 
in each iteration is independent from all other iterations. 
The reduce pattern combines many data elements via an 
associative operator into one output data element. While 
each iteration is not independent, parallel models manage 
threads in such a way that only one thread may update the 
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resulting data element at a time (McCool, Robison and 
Reinders, 2012). 
 In this work, we use central processing unit (CPU) archi-
tecture parallelism (as opposed to graphics processing unit 
or GPU parallelism). In order to implement CPU parallel-
ism, the OpenMP API (http://openmp.org/wp/) is utilized. 
OpenMP is a set of programming instructions and stand-
ards which use compiler directives, or pragmas, to alert the 
compiler to potential parallel blocks. Since CPUs can 
compute complex computations very quickly, CPU paral-
lelism usually does well with parallelizing these complex 
computations. 
 The remainder of this paper is organized as follows: 
next, we provide a brief overview of other related works in 
the literature and then describe the algorithms studied, the 
proposed parallel implementations, the datasets utilized 
and the experimental setup. Experimental results are then 
reported and discussed followed by a conclusion and future 
direction. 

Related Work 
Our work focuses on two data mining classification algo-
rithms, namely, k-nearest neighbors (kNN) and naive 
Bayes (NB) largely due to their popularity. Many studies in 
the literature have attempted to apply parallelism to both 
algorithms but usually in a very narrow fashion by focus-
ing on certain application areas or datasets; we are not 
aware of studies that aim to make broad conclusions appli-
cable to instance-based classifiers in general, like our 
work. 
 Numerous research works have applied parallelism to 
naive Bayes for the purpose of document classification. 
One such paper compared a GPU parallel implementation 
to a serial CPU implementation as well as a parallel im-
plementation that uses four CPU cores (Viegas et al., 
2013). Another work produced a five-time speedup using 
eight cores when naive Bayes was parallelized on the CPU 
using the Scala language (Peshterliev, 2012). 
 Some works have utilized cloud computing resources for 
data storage as well as the map-reduce patterns. One such 
paper used map-reduce for attribute parallelism but did not 
show significant time improvement from the serial version 
of their algorithm (Zhou, Wang H. and Wang W., 2012).  
 Similarly to naive Bayes, there has also been several im-
plementations of kNN using both CPU and GPU parallel-
ism. Garcia, Debreuve and Barlaud (2008) compared sev-
eral GPU implementations and observed the best im-
provements using CUDA. Arefin et al. (2012) looked at an 
optimized version of the kNN algorithm implemented on a 
GPU using CUDA targeting parallelism when comparing 
and computing shortest distances. Garcia et al. (2010) is 
similar but proposed a CUDA implementation as well as a 

faster CUBLAS implementation although the focus was 
specifically on image processing. Nikan and Meshram 
(2014) looked at parallelizing the kNN algorithm on GPUs 
using the OpenCL API. Their proposed method of parallel-
ism is similar to one of the implementations used in this 
study. They found sub-linear scale-up when using this 
method of parallelism which is in line with our results. 
 In addition to the above, some of the other related but 
fundamentally different works include Cesnovar et al. 
(2013) and Zhu et al. (2014) which applied parallelism to 
different image processing classification algorithms, Kato 
and Hosino (2010) which focused on distributed parallel-
ism based on the architecture of the GPU, and Jin, Yang 
and Agrawal (2004) which studied parallel implementa-
tions to avoid race conditions a special situation that oc-
curs when the outcome of concurrent execution might be 
undesirable/incorrect unless a certain sequence of execu-
tion is guaranteed. 
 While research works referenced here all focus on paral-
lelizing data mining classification algorithms in some way, 
shape or form, none shares the objective of our work which 
is to make broad conclusions applicable to instance-based 
classifiers (in general) that operate over datasets of various 
make-ups. For this purpose, we designed an experimental 
study to analyze the effect of the number of samples in the 
dataset, the number of attributes in the dataset, and the 
number of software threads on the different methods of 
parallelizing instance-based classifiers.  

Parallel Implementations, Data and Experi-
mental Setup 

Our work focuses on two instance-based classifiers
meaning that no model is created from the training data be-
forehand. Note that although conditional probabilities are 
usually precomputed in naive Bayes, we opted to recom-
pute the needed conditional probabilities for each test sam-
ple in order to justify the need for parallelism and to make 
comparisons between the two algorithms more meaningful. 
Note that such an instance-based naïve Bayes implementa-
tion may be useful in situations where data changes fre-
quently and drastically (which is the case in data streams) 
mandating continuous retraining for standard naive Bayes 
implementations. 
 Both classifiers have three major loops in their algo-
rithms: a loop over the test instances, a second loop over 
the training instances, and a third loop over the attributes. 
The first two loops can be clearly seen in the algorithms 
depicted in Figure 1. The first loop repeats the classifica-
tion process (kNN or NB) for every test sample. The sec-
ond loop in kNN computes the distance between the cur-
rent test sample and every training sample in order to find 
the closest k training samples; in our instance-based NB, 
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the second loop finds the conditional probability for every 
attribute value in the current test sample given a class label 
in order to compute the overall conditional probability for 
that class label (given the attribute values in the current test 
sample). The third loop (i.e. over the attributes) is implicit 
when computing distances in kNN and probabilities in NB. 
 Based on these loops, we designed and implemented 
three parallel versions for each algorithm for a total of six 
implementations: parallelism over the test instances which 
treats every classification operation as one serial unit of 
execution and parallelizes the classification of the test 
samples over the available processors; parallelism over the 
training instances which parallelizes each classification 

tions over the available processors; and parallelism over 
the attributes which parallelizes every distance computa-
tion in kNN and conditional probability computations in 
NB, both of which require looping over all existing attrib-
utes. For kNN, all implementations use the Euclidean dis-
tance measure. 

Figure 1: Algorithms for k-nearest neighbors (kNN) and in-
stance-based naive Bayes (NB). 

Data 
In order to highlight the effect of increasing the number of 
attributes in the dataset on the performance of the different 
parallel implementations, we chose to utilize the following 
three datasets from the UCI Machine Learning Data Re-
pository (http://archive.ics.uci.edu/ml) in our study: Bank 

Marketing dataset (referred to as DS1), Musk dataset 
(DS2), and Internet Advertisement dataset (DS3).  
 The datasets have 17 attributes, 168 attributes, and 1558 
attributes, respectively, which increases the number of at-
tributes by a factor of 10, roughly speaking. The Musk and 
Internet Advertisement datasets are numeric, binary classi-
fication datasets. The Bank Marketing dataset contains 
several categorical attributes which were converted into 
numeric. For each dataset, we produced two version: one 
containing one thousand randomly chosen instances and 
another one with ten thousand instances (using replication 
when needed). This amounts to six datasets in total (2 ver-
sions for each of the 3 original datasets). The resulting da-
tasets were then divided into 75% training and 25% for 
testing. 

Experimental Setup 
All programs were written in C++ using OpenMP and exe-
cuted on an eight-node cluster called Melchior. Each node 
in Melchior is a dual Intel Xeon CPU E5-2420 Sandy 
Bridge 1.90GHz with 15MB L3 cache and six cores 
providing a total of 12 hardware thread states (2 thread 
states per core). Each node has 48GB memory.  
 In order to compare the various parallelization tech-
niques, each implementation was run on each dataset ver-
sion using 2, 4, 8, and 16 threads to study how perfor-
mance scales as parallel resources increase. Each combina-
tion of parallel implementation, dataset version, and num-
ber of threads was run 10 times with the average execution 
time over the 10 runs being computed and reported. 
Speedup in execution time, Sp, was then computed as Ts/Tp 
where Ts is the runtime in serial and Tp is the parallel 
runtime using p threads; note that a value of Sp very close 
to p indicates linear speedup which is highly desirable. In-
stead of speedup, we report our results using efficiency 
which is a measure between 0 and 1 indicating  how close 
speedup is to linear (with 1 being linear speedup or 100% 
efficient meaning that the resources used for parallelism 
are being fully utilized). Efficiency is defined as Sp/p or 
Ts/Tp*p. Note that for a given number of threads p, an effi-
ciency value less than 1/p indicates performance worse 
than serial. 

Results 
Results depicted in Figure 2 and Figure 3 show efficiency 
(out of 100%) for each of the parallel implementations 
(given in the legend) for both kNN and NB, respectively, 
using a fixed number of threads (on the horizontal axis).  
  
 
 
 

 
kNN algorithm: input k 
loop over test samples t(v1,v2..vn): 
loop over training samples r: 
compute distance(t , r) 

end loop 
find the k r samples closest to t 
return majority class label c 

end loop 
end algorithm 
 
 
Instance-based NB algorithm: 
loop over test samples t(v1,v2..vn):  
loop over training samples r: 
compute probability (vi , c)  

end loop 
   compute probability (c , t) 

return c with highest probability 
end loop 

end NB algorithm 
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Figure 2: Efficiency results for the kNN parallel implemen-
tations on all datasets while varying the number of software 
threads used. 

Figure 3: Efficiency results for the NB parallel implementa-
tions on all datasets while varying the number of software 
threads used. 

(a) Using 1000 (left) and 10000 (right) samples from 
DS1 
 

  
 

 
 
 
(b) Using 1000 (left) and 10000 (right) samples from 
DS2 
 

  
 

 
 
 
(c) Using 1000 (left) and 10000 (right) samples from 
DS3 
 

  
 

(a) Using 1000 (left) and 10000 (right) samples from 
DS1 
 

  
 

 
 
 
(b) Using 1000 (left) and 10000 (right) samples from 
DS2  
 

  
 

 
 
 

(c) Using 1000 (left) and 10000 (right) samples from 
DS3 
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 Implementations are indexed from 1 to 3 where index 1 
after the algorithm name (kNN or NB) refers to parallelism 
over the test instances, index 2 refers to parallelism over 
the training instances, and index 3 refers to parallelism 
over the attributes. 

It is clear from Figure 2, which depicts efficiency results 
for the various kNN parallel implementations over the dif-
ferent dataset versions, that using up to 8 threads results in 
significant increase in speedup and efficiency, but going 
beyond that to 16 threads is neither efficient nor shows the 
expected speedup on all dataset versions but most notably 
on dataset DS1 which has the fewest attributes. This is 
most likely due to the fact that cluster nodes have only 12 
thread states and the extra 4 threads in the 16 thread runs 
create too much overhead, slowing down the runtime. NB 
parallel implementations depicted in Figure 3 show similar 
behavior. 

In terms of which implementation performs best, it is 
clear that while all efficiency curves show a decrease in 
value as we increase number of threads (which is expected 
due to parallelism overhead), parallelism over the test in-
stances provides the best overall performance regardless of 
the number of threads used, the number of samples in the 
dataset, and the number of attributes in the dataset; at the 
same time, this implementation suffers the most when the 
number of requested threads exceeds the number of physi-
cal threads available. This applies to both algorithms, kNN 
and NB. 

Parallelism over the training instances seems to produce 
the second best results for kNN especially when the num-
ber of attributes is relatively small (datasets DS1 and DS2). 
However, this favorable performance for this form of par-
allelism appears to degrade thus approaching that of the 
parallelism over the number of attributes once the number 
of attributes in the dataset increases significantly. Results 

efficiency for both types of parallelism when the number 
of attributes is relatively small. For dataset DS3, the effi-
ciency seems to swing back and forth between the two im-
plementations as the size of the dataset increases. Overall, 
parallelism over the number of attributes seems to have a 
slight edge in most cases for NB. 

Conclusions and Future Work 
Our implementations of kNN and NB indicate that parallel-
ism over the test instances provides the most consistent 
levels of parallelism and tends to be very efficient especial-
ly when the number of software threads used does not ex-
ceed the available thread states.  

Furthermore, as expected, parallelism over attributes on-
ly showed significant efficiency and speedup improve-
ments as the number of attributes increases drastically. 

This is especially clear for the kNN implementation, alt-
hough it is also still fairly obvious for the NB implementa-
tion. Preliminary results not reported herein using GPU 
parallelism via CUDA seem to support our CPU results as 
well.  

While parallelism over the training instances performed 
fairly well for kNN, it still did not compare to the speedup 
and efficiency observed by parallelism over the test in-
stances.  

Finally, as the number of software threads requested ex-
ceeded the number of hardware thread states, significant 
decrease in performance was observed across the board for 
all parallel implementations regardless of the number of in-
stances and/or attributes in the dataset. 

In terms of future direction, we plan to build additional 
parallel implementations that utilize new types of parallel-
ism as well as combinations of existing ones. We also aim 
to produce complete results for similar GPU parallelism 
using CUDA in order to validate our CPU conclusions. 
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