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Abstract

Planning air missions for a team flying in hostile environ-
ments is a complex task, since multiple interrelated goals
need to be considered, e.g., performing the mission tasks and
avoiding enemy fire. The target assignment and route plan-
ning for the team should therefore be performed in a coordi-
nated way. The mission planner suggested in this work com-
bines genetic algorithms and particle swarm optimization in
order to solve these two problems in an interconnected man-
ner. Simulations are used for testing and analyzing the ap-
proach. It is concluded that the mission planner is able to
suggest suitable plans in complex scenarios with three inter-
related objectives: low risk exposure, high mission effective-
ness and short route length.

Keywords: Team mission planning, target assignment, route
planning, path planning, particle swarm optimization, genetic
algorithms.

Introduction

When planning an air mission, performed by a team of
manned or unmanned aircraft, multiple interrelated goals
need to be considered, such as accomplishing the mission
task(s) and avoiding the enemy’s air defense systems. It is
often necessary to accept some risk exposure in order to
complete the mission goals. On the other hand, it might be
best to exclude some targets that are well protected by the
enemy to ensure that the aircraft will be able to visit the oth-
ers.

Team mission planning consists of two problems: tar-
get assignment and route planning. Target assignment de-
termines which aircraft should visit which targets and route
planning decides how an aircraft should fly in order to pass
its assigned targets. These problems are highly correlated.
The route planner needs to know which targets that the air-
craft should visit. On the other hand, in order to evaluate a
possible target assignment regarding risk exposure and route
length, the routes must be known. The target allocation and
route planning should therefore be solved in an intercon-
nected manner.
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Related Work

Route planning for a single aircraft within hostile environ-
ments has been studied extensively in the literature, see for
example the review by Erlandsson (2015a). A team of air-
craft can perform more complex mission tasks than a single
aircraft and the literature provides examples of work regard-
ing collaborative area coverage (Acevedo et al. 2013), coor-
dinated attack missions (Quttineh 2012) and distribution of
medical supplies (Kvarnström and Doherty 2010). However,
these works assume that the missions are performed in areas
without any risk exposure for the aircraft in the team. Beard
et al. (2002) suggested a mission planner for coordinated tar-
get assignment that first calculated the k best routes for each
aircraft to each target and could thereafter calculate an op-
timal target assignment. However, such an approach can be
very computational demanding in scenarios with many tar-
gets or complex cost functions.

Another approach is to run separate route planners for
each aircraft in the team, but let the route planners interact
and exchange information. In this way, the coordinated route
planner suggested by Besada-Portas et al. (2010) could min-
imize risk and route length for each individual aircraft but
also include constraints to avoid collisions within the team.
Zheng et al. (2005) described a mission planner for a team
that should simultaneously reach a single target, where in-
formation regarding possible minimum and maximum times
of arrivals was passed between the route planners and in-
cluded as constraints to ensure that all the aircraft should ar-
rive at the same time. A game theoretic approach was used
byYan, Ding, and Zhou (2004), where the routes for one air-
craft were evaluated against the current best routes for the
other aircraft to ensure that the all aircraft could simultane-
ously arrive at their goal locations without collisions. None
of these works handled the target assignment problem.

Lamont, Slear, and Melendez (2007) developed a mission
planner for a swarm of aircraft where a genetic vehicle router
(GVR) determined which aircraft should fly to which tar-
gets. The GVR interacted with route planners focusing on
route length, climb and risk, in order to evaluate the target
assignment. However, their mission planner did not capture
the interrelations between low risk exposure and high mis-
sion effectiveness and would not exclude targets in case they
were too dangerous to visit.
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Contribution of the Work

The mission planner suggested in this work solves the tar-
get assignment and route planning problems in a coordi-
nated way. Three highly interrelated objectives are modeled:
high mission effectiveness, high survivability and short route
length. Contrary to previous work, the mission planner can
handle the dependencies between these objectives.

Mission goals and Objectives

The mission considered in this work, states that a team of
aircraft should gather information about a number of inter-
esting objects (targets) located within an area protected by
enemy ground-based air defense systems. Three objectives
are considered: route length (R), survivability (S) and mis-
sion effectiveness (M). The total fitness for a route for air-
craft n will be calculated as the weighted sum:

fn = wR · fn
R + wS · fn

S + wM · fn
M , (1)

where wR, wS and wM are weight parameters that should
capture the pilots’ preferences regarding the objectives.
Likewise, the fitness for the entire team plan is:

fT = wR · fT
R + wS · fT

S + wM · fT
M . (2)

Route Length

The route length, Rn, for aircraft n is calculated as the sum
of the Euclidian distance between the waypoints of the route.
The route length fitness is:

fn
R = 1− min(Rn, Nn

tar ·Rnom)

Nn
tar ·Rnom

, (3)

where Nn
tar is the number of targets assigned to aircraft n

and Rnom is the length of the shortest path between the start
point and the destination. When evaluating a plan consisting
of routes for all aircraft, the team route fitness is:

fT
R =

∑Nmem

n=1 fn
R

Nmem
, (4)

where Nmem is the number of members in the team.

Survivability

Survivability, Sn, denotes the probability that aircraft n can
fly its route without getting hit by enemy fire and is calcu-
lated with the model proposed in (Erlandsson and Niklasson
2014). The model is based on a continuous-time Markov
model with the states: Undetected, Detected, Tracked, En-
gaged and Hit. The probability for a transition between
states is described with transition intensities λij and depends
on whether the aircraft is within any of the enemy’s sensor
or weapon areas, see Figure 1.

Let p(t) be the vector describing the state probabilities at
time t and let Λ(t) denote the rate matrix with the elements:

Λij(t) =

⎧⎨
⎩
λij(t), i �= j

−νi(t) =
∑
j �=i

λij(t), i = j. (5)

Figure 1: The survivability model has the states Undetected,
Detected, Tracked, Engaged and Hit (denoted by their initial
letter). The arrows show the possible state transitions when
the aircraft is within a weapon area (bottom), a sensor area
(middle) or outside all areas (top). Forbidden transitions are
illustrated with the lack of arrows and have λij = 0.

Λ is piece-wise constant and changes at the time points
t0, t1, t2 . . . when the aircraft enters or leaves an area. p(tk)
is calculated recursively as:

p(tk) = eΛ
T
k−1·(tk−tk−1)p(tk−1), (6)

where Λk−1 is the constant rate matrix between tk−1 and tk.
The survivability for aircraft n at time tns , is the probability
that the process is not in the state Hit, i.e.,

Sn(ts) = 1− pHit(t
n
s ). (7)

The survivability fitness for a route flown by aircraft n is:
fn
S = Sn(tnD), (8)

where tnD is the time point when aircraft n reaches its desti-
nation. The team survivability fitness is calculated as:

fT
S =

∑Nmem

n=1 fn
S

Nmem
. (9)

Mission Effectiveness

Mission effectiveness is the probability that an aircraft could
fly unharmed to its assigned targets. The individual mission
fitness for an aircraft is calculated as:

fn
M =

1

τnom

∑
m∈Mn

T

τm · Sn(tnm), (10)

where tnm is the time point when aircraft n visit target m
and Mn

T is the set of targets assigned to the aircraft. τm is
the score for visiting target m and τnom =

∑
m∈Mn

T
τm is a

normalization factor. fn
M is only affected by the targets as-

signed to the aircraft, even though a route might intersect
additional target areas as well. When the team plan is eval-
uated, all aircraft that visit a target are included. The proba-
bility that target m is visited by at least one aircraft is:

P (m visited) = 1−
Nmem∏
n=1

(1− Sn(tm)). (11)
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The team mission fitness with Ntar targets is:

fT
M =

1∑
m τm

·
Ntar∑
m=1

τm ·
(
1−

Nmem∏
n=1

(1− Sn(tm))

)
.

(12)

Mission Planner

The mission planner is based on a genetic algorithm (GA),
which is an optimization technique inspired by evolution
(Whitley 1994). A population of individuals, representing
possible target allocations, iteratively evolve towards better
solutions. In order to evaluate an individual, a route planner
calculates routes for all aircraft within the team given the
target allocation. Algorithm 1 describes the mission planner
with pseudocode.

Algorithm 1 Mission Planning
Create initial population randomly
for NGA iterations do

for all individuals do
for all aircraft in team do

Plan route to the assigned targets
Calculate route fitness

end for
Calculate team fitness

end for
Insert best individual in new population
while New population NOT full do

Draw two parents from old population
Create two children with cross over and mutation
Insert children in new population if valid

end while
end for

Initial Population

Each individual in the population has a chromosome repre-
senting a possible target allocation. A plan for Nmem team
members and Ntar targets can be represented with a vector:

xTA = [n1, n2, . . . , nm︸ ︷︷ ︸
member1

, nm+1, . . . , n2m︸ ︷︷ ︸
member2

, . . . . . . , nNtar︸ ︷︷ ︸
memberNmem

],

(13)

m =
Ntar

Nmem
, nk ∈ 1 . . . Ntar and nj �= nk∀j �= k.

This indicates that member 1 should first visit n1, thereafter
n2 and so on. The condition nj �= nk∀j �= k implies that
all targets will be visited and that no target will be allocated
to more than one aircraft. In a scenario with Ntar targets,
there are Ntar! possible target allocations. A chromosome
is represented with a number xchrom ∈ {1 . . . Ntar!}. The
mapping between xchrom and xTA is illustrated in Figure
2. The chromosomes in the initial population is drawn ran-
domly from a uniform distribution.

Figure 2: The left part shows a cutout of the mapping from
xchrom to xTA for Ntar = 8. The right part illustrates the
cross over and mutation operators.

Creating a New Population

The best gene in the old population is selected as the first
individual in the new population. Thereafter two individu-
als, called parents, are drawn randomly from the old popula-
tion, such that the probability that an individual is drawn is
proportional to its fitness value, fT in equation (2). The par-
ents’ chromosomes are expressed as binary numbers. The
cross over operator selects a splitting point at random and
creates two children by combining the parents’ binary chro-
mosomes, see Figure 2. The mutation operator thereafter
changes the bits in the children’s chromosomes with the
probability pmut. If a child is valid, i.e., 1 ≤ xchrom ≤
Ntar!, it is inserted in the new population. This procedure is
repeated until the new population is full.

Route Planner

The fitness of an individual is calculated by planning routes
for all team members for the individual’s target assignment.
The route planner is based on particle swarm optimization
(PSO), which is a population-based algorithm inspired by
the movements in flocks of birds (Kennedy and Eberhart
1995). PSO is suitable together with the survivability fitness
function, since it handles fitness functions expressed for en-
tire routes and does not require derivative information.

Let �xi be a vector with the position of particle i, which has
the velocity �vi and the previous best position �pi. The global
best position of the entire swarm is denoted �pg . In the route
planner, a particle’s position represents the route for one of
the members. They are initialized with routes that enables
the member to fly from the start position to the destination
through its assigned targets. In each iteration, all particles’
positions are updated according to:

�vi ← ω�vi+φ1
�Urand
1 ⊗(�pi−�xi)+φ2

�Urand
2 ⊗(�pg−�xi). (14)

�xi ← �xi + �vi. (15)
�Urand
1 and �Urand

2 denote two vectors with uniformly dis-
tributed numbers in the interval [0, 1] with the same dimen-
sion as �xi.⊗ denotes component-wise multiplication. In this
work, ω = 0.7298 and φ1 = φ2 = 1.49618, which corre-
sponds to the canonical version of PSO, see (Poli, Kennedy,

40



and Blackwell 2007). If the new position has a higher fitness,
fn in equation (1), than the particle’s previous position, �pi
is updated with the new position. The global best position is
updated in the same way, when applicable.

Simulations

The mission planner has been implemented and tested on
four scenarios, where a team of two aircraft should visit
eight targets. The PSO route planner was run during 80 iter-
ations with 11 particles and the GA target allocation was run
for 20 iterations with 50 individuals and pmut = 0.05. The
selection of parameters for the route planner was based on
previous experience with PSO route planning, see (Erlands-
son 2015b). The λijs in Figure 1 were used for calculating
the survivability, τm = 1 for all targets and the weight pa-
rameters were wR = wS = wM = 1/3.

Scenario 1

The first scenario is constructed so that it is possible to visit
all targets without entering any enemy weapon area. Figure
3 shows the target allocation and routes for the team sug-
gested by the mission planner. The routes enable the mem-

Figure 3: Scenario 1 includes 8 targets (circles with num-
bers) and are protected by the enemy’s sensors (dashed cir-
cles) and weapons (solid circles). The team should fly from
the start position (S) to the destination (D). The mission
planner suggests that aircraft 1 should visit the targets [1-
2-7-8] and follow the route with asterisk waypoints and air-
craft 2 should visit the other targets and follow the route with
circular waypoints.

bers to visit all targets and avoid all weapon areas resulting
in 100% survivability for both aircraft. The routes include
no obvious detours. Both team members visit the target in
the middle (target 2), even though the target is only assigned
to aircraft 1. However, aircraft 2 naturally passes through the
target area between its assigned targets.

Scenario 2

In the second scenario, two of the targets far from the des-
tination are located inside weapon areas, see Figure 4. Air-
craft 2 will be able to visit all its targets without entering
any weapon areas and its survivability is 100%. The route
planner finds a narrow passage between the many weapon

Figure 4: Target allocation and routes suggested by the mis-
sion planner for scenario 2.

areas in the middle of the scenario. This might be consid-
ered a risky behavior, but is a consequence of the survivabil-
ity model, which considers all positions outside the weapon
area as safe. In case there is uncertainty regarding the loca-
tions of the weapon areas, safety margins should be added.

Both of the targets within weapon areas are assigned to
aircraft 1. The route starts with visiting target 1 and there-
after passes through target 2 before target 3. Even though,
visiting target 2 before target 3 results in a longer route,
this allocation is better, since the survivability at target 2 is
higher.

The survivability fitness function at team level, fT
S , is a

sum. As shown in this scenario, this fitness function favors
plans were all the risk is taken by a single member, since this
will ensure that the other members can visit their targets. In
case this is not a desirable behavior, one should consider
other ways of constructing fT

S .

Scenario 3

Figure 5 shows that aircraft 1 is able to visit all its targets
without entering any weapon area in scenario 3. One could

Figure 5: Target allocation and routes suggested by the mis-
sion planner for scenario 3.

argue that it would be better to visit the targets in the order
1-2-5-8 and take a more northern route between 5 and 8.
However, due to the location of target 8, it is difficult for the
route planner to find such a passage.
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Target 4 is located inside a weapon area that is quite close
to the destination and it would be reasonable to visit this tar-
get last in the route. Aircraft 2 instead visits it as its third
target and thereafter visits target 7 before flying to the desti-
nation. However, since the target is also visited by aircraft 1
with 100% survivability it is unnecessary that aircraft 2 vis-
its this target. It is a limitation of the mission planner that
it requires that all members visit equally many targets. As
this example shows, it is sometimes better to let one aircraft
focus on the difficult targets and let the other handle more
targets.

Scenario 4

Scenario 4 is the most dangerous scenario with several tar-
gets within the enemy’s weapon areas. Figure 6 shows that

Figure 6: Target allocation and routes suggested by the mis-
sion planner for scenario 4.

aircraft 1 starts with visiting target 1, which is located within
a weapon area. The beginning of the route goes outside of
the sensor areas, and the probability that the aircraft will
be detected when entering the weapon area is therefore
fairly low. The route enters weapon areas twice, for target
1 and target 3, but these passages are short and the air-
craft can reach the destination with 88% survivability. Air-
craft 2 is able to visit its first three targets without entering
any weapon area. The aircraft thereafter visits target 4 and
reaches the destination with 94% survivability.

Target 6 is visited by both aircraft and the probability that
the target will be visited is 99%, which is higher than the
probabilities for each aircraft (88% and 94%). However, the
route planner for member 2 is not aware that it should plan
a route to visit the target, since the target is not allocated to
the member. In the current formulation of the chromosomes,
this is not possible since it is assumed that no target should
be allocated to more than one aircraft. Relaxing this con-
straint would give the mission planner a larger search space.
This could result in better plans, but might also require more
computational time to find suitable plans.

Simulations with Different Weights

The four scenarios were also simulated with four different
sets of weight parameters. Table 1 presents the resulting tar-
get allocation and fitness values for each simulation. Target

allocations marked with a Δ are dominated by other solu-
tions in the same scenario. A solution x1 is said to be dom-
inated by a solution x2 if fk(x1) ≤ fk(x2), for all objec-
tives k and at least one fk(x1) < fk(x2) (Marler and Arora
2004). In the first scenario, the solution with equal weights
dominates the other solutions. However, the differences be-
tween the solutions are small and all of them can be consid-
ered as suitable plans.

The highest survivability fitness, fT
S , corresponds to the

cases where the mission planner focuses on survivability
(wS = 0.7). Except in the first scenario, the mission planner
excludes one or two of the targets. This is a reasonable be-
havior when the scenario is dangerous and the route planner
is not able to find routes with high survivability. However,
the team do visit some of the targets within the weapon ar-
eas, since the mission objective still applies, even though it
has a lower weight (wM = 0.3).

In scenario 2, the mission planner gets the highest fT
M

when it focuses on the mission, wM = 0.7, but in scenario 4,
the solution with equal weights has the highest fT

M . This sce-
nario illustrates the complexity of the planning problem and
that the objectives are strongly interrelated. High mission
effectiveness requires high survivability, at least in the be-
ginning of the routes. On the other hand, in order to achieve
a high survivability, it might be worth to exclude some tar-
gets as shown in the cases with wS = 0.7. The objective of
short route length implies that the routes should not be un-
necessarily long within weapon areas, but might also enforce
the team to take shortcuts across dangerous areas. This com-
plexity motivates the need of an automated mission planner
to aid the pilots to plan their missions, but also illustrates
that it is not an easy task to select the weights.

The PSO route planner runs for a limited number of itera-
tions and the routes are not always optimal, see e.g., Figure
5. The route planner is primarily used for evaluating the tar-
get allocations by calculating fitness values. It can therefore
be argued that it is not important to find the optimal routes,
but to find routes that are representative for the target alloca-
tion. When a target allocation has been selected, it is wise to
run the route planner for more iterations in order to find the
best routes.

Conclusions and Suggestions for Future Work
Planning a mission for a team flying inside hostile territory is
a difficult task, since the plan should enable the team mem-
bers to perform their tasks without exposing them to the
enemy’s weapons more than necessary. This work has pro-
posed a mission planner that combines genetic algorithms
for target allocation with particle swarm optimization for
route planning. The mission planner handles three interre-
lated objectives: high probability for mission success, high
survivability and short route length.

Simulations demonstrated that the mission planner is able
to generate suitable plans in complex scenarios. The plans
enabled the team to visit all targets with a high probability of
reaching the destination unharmed. The route lengths were
reasonable, even though some post processing to remove un-
necessary waypoints and to smooth the curves would im-
prove the routes in some scenarios. By changing the weight
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Table 1: Target allocation and fitness values for the plans suggested by the mission planner with different set of weight param-
eters. Target allocations marked with a Δ are dominated by at least one other solution in the same scenario. A target marked
with † indicates that the team will not visit the target.

wR = wS = wM = 1/3
wR = 0.70,

wS = wM = 0.15
wS = 0.70,

wR = wM = 0.15
wM = 0.70,

wR = wS = 0.15

S1 [1 2 7 8 3 5 4 6]
fT
R : 0.63, fT

S : 1.0, fT
M : 1.0

[1 2 3 4 5 8 7 6]Δ
fT
R : 0.63, fT

S : 0.99, fT
M : 1.0

[1 3 6 4 5 2 7 8]Δ
fT
R : 0.60, fT

S : 1.0, fT
M : 1.0

[1 2 5 8 3 7 6 4]Δ
fT
R : 0.61, fT

S : 1.0, fT
M : 1.0

S2 [1 2 3 4 5 6 7 8]
fT
R : 0.60, fT

S : 0.93, fT
M : 0.96

[1 2 3 4 5 8 7 6]
fT
R : 0.62, fT

S : 0.90, fT
M : 0.96

[1 2 3† 6 5 8 4 7]
fT
R : 0.57, fT

S : 0.97 fT
M : 0.87

[1 2 3 7 5 6 4 8]
fT
R : 0.54, fT

S : 0.93, fT
M : 0.98

S3 [1 5 2 8 3 6 4 7]
fT
R : 0.51, fT

S : 0.98, fT
M : 1.0

[5 6 8 7 3 1 2 4]
fT
R : 0.61, fT

S : 0.93, fT
M : 0.99

[1 3 5 7 4† 2 6 8]
fT
R : 0.51, fT

S : 1.0, fT
M : 0.87

[1 2 5 4 3 6 7 8]
fT
R : 0.53, fT

S : 0.94, fT
M : 1.0

S4 [1 2 3 6 5 7 8 4]
fT
R : 0.52, fT

S : 0.91, fT
M : 0.98

[1 3 6 4 5 2 8 7]
fT
R : 0.57, fT

S : 0.89, fT
M : 0.95

[3† 6 8 4† 1 5 2 7]
fT
R : 0.50, fT

S : 0.96, fT
M : 0.7

[1 2 3 7 5 6 8 4]Δ
fT
R : 0.48, fT

S : 0.83, fT
M : 0.98

parameters for the objectives, the mission planner can be in-
structed to focus on a certain objective. For instance, when
the weight for survivability was high, a few of the targets
inside the enemy’s weapon range were excluded, since they
were considered too dangerous to visit. However, setting the
weights is not an easy task, since the objectives are highly
interrelated. In two scenarios, the case with equal weights
dominated the solutions with a high weight for mission suc-
cess. Even though more simulations are needed to fully un-
derstand the connection between the weights and the result-
ing plans, these examples well illustrate the complexity of
the planning problem.

For future work, it is interesting to perform a study with
the potential end users of the system and investigate whether
the plans suggested by the mission planner correspond to
their expectations and needs. It is also important to study
how to aid the users to transform their preferences regarding
the objectives into weight parameters.
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