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Abstract

Multi-Agent Systems (MAS) are a common approach to sim-
ulating biological systems. Multi-agent modelling provides
a natural method for describing individual level behaviours
of cells. However, the computation cost of simulating be-
haviours at an individual level is considerably larger than top
down equation based modelling approaches. A recent pos-
sibility to improve computational performance is the use of
Graphics Processing Units (GPUs) to provide the necessary
parallel computing power. In this paper we show that multi-
agent models describing biological systems at cellular level
are well suited to GPU acceleration. Cellular level systems
are characterised by vast numbers of agents that intensively
communicate, indirectly through diffusion of chemical sub-
stances, or directly, through connection of chemical recep-
tors. We present a study which utilises the FLAME GPU soft-
ware to target a MAS model of a generic pathogen induced
infection to validate the suitability of the GPU for simulation
of a broader class of cellular level systems.
Keywords:Multi-Agent Systems, Simulation at cellular level,
GPU, Flame GPU

Introduction
Multi-agent modelling is a natural technique for describing
and simulating complex systems, which are characterised by
interactive autonomous individuals. However, multi-agent
systems are computationally expensive, when compared
with a more traditional top down approach of systems mod-
elling. This is especially true when simulating phenomena
that have a huge numbers of elements such as biological cel-
lular systems or systems containing swarm behaviour. Par-
allel and distributed simulation methods offer a potential so-
lution to the computational scale required to simulate multi-
agent systems. Modern graphics cards (GPUs-Graphics Pro-
cessing Units) originally designed to accelerate the render-
ing of real time computer graphics have previously been
shown to offer a potential solution for efficient execution of
a limited subset of complex multi-agent systems (Richmond
et al. 2010; D’Souza, Lysenko, and Rahmani 2007). In such
cases simulation performance scales well as the number of
agents increases.
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This paper reviews previous literature, comparing various
studies which consider the applicability of GPU implemen-
tations of multi-agent systems within the context of cellular
level biological modelling. In order to give further insight
into the relevance of GPUs towards biological simulation we
then propose a model which extends the biological complex-
ity of previous work by capturing common but necessary
biological mechanisms. Representing these mechanisms en-
sures that the results give a fair insight into how this disrup-
tive technology can impact on the broader class of cellular
level biological multi-agent systems simulation.

Multi-agent models for simulating biological systems at
a cellular level have specific and unique requirements that
may not appear in other kinds of MAS. For example, vast
numbers of agents that intensively communicate both indi-
rectly through diffusion of chemical substances, or directly,
through connection of chemical receptors. Other relevant
features include agents (cells) moving in a 3D continuous
space environment; zones that communicate representing
different organs; complex behaviour and agent rules; and in-
tensive removal and addition of agents.

The immune system is an example of a complex biologi-
cal system which demonstrates all of the above challenges.
Its application to GPUs therefore demonstrates the applica-
bility of GPUs towards a broader class of cellular systems
which utilise the same complex mechanisms and behaviours.
Furthermore, Li et al. (hua Li et al. 2009) state that computa-
tional models of the immune system might help researchers
to understand its mechanisms and to verify their hypothesis
in a very effective way, avoiding the slowness and high cost
of in-vivo investigations.

The study described in this paper investigates the feasibil-
ity of exclusively using Graphics Processing Units (GPUs)
in the simulation of large scale biological cellular systems
through a case study of the immune system. The immune
system simulation is implemented using the Flame GPU
framework (Richmond 2011) which has been designed for
the execution of multi-agent systems on NVIDIA GPUs sup-
porting the Compute Unified Device Architecture (CUDA).
The simulation consists of a generic pathogen induced in-
fection.

The main contributions of this work are to show the via-
bility of capturing the complex mechanisms and behaviours
associated with biological cellular-level simulation using
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GPUs. As part of this contribution we present a first pilot
implementation of a immune system model entirely within
the GPU architecture and report on its performance charac-
teristics.

Related works

There are several studies that analyse the application of
GPUs to biological multi-agent systems. Chen et al. pre-
sented a simulation of the blood coagulation system (Chen
et al. 2011). They implemented the simulation using a
GPU specific implementation, a C specific implementation
and via two MAS platforms: NetLogo, Repast in order to
perform direct comparisons. In their experiments, it was
demonstrated that the computational speed of the GPU im-
plementation of the million-level scale of agents was over
10 times faster than the direct C version, over 100 times
faster than the Repast version, and over 300 times faster than
the NetLogo simulation. The simulation presented by Chen
et al. differs considerably from our own, in the sense that
the substances do not undergo diffusion. The implications
of this are that in the blood coagulation system model, the
information that agents access remains static, i.e. the envi-
ronment is not modified during execution of the simulation.
Additionally, the biological behaviour of the agents is homo-
geneous creating conditions ideally suited to efficient imple-
mentation on a GPU.

D’souza et al. (D’Souza, Lysenko, and Rahmani 2007)
also investigated Graphics Processing Units (GPUs) as an al-
ternative platform for agent based simulations. They imple-
mented a simulation of the problem called Sugarscape (Ep-
stein and Axtell 1996). According to them, they were “able
to achieve over 50 updates per second with agent popula-
tions exceeding 2 million on an environment with a resolu-
tion of 2560x1024 with visualization.” While this is a signif-
icant result, the study has no relationship with the problem
addressed here, because the problem Sugarscape is imple-
mented as a cellular automata and not as agents that move in
a continuous space.

Richmond et al. (Richmond et al. 2010) developed a Ker-
atinocyte (cell) model of the in vitro behaviour of skin ep-
ithelial cells. As described by (Richmond et al. 2010), the
model includes behaviour representing progression of the
cell cycle, including cell growth and division (proliferative
behaviour), leading to cell birth and the addition of agents
to the model. The performance of the Keratinocyte model
indicates that a GPU is highly suitable to cellular level sim-
ulation however the interactions between cells are only over
short distances. In order to understand the impact of mid
range or long range interactions (such as that of hormones or
cytokines) further investigation is required. Our paper builds
upon this work by presenting a more complex modelling ex-
ample which capture these essential mechanisms.

A technique which has investigated the use of the GPU
in substance diffusion calculations is the work of Romão et
al. (Romão et al. 2012) which compares the performance
against a counterpart CPU implementation. Whilst capturing
the diffusion behaviours, the individual cellular behaviour
is neglected giving no indication of the computational cost

of the overhead of communication between cells and sub-
stances. The aim of out paper is to combine both the dif-
fusion and cellular level interactions to give necessary in-
sight into the performance implications of complex biologi-
cal models on GPUs.

Our immune system model is based on the work of Possi
et al. (Possi et al. 2011) which presents a comprehensive
model of the human immune system, addressing both the
innate immunity as adaptive immunity (the one that is de-
veloped after a first infection). The original model is imple-
mented on the Repast framework (North et al. 2013) and
is only suitable for execution within a serial processing en-
vironment. Our model differs from the original in that, in
we implement a specific subset of the entire model (i.e. an
immune system with innate immunity). This subset demon-
strates the implementation of key biological mechanisms
and behaviours which are persistent in a wider class of bi-
ological simulation. In addition, we must deal with the lack
of functionality to implement a substances diffusion calcula-
tion within the Repast framework.The reported performance
of the original model vs our own gives significant insight
into the performance implications of simulation with the
CPU in Repast vs. with the GPU with FLAME.

Bacteria-macrophage-antibiotic interaction

model

A complex, challenging biological system that possess all
the features mentioned on the Introduction section namely
is the human immune system. Due to its variety of cell types
and the complex interactions between them, it has been con-
sidered to be even more challenging than the human neural
system (DasGupta 1999). As such, to confirm the viability
of GPU acceleration for complex biological systems at cel-
lular level, we consider a model of reproductive pathogen
behaviour (e.g. bacteria) controlled by an immune response
agent (e.g. macrophage). In addition, we simulate the dif-
fusion of a substance that could interfere in the behaviour
of the agents. For example, an amount of an antibiotic sub-
stance injected in an arbitrary position of the simulated en-
vironment. As a result our model demonstrates how bac-
teria attack of tissue cells would cause the appearance of
substances that attract immune cells to the site of the infec-
tion. Thus, the model requires the simulation of four listed
fundamental requirements for biological simulation: 1) near
communication through receptors; 2) remote communica-
tion through cytokines; 3) random and directed movement;
4) creation and removal of agents dynamically during simu-
lation.

A bacteria is a unicellular organism that can live harm-
lessly in the human body or can act as a pathogen, caus-
ing diseases and, potentially, death. In our immune system
model, the bacteria agent randomly moves one unit position
within a space at each iteration, periodically dividing. Ac-
cording to Tortora et al. (Tortora, Funke, and Case 1995),
as a bacterium can typically move about 50 μm/sec, and
one unit in our model is 10μm, then one iteration corre-
sponds about 1/5sec. Bacteria infects tissue cells present in
the system. Tissue cells are static representing the biological
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environment and do not move, if they are attacked by bac-
teria they emit a substance which attracts macrophages to
the site of the infection. The macrophage agent moves in the
same way as bacteria. When it encounters a bacteria agent
at, it kills the bacteria by phagocytosis. When a macrophage
detects the occurrence substances issued by tissue cell they
move towards the infection site. The number of macrophage
agents is constant throughout the simulation.

Bacteriostatic substances play an additional role within
the model. Bacteriostatic substances are ‘injected’ at a ran-
dom locations and, at each interaction, the substance con-
centration diffuses to adjacent positions. The presence of a
bacteriostatic substance prohibits the division of cells.

Equilibrium of the model can result on a number of pos-
sible outcomes which are 1) the elimination of all bacteria
agents; 2) a stabilisation of the number of bacteria agents; or
3) an explosion of number of bacteria agents.

For the simulation we adopt the parameters displayed in
the table .

According to Folcik et al. (Folcik, An, and Orosz 2007),
if one assumes the average diameter of a cell to be ap-
proximately 0.01 mm and as we’re using 0.02 mm as inter-
cellular space, then the simulation represents an area of
about 560×0.03 ≈ 17.0 mm2 of tissue.

The FLAME GPU implementation

The FLAME GPU framework (Richmond 2011) has the
following features required for implementing the immune
system model: 1) continuous and discrete agents; 2) mes-
sages sent by agents with a fixed distance to reach; and 3)
global constants. According to (Richmond 2011) an agent
in FLAME GPU is a represented as a X-Machine (a form
of state machine) and consists primarily of a name, an inter-
nal memory set (M in the formal definition), a set of agent
functions (or next state partial functions, F, in the formal
definition) and a set of states (Q in the formal definition). X-
Machine agents communicate only through messages. This
communication allows dependencies of agents to be calcu-
lated and displayed as a directed graph. The representation
of agents as a state machine is shown in Fig. 1.

In the diagram the ellipses represent the agent states; sim-
ple rectangles denote state transition functions (operations
on memory which represent blocks of agent behaviour); and
diamonds represent messages. Functions are unable to send
and receive messages of the same type to avoid race condi-
tions during execution.

The diagram is divided into three sections, each compris-
ing a machine-X for each of the three modelled agents.

The bacteriostatic substance was implemented as a set of
global variables. A global variable is a static value (or array
of values) which is mapped to CUDA constant memory. The
constant memory cache makes access of global functions ex-
ceptionally fast for all agents.

Within FLAME GPU each spatially located message sent
by an agent has a fixed distance radius for agents that can
read it. As the radius increases so too does the global cost of
message reading (as more messages will be considered by
each agent). It is therefore preferable to use the minimum

Figure 1: Diagram showing each immune system agent mod-
elled as a X-machine and their interactions via messages
(green). The model diagram shows the Macrophage × bac-
teria × tissue cell (PC - Parenchyma cells) interaction. In
other words, an aspect of innate immunity.

possible interaction radius to obtain high performance. This
presents somewhat of a problem for the diffusion of sub-
stances such as pro and anti-inflammatory substances which
require variable radius due to its gradual diffusion.

To circumvent the requirement of a variable range mes-
sage it would be possible to specify a maximum possible
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No. tissue cells No. Bacteria divide time bacteriostatic efect No. Macrophage Total No. agents
32000 10 every 10 iterations reduces the chance of

bacteria division in
95%

160000 560010

Table 1: Initial parameters adopted in the simulations. The simulation area corresponds to approximately 1.7 cm2 of tissue.

Figure 2: Illustration of how messages are forwarded to sim-
ulate diffusion. When a tissue cell is infected it sends a short
range message. After that, if the message is received by a
macrophage in the local neighbourhood, it forwards the mes-
sage over a wider area to reach more distant macrophages.

range, however this would lead to significant performance
degradation. The solution employed within our model is to
use a technique of message forwarding between the tissue
and macrophage agents. For example, when a tissue cell is
infected it sends a short range message. If the message is re-
ceived by a macrophage in the local neighbourhood, it for-
wards the message over a wider area to reach more distant
macrophages. This behaviour has correspondence with the
biological reality and minimises the amount of long range
interaction. The Fig. 2 illustrates the approach adopted.

Results

The purpose of benchmarking our model is to give in-
sight into the expected performance of the relevant biolog-
ical mechanisms on non specialist desktop hardware (rep-
resenting a conceivable setup of a regular biological mod-
eller). The simulation was performed on a notebook with the
following configuration: i7 processor, 8GB Ram, NVIDIA
GeForce 830M graphics card with 2GB dedicated memory.
It is important to note that both simulations (of the proposed
model and of the original model from Possi et al.) were
performed on the same hardware confuguration. The Fig.
3 shows a snapshot of a simulation where the defence cells
(macrophages) have not been able to contain the infection
and the number of bacteria are growing exponentially to a
power of 2 at each iteration.

Figure 3: Snapshot of a simulation. The pink circles denote
macrophages; the blue circles denote the tissue cells; the vi-
olet circles denote the infected tissue cells; brown circles
denote bacteria; and red circles denote dead bacteria.

Using our modest hardware configuration, the simulation
results without the bacteriostatic substance are shown in Ta-
ble . In this case the population of bacteria grew exponen-
tially and the infection progresses exponentially. The execu-
tion was interrupted in step 302 due to exceeding the maxi-
mum user defined agent population size.

Table shows the simulation results with the bacteriostatic
substance. In this case the bacteria was completely elimi-
nated, even using a larger initial number of bacteria agents,
and the iteration was stopped at the 1000 iteration only be-
cause there was no more changes in the simulation.

Our results show a five times improvement in scaling per-
formance compared to the comparable simulation performed
by Possi et al. (Possi et al. 2011). Additionally the size of the
simulated area differs greatly. While Possi et al. used a dis-
crete grid of 150X150, the continuous space used in our sim-
ulations was 2000x2000 suggesting that our FLAME GPU
implementation is memory efficient. Secondly there is the
population size agents. While Possi et al. simulated around
10,000 cells we were able to exceed one million agents. Fi-
nally there is a performance gain. In 35 seconds the Possi
simulator was able to accomplish only 34 iterations. Even
neglecting the size of the simulated area and the number of
actors involved the performance increase is around 10 times.
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No. iterations time (seconds) No. Bacteria No. Tissue cells No. Macrophage Total No. agents
0 0 10 320000 160000 482000
302 35 679092 320000 160000 1159902

Table 2: Model execution results without bacteriostatic substance. The population of bacteria grew exponentially.

No. iterations time (seconds) No. Bacteria No. Tissue cells No. Macrophage Total No. agents
0 0 100 320000 160000 480100
1000 30 0 320000 160000 480000

Table 3: Model execution results with bacteriostatic substance. In this case the bacteria was completely eliminated.

Figure 4: Speedup. It indicates how many times our ap-
proach was faster than the baseline version.

It should be noted that the limiting factor of our FLAME
GPU implementation in this case is the mamximum agent
population size (which is ultimately dictated by the available
GPU memory) when the number of agents grows exponen-
tially, in which case the simulation outcome is defined.

A more appropriate comparison should be made with an
approximate number of agents. A simulation with an identi-
cal number of agents is difficult to obtain due to the different
rates of reproduction and death of the agents in each model.
For this, we changed the original size of AutoSimmune tis-
sue cell grid to get 160,000 tissue cells. The result of this
simulation, the speedup obtained with Flame GPU can be
seen in Table . The speedup is a measure of performance im-
provement from the baseline version. Note that in this case
the GPU Flame version was 261 times faster than the version
using the CPU based simulator, which clearly demonstrates
the performance advantage in the GPU hardware use.

We also carry out various simulations increasing gradu-
ally the number of agents in order to verify how the per-
formance gain behaved. The result can be seen in Fig. 4. It
may be noted that as the number of agents increases the rel-
ative performance gain increases. This can be explained by
the fact that the implementation of multi-agent systems in
sequential hardware degrades much faster than the version
that uses parallel hardware.

Conclusions

This paper presents the implementation of a model in order
to test the feasibility of simulation exclusively for GPUs at
the cellular level of complex biological systems, with mas-
sive number of agents and intensive exchange of messages.
The implemented model was intended to capture biological
mechanisms in a general way rather than represent a high
degree of biological accuracy. The model extends the com-
plexity of biological mechanisms represented beyond that of
work presented in the literature, combining for example, in-
dividual cell behaviours and diffusion. The system showed
higher scaling and simulation performance when compared
to complex models implemented in CPUs.

Regarding the requirements for biological simulation,
mentioned at the beginning of the paper, the model was ca-
pable of representing each of them. The near communica-
tion through receptors is simulated by means of short range
messaging. The remote communication through cytokines
is simulated by means of forwarding short range messaging.
The random and directed movement is implemented by the
movement of agents in the Flame GPU framework. Finally,
the creation and removal of agents dynamically during simu-
lation is already implemented in the Flame GPU framework.

The execution on GPUs is attractive once it allows the
construction of systems with high performance at low cost.
In addition, the biological behavior at the cellular level is
simple enough to be simulated by X-machines. However,
modeling is still quite complex and challenging, consuming
much of the development time and keeping away users who
do not master the architecture. Future versions of frame-
works should focus on ease-of-use to popularize its use. The
next step is the simulation of models that has a greater fi-
delity to the biological reality.
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