

Parallelizing Instance-Based Data Classifiers

Imad Rahal, 1 Emily Furst, 2 and Ramzi Haraty 3

1 Department of Computer Science, College of Saint Benedict and Saint John's University, Collegeville, MN, USA
2 Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA

3 Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
irahal@csbsju.edu

Abstract
In the age of BigData, producing results quickly while oper-
ating over vast volumes of data has become a vital require-
ment for data mining and machine learning applications to a
degree that traditional serial algorithms can no longer keep
up with these constraints. This paper applies different forms
of parallelization techniques to popular instance-based clas-
sifiers namely, a special form of naive Bayes and k-nearest
neighbors in an attempt to compare performance and make
broad conclusions applicable to instance-based classifiers.
Overall, our experimental results strongly indicate that par-
allelism over test instances provides the most speedup in
most cases compared to other forms of parallelism.

 Background
Data-driven applications are witnessing an unacceptable
degradation in performance due to rapidly increasing vol-
umes of data. It is now common for applications to be ex-
pected to handle BigData which can be measured in the
Terabytes, Petabytes and even Exabytes!
 For many years now, computer architectures have fol-

could be placed on a silicon chip doubled about every two
years, allowing for continuous improvements in perfor-
mance. In the past ten years, however, this exponential
growth has slowed down due to three main factors referred
to as the power wall, instruction-level parallelism (ILP)
wall, and memory wall.
 The power wall refers to the fact that since power con-
sumption grows nonlinearly in comparison to clock speeds,
computer architectures can no longer increase clock speed
without requiring more power (thus generating more heat)
than the chip can handle. Instruction-level parallelism re-
fers to computing parallelism that is done implicitly by the
hardware at runtime; hardware design has hit a wall in that

Copyright © 2016, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

computer architects cannot exploit any more parallelism
automatically in this manner. Finally, memory wall is a
trend in which off-chip memory access rates have grown
much more slowly than processor speeds, meaning that
performance bottlenecks due to memory latency and
bandwidth are becoming more apparent (McCool, Robison
and Reinders, 2012). As a result of these limits to compu-
ting performance, explicit parallelism where software ap-
plications are written to use available hardware parallelism
has emerged as a necessary method for maintaining ac-
ceptable levels of performance.
 Parallel computing, in contrast to traditional serial (or
sequential) computing, allows programmers to specify
computations that may be executed simultaneously (or in
parallel). Threading is one technique for parallel compu-
ting; a thread refers to a separate flow of control which
comes in two forms: hardware and software. A software
thread can be thought of as a potential unit of parallelism,
whereas a hardware thread is any hardware unit capable of
executing a single software thread at a time. While the
number of hardware threads is limited by the physical ar-
chitecture, one may specify more software threads than
there are hardware threads available. Any two threads that
are running simultaneously must be independent of each
other in order to avoid non-deterministic behavior as well
as other issues such as deadlocks.
 Two popular parallel patterns that are utilized in this
work are the map and reduce patterns. The map pattern ap-
plies the same function to every element in an indexed col-
lection of data. In other words, each iteration of a loop over
a known number of data elements may be done in parallel.
This implies that the computation done on the data element
in each iteration is independent from all other iterations.
The reduce pattern combines many data elements via an
associative operator into one output data element. While
each iteration is not independent, parallel models manage
threads in such a way that only one thread may update the

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

442

resulting data element at a time (McCool, Robison and
Reinders, 2012).
 In this work, we use central processing unit (CPU) archi-
tecture parallelism (as opposed to graphics processing unit
or GPU parallelism). In order to implement CPU parallel-
ism, the OpenMP API (http://openmp.org/wp/) is utilized.
OpenMP is a set of programming instructions and stand-
ards which use compiler directives, or pragmas, to alert the
compiler to potential parallel blocks. Since CPUs can
compute complex computations very quickly, CPU paral-
lelism usually does well with parallelizing these complex
computations.
 The remainder of this paper is organized as follows:
next, we provide a brief overview of other related works in
the literature and then describe the algorithms studied, the
proposed parallel implementations, the datasets utilized
and the experimental setup. Experimental results are then
reported and discussed followed by a conclusion and future
direction.

Related Work
Our work focuses on two data mining classification algo-
rithms, namely, k-nearest neighbors (kNN) and naive
Bayes (NB) largely due to their popularity. Many studies in
the literature have attempted to apply parallelism to both
algorithms but usually in a very narrow fashion by focus-
ing on certain application areas or datasets; we are not
aware of studies that aim to make broad conclusions appli-
cable to instance-based classifiers in general, like our
work.
 Numerous research works have applied parallelism to
naive Bayes for the purpose of document classification.
One such paper compared a GPU parallel implementation
to a serial CPU implementation as well as a parallel im-
plementation that uses four CPU cores (Viegas et al.,
2013). Another work produced a five-time speedup using
eight cores when naive Bayes was parallelized on the CPU
using the Scala language (Peshterliev, 2012).
 Some works have utilized cloud computing resources for
data storage as well as the map-reduce patterns. One such
paper used map-reduce for attribute parallelism but did not
show significant time improvement from the serial version
of their algorithm (Zhou, Wang H. and Wang W., 2012).
 Similarly to naive Bayes, there has also been several im-
plementations of kNN using both CPU and GPU parallel-
ism. Garcia, Debreuve and Barlaud (2008) compared sev-
eral GPU implementations and observed the best im-
provements using CUDA. Arefin et al. (2012) looked at an
optimized version of the kNN algorithm implemented on a
GPU using CUDA targeting parallelism when comparing
and computing shortest distances. Garcia et al. (2010) is
similar but proposed a CUDA implementation as well as a

faster CUBLAS implementation although the focus was
specifically on image processing. Nikan and Meshram
(2014) looked at parallelizing the kNN algorithm on GPUs
using the OpenCL API. Their proposed method of parallel-
ism is similar to one of the implementations used in this
study. They found sub-linear scale-up when using this
method of parallelism which is in line with our results.
 In addition to the above, some of the other related but
fundamentally different works include Cesnovar et al.
(2013) and Zhu et al. (2014) which applied parallelism to
different image processing classification algorithms, Kato
and Hosino (2010) which focused on distributed parallel-
ism based on the architecture of the GPU, and Jin, Yang
and Agrawal (2004) which studied parallel implementa-
tions to avoid race conditions a special situation that oc-
curs when the outcome of concurrent execution might be
undesirable/incorrect unless a certain sequence of execu-
tion is guaranteed.
 While research works referenced here all focus on paral-
lelizing data mining classification algorithms in some way,
shape or form, none shares the objective of our work which
is to make broad conclusions applicable to instance-based
classifiers (in general) that operate over datasets of various
make-ups. For this purpose, we designed an experimental
study to analyze the effect of the number of samples in the
dataset, the number of attributes in the dataset, and the
number of software threads on the different methods of
parallelizing instance-based classifiers.

Parallel Implementations, Data and Experi-
mental Setup

Our work focuses on two instance-based classifiers
meaning that no model is created from the training data be-
forehand. Note that although conditional probabilities are
usually precomputed in naive Bayes, we opted to recom-
pute the needed conditional probabilities for each test sam-
ple in order to justify the need for parallelism and to make
comparisons between the two algorithms more meaningful.
Note that such an instance-based naïve Bayes implementa-
tion may be useful in situations where data changes fre-
quently and drastically (which is the case in data streams)
mandating continuous retraining for standard naive Bayes
implementations.
 Both classifiers have three major loops in their algo-
rithms: a loop over the test instances, a second loop over
the training instances, and a third loop over the attributes.
The first two loops can be clearly seen in the algorithms
depicted in Figure 1. The first loop repeats the classifica-
tion process (kNN or NB) for every test sample. The sec-
ond loop in kNN computes the distance between the cur-
rent test sample and every training sample in order to find
the closest k training samples; in our instance-based NB,

443

the second loop finds the conditional probability for every
attribute value in the current test sample given a class label
in order to compute the overall conditional probability for
that class label (given the attribute values in the current test
sample). The third loop (i.e. over the attributes) is implicit
when computing distances in kNN and probabilities in NB.
 Based on these loops, we designed and implemented
three parallel versions for each algorithm for a total of six
implementations: parallelism over the test instances which
treats every classification operation as one serial unit of
execution and parallelizes the classification of the test
samples over the available processors; parallelism over the
training instances which parallelizes each classification

tions over the available processors; and parallelism over
the attributes which parallelizes every distance computa-
tion in kNN and conditional probability computations in
NB, both of which require looping over all existing attrib-
utes. For kNN, all implementations use the Euclidean dis-
tance measure.

Figure 1: Algorithms for k-nearest neighbors (kNN) and in-
stance-based naive Bayes (NB).

Data
In order to highlight the effect of increasing the number of
attributes in the dataset on the performance of the different
parallel implementations, we chose to utilize the following
three datasets from the UCI Machine Learning Data Re-
pository (http://archive.ics.uci.edu/ml) in our study: Bank

Marketing dataset (referred to as DS1), Musk dataset
(DS2), and Internet Advertisement dataset (DS3).
 The datasets have 17 attributes, 168 attributes, and 1558
attributes, respectively, which increases the number of at-
tributes by a factor of 10, roughly speaking. The Musk and
Internet Advertisement datasets are numeric, binary classi-
fication datasets. The Bank Marketing dataset contains
several categorical attributes which were converted into
numeric. For each dataset, we produced two version: one
containing one thousand randomly chosen instances and
another one with ten thousand instances (using replication
when needed). This amounts to six datasets in total (2 ver-
sions for each of the 3 original datasets). The resulting da-
tasets were then divided into 75% training and 25% for
testing.

Experimental Setup
All programs were written in C++ using OpenMP and exe-
cuted on an eight-node cluster called Melchior. Each node
in Melchior is a dual Intel Xeon CPU E5-2420 Sandy
Bridge 1.90GHz with 15MB L3 cache and six cores
providing a total of 12 hardware thread states (2 thread
states per core). Each node has 48GB memory.
 In order to compare the various parallelization tech-
niques, each implementation was run on each dataset ver-
sion using 2, 4, 8, and 16 threads to study how perfor-
mance scales as parallel resources increase. Each combina-
tion of parallel implementation, dataset version, and num-
ber of threads was run 10 times with the average execution
time over the 10 runs being computed and reported.
Speedup in execution time, Sp, was then computed as Ts/Tp
where Ts is the runtime in serial and Tp is the parallel
runtime using p threads; note that a value of Sp very close
to p indicates linear speedup which is highly desirable. In-
stead of speedup, we report our results using efficiency
which is a measure between 0 and 1 indicating how close
speedup is to linear (with 1 being linear speedup or 100%
efficient meaning that the resources used for parallelism
are being fully utilized). Efficiency is defined as Sp/p or
Ts/Tp*p. Note that for a given number of threads p, an effi-
ciency value less than 1/p indicates performance worse
than serial.

Results
Results depicted in Figure 2 and Figure 3 show efficiency
(out of 100%) for each of the parallel implementations
(given in the legend) for both kNN and NB, respectively,
using a fixed number of threads (on the horizontal axis).

kNN algorithm: input k
loop over test samples t(v1,v2..vn):
loop over training samples r:
compute distance(t , r)

end loop
find the k r samples closest to t
return majority class label c

end loop
end algorithm

Instance-based NB algorithm:
loop over test samples t(v1,v2..vn):
loop over training samples r:
compute probability (vi , c)

end loop
 compute probability (c , t)

return c with highest probability
end loop

end NB algorithm

444

Figure 2: Efficiency results for the kNN parallel implemen-
tations on all datasets while varying the number of software
threads used.

Figure 3: Efficiency results for the NB parallel implementa-
tions on all datasets while varying the number of software
threads used.

(a) Using 1000 (left) and 10000 (right) samples from
DS1

(b) Using 1000 (left) and 10000 (right) samples from
DS2

(c) Using 1000 (left) and 10000 (right) samples from
DS3

(a) Using 1000 (left) and 10000 (right) samples from
DS1

(b) Using 1000 (left) and 10000 (right) samples from
DS2

(c) Using 1000 (left) and 10000 (right) samples from
DS3

445

 Implementations are indexed from 1 to 3 where index 1
after the algorithm name (kNN or NB) refers to parallelism
over the test instances, index 2 refers to parallelism over
the training instances, and index 3 refers to parallelism
over the attributes.

It is clear from Figure 2, which depicts efficiency results
for the various kNN parallel implementations over the dif-
ferent dataset versions, that using up to 8 threads results in
significant increase in speedup and efficiency, but going
beyond that to 16 threads is neither efficient nor shows the
expected speedup on all dataset versions but most notably
on dataset DS1 which has the fewest attributes. This is
most likely due to the fact that cluster nodes have only 12
thread states and the extra 4 threads in the 16 thread runs
create too much overhead, slowing down the runtime. NB
parallel implementations depicted in Figure 3 show similar
behavior.

In terms of which implementation performs best, it is
clear that while all efficiency curves show a decrease in
value as we increase number of threads (which is expected
due to parallelism overhead), parallelism over the test in-
stances provides the best overall performance regardless of
the number of threads used, the number of samples in the
dataset, and the number of attributes in the dataset; at the
same time, this implementation suffers the most when the
number of requested threads exceeds the number of physi-
cal threads available. This applies to both algorithms, kNN
and NB.

Parallelism over the training instances seems to produce
the second best results for kNN especially when the num-
ber of attributes is relatively small (datasets DS1 and DS2).
However, this favorable performance for this form of par-
allelism appears to degrade thus approaching that of the
parallelism over the number of attributes once the number
of attributes in the dataset increases significantly. Results

efficiency for both types of parallelism when the number
of attributes is relatively small. For dataset DS3, the effi-
ciency seems to swing back and forth between the two im-
plementations as the size of the dataset increases. Overall,
parallelism over the number of attributes seems to have a
slight edge in most cases for NB.

Conclusions and Future Work
Our implementations of kNN and NB indicate that parallel-
ism over the test instances provides the most consistent
levels of parallelism and tends to be very efficient especial-
ly when the number of software threads used does not ex-
ceed the available thread states.

Furthermore, as expected, parallelism over attributes on-
ly showed significant efficiency and speedup improve-
ments as the number of attributes increases drastically.

This is especially clear for the kNN implementation, alt-
hough it is also still fairly obvious for the NB implementa-
tion. Preliminary results not reported herein using GPU
parallelism via CUDA seem to support our CPU results as
well.

While parallelism over the training instances performed
fairly well for kNN, it still did not compare to the speedup
and efficiency observed by parallelism over the test in-
stances.

Finally, as the number of software threads requested ex-
ceeded the number of hardware thread states, significant
decrease in performance was observed across the board for
all parallel implementations regardless of the number of in-
stances and/or attributes in the dataset.

In terms of future direction, we plan to build additional
parallel implementations that utilize new types of parallel-
ism as well as combinations of existing ones. We also aim
to produce complete results for similar GPU parallelism
using CUDA in order to validate our CPU conclusions.

References
Arefin, A.; Riveros, C.; Berretta, R.; and Moscato, P. 2012. GPU-
FS-kNN: A Software Tool for Fast and Scalable kNN Computa-
tion Using GPUs. PLoS ONE 7(8): doi: 10.1371/ jour-
nal.pone.0044000.
Cesnovar, R.; Risojevic, V.; Babic, Z.; Dobravec, T.; and Bulic,P.
2013. A GPU Implementation of a Structural-Similarity-based
Aerial-Image Classification. The Journal of Supercomputing,
65(2): 978-996.
Garcia, V.; Debreuve, E.; and Barlaud, M. 2008. Fast k Nearest
Neighbor Search using GPU. In Proceedings of the Computer So-
ciety Conference on Computer Vision and Pattern Recognition
Workshops, 1-6. Anchorage, USA: IEEE Press.
Garcia, V.; Debreuve, E.; Nielsen, F.; and Barlaud, M. 2010. k-
Nearest Neighbor Search: Fast GPU-based Implementations and
Application to High-Dimensional Feature Matching. In Proceed-
ings of the International Conference on Image Processing, 3757-
3760. Hong Kong, China: IEEE Press.
Jin, R.; Yang, G.; and Agrawal, G. 2004. Shared Memory Paral-
lelization of Data Mining Algorithms: Techniques, Programming
Interface, and Performance. IEEE Transactions on Knowledge
and Data Engineering, 17(1): 71-89.
Kato, K., and Hosino, T. 2010. Solving k-Nearest Neighbor Prob-
lem on Multiple Graphics Processors. In Proceedings of the In-
ternational Conference on Cluster, Cloud and Grid Computing,
769-773. Melbourne, Australia: IEEE Press.
McCool, M.; Robison, A.; and Reinders, J. 2012. Structured Par-
allel Programming: Patterns for Efficient Computation. San
Francisco: Morgan Kaufmann Publishers.
Nikan, V., and Meshram, B. 2014. Parallel kNN on GPU Archi-
tecture using OpenCL. International Journal of Research in En-
gineering and Technology, 3(10): 367-372.
Peshterliev, S. 2012. Parallel Natural Language Processing Algo-
rithms in SCALA. M.Sc. thesis, The Ecole Polytechnique Feder-
ale de Lausanne, Switzerland.

446

Viegas, F.; Andrade, G.; Almeida, J.; Ferreira, R.; Goncalves, M.;
Ramos, G.; and Rocha, L. 2013.GPU-NB: A Fast CUDA-based
Implementation of Naive Bayes. In Proceedings of the Interna-
tional Symposium on Computer Architecture and High Perfor-
mance Computing, 168-175. Porto de Galinhas, Brazil: IEEE
Press.
Zhou, L.; Wang, H.; and Wang, W. 2012. Parallel Implementa-
tion of Classification Algorithms Based on Cloud Computing En-
vironment. TELKOMNIKA Indonesian Journal of Electrical En-
gineering, 10(5):1087-1092.
Zhu, L.; Jin, H.; Zheng, R.; and Feng, X. 2014. Effective Naive
Bayes Nearest Neighbor based Image Classification on GPU. The
Journal of Supercomputing, 68(2): 820-848.

447

