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Abstract 
Managing risks in large information infrastructures is a task 
that is often infeasible without proper simplification of the 
system. One common way of “compacting” matters towards 
easing decision making is to aggregate vulnerabilities and 
risks identified for distinct components into an overall risk 
measure related to an entire subsystem. Traditionally, this 
aggregation is done pessimistically by taking the overall risk 
as the maximum of all individual risks (“the chain is only as 
strong as its weakest link”). As that method is quite wasteful 
of information, this work proposes a new approach, which 
uses neural networks to resemble human expert’s decision 
making in the same regard. To validate the concept, we 
conducted an empirical study on human expert’s risk as-
sessments, and trained several candidate networks on the 
empirical data to identify the best approximation to the 
opinions in our expert group.  

Introduction  
Risk management is among the core duties of the general 
steering in large companies. While financial risk manage-
ment enjoys a comprehensive set of helpful tools and 
methods, security risk management until today appears to 
rely mostly on heuristics and (subjective) human expertise. 
Likewise, such heuristics call for compiling vulnerabilities, 
known problems and security issues of components into a 
concise risk report about the entire subsystem. By iterating 
this hierarchical decomposition and aggregation up to the 
top, we end up with a risk report that can be presented to 
the final decision makers for the daily business of risk 
control. Unfortunately, the precise process of how to ag-
gregate risks is neither well documented nor comprehen-
sively studied or understood (from a psychological per-
spective), so most of this labor is done using rules-of-
thumb. The most common such rule is the “maximum 
principle” (cf. section 4.3.3. in BSI (2008)), which pre-
scribes to take the vulnerability of a (sub)system as the 
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maximum vulnerability of any of its components (herein, 
“vulnerabilities” are quantified as likelihoods for failure 
upon any attack from a known and a-priori identified set of 
threats). 
 Obviously, this approach is wasteful on information and 
pessimistically overestimates the risk, so that risk experts 
tend to refine a so-obtained first guess using their own 
expertise and experience. This problem motivated the re-
search reported in this work, seeking to aid risk assessment 
and decision support by automating the previously de-
scribed process, especially “approximating” the inner hu-
man decision making by using neural networks. Our con-
tribution is a concrete neural network (NN) trained on 
empirical findings from a study that queried risk experts on 
several scenarios, asking for their informed opinion about 
the overall risk as they would assess it in a real process. 
Motivation by Example 
As an abstract example, consider a simple infrastructure 
model composed from two representations, given as Figure 
1 and Figure 2. First, we have a physical dependency mod-
el of applications on components (Figure 1), which is aug-
mented by the logical dependency model of applications on 
one another (Figure 2). The risk analysis is usually done in 
a bottom-up fashion. That is, the vulnerability of applica-
tion A is influenced by the security of its (indirect) ances-
tor nodes VM1, VM2 and their parent AS2. Normally, we 
need to account for “and/or”-dependency relations, if an 
application depends on any (“or”) or all (“and”) shown 
components. Various industrial standards can help with the 
assessment, and our pick in this work is the common vul-
nerability scoring system (CVSS; see first.org (2015)). Let 
CVSS(X) denote the 12-th dimensional (real-valued) scor-
ing assigned to component X that results from the expert 
rating the CVSS criteria related to component X in terms 
of CVSS. So, the risk assessment on application A would 
start with CVSS(VM1), CVSS(VM2). These two vectors 
would then go into the assessment CVSS(AS1). However, 
the assessment cannot straightforwardly take the maximum 
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of the children’s assessments (in a naive attempt to model 
the “OR-branch” of AS1 into VM1, VM2), since the expert 
has to take into account switching times between the work-
ing and the fallback virtual machine, as well as characteris-
tics of AS1 that are intrinsic to the application server itself. 
Therefore, the assessment CVSS(AS1) only partially but 
not exclusively depends on CVSS(VM1) and CVSS(VM2). 
At this stage, most standard risk management methods hit 
their limits and leave the consideration of the relevant 
information up to the expert. In our case, this means cast-
ing the scores CVSS(VM1), CVSS(VM2) and the infor-
mation known about AS1 into a scoring CVSS(AS1). Nor-
mally, this is a nontrivial and fuzzy process.  
Abstractly, the risk expert’s task is traversing the graph 
bottom-up, where at node AS1, his duty is to evaluate 
CVSS(AS1) = f(CVSS(VM1), CVSS(VM2), additional 
information about AS1, where the function f here represents 
her/his expertise, experience and general/personal method 
to assess the vulnerability for the application server AS1. 

For the sake of comparison and consistency (also be-
tween scorings of different systems, say, if the decision 
concerns the selection of one out of several candidate sys-
tem offers), we can reasonably assume that the risk expert 
is obliged to make her/his assessment using a fixed method 
f, whose outcome does only depend on the information 
available on the system. The method itself may, however, 
not change between different assessments, as this would 
defeat the purpose of CVSS being also a comparative scor-
ing system. 

Our contribution in this work is exactly how to transfer 
an expert’s risk assessment and aggregation method f into 
an NN, for a threefold benefit: first, we equip the expert 
with automated tool support that is tailored to her/his 
knowledge, expertise and experience. Second, we assure 
consistency among and thus comparability between all 
assessments (as there may be very many in complex infra-
structures). Third, we make the expert’s risk aggregation 
service available to others, thus allowing to delegate these 
decisions upon the so-achieved tool-support.  

Related Work  
It is quite noticeable that methods of artificial intelligence 
have not yet seen much application for decision support in 
the security domain, besides only a few exceptions: Kai 
Sun et al. (2007) for example, show how risk assessment of 
a power-supply utility network can be done, based on at-
tributes assigned to the components of the system. Practi-
cally, such assessments are quite similar to those in IT 
infrastructures, with the major difference being the geo-
graphic span of the system. In this reference, the authors 
use decision-trees on presumed discrete attributes to derive 
an assessment of the overall system (in a hierarchical fash-
ion, similar as we propose here). In reality, however, secu-

rity assessments do not exclusively depend on discretizable 
attributes, and to a significant extent rely on expertise and 
experience of the assessor. Thus, a decision-tree approach 
would encounter difficulties due to vague inputs being 
required, and due to the necessity of accounting for inter-
dependencies among components (which would go into the 
assessment via the aforementioned expertise and experi-
ence). An NN is thus appealing for its ability to learn from 
data, which spares the human expert a “formalization” of 
one’s own methods.

These challenges were independently discussed by 
McCalley, Fellow und Abi-Samra (1999), who in their 
paper seek a deterministic security assessment method, but 
back then already identify the need for tool- and decision-
support to tackle this complex task. Moreover, this refer-
ence is among the first to recognize that a single “measure 
of security” is insufficient, which justifies the use of high-
er-dimensional metrics like CVSS and neural networks to 
do classifications and aggregations in a highly nonlinear 
manner. Both call for an account of the “whole picture” 
(rather than focused local analyses). We naturally serve 
this need, as the output of the CVSS aggregation can easily 
be cast into color-indicators of severity, thus offering a 
graphical visualization of where problems in a system are 
most likely located. Although this related reference also 
proposes this, their approach lacks an automated assess-
ment and still leaves the final aggregation task up to a 
human expert; a gap that our contribution may close. Rele-
vant standards such as NIST (2012) explicitly prescribe 
risk aggregation, but also leave the details mostly unspeci-
fied, thus calling for development of aggregation methods.
The need to do so has a long history, substantiated for 
example by Blakley, McDermott & Geer (2001), Carroll 
(2013), but also in different fields of risk management, say 
the financial sector, where NNs and support vector ma-
chines are used to analyze financial risks (see Bol et al. 
(1998) or Yu et al. (2008)). The field of security metrics 
and how to work with them is very active, with a vast 
number of different approaches having been defined; see 
Savola (2007), Ming et al (2003), or Hayden (2010) and 
references therein, to mention only a few. Some of these 
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are specially tailored solutions (such as Ming et al (2003)) 
or general overviews with huge collection of heuristics and 
best practices; such as HEISC (2014) or Payne (2006). 
Common to all these recommended methods is their usual 
lack of tool-support and leaving much of the labour up to 
human experts. This work is a step towards automating the 
aggregation process, which is among the stages where 
most human expertise is required.  
Another related approach is described by Wang (2005), 
who also calls for an analytical model, who divides the 
infrastructure into (three) perspectives of physical compo-
nents, the user and the services. This division is more gen-
eral than ours, but includes the user’s perception of risk in 
the assessment, which is not relevant for an internal as-
sessment normally (and thus excluded from our considera-
tions here). 

The Empirical Study  
We defined three scenarios inspired by real-life infrastruc-
ture security configurations, asking a set of 50 experts for 
their opinion about the aggregate risks, based on CVSS. 
The study was anonymized and delivered a total of 45 
records, from which 75% were randomly chosen for the 
training, and the remaining 25% were used for verifying 
the network performance. Since our main concern is auto-
mated decision making, we leave the security-related as-
pects of the study and those of CVSS aside here, focusing 
on the NN and the risk aggregation process hereafter. 
Additional to the CVSS assessment, the expert was asked 
to provide a total of 10 additional scores to refine the 
CVSS assessment. The purpose of this extension is two-
fold: first, it reduces the variability in the answers (as the 
refined scoring enforces a better thought out answer), and 
also provides additional insights on how experts reach their 

votes. Especially the latter is valuable for training the neu-
ral network subsequently. 

Training the Neural Networks 
We chose a perceptron configuration, trying to train net-
works with one or two hidden layers. The number of nodes 
in the hidden layer has been determined from various heu-
ristic rules. Using CVSS, a risk assessment consists of 
twelve scores (assigned by the expert) and ten additional 
questions that were introduced for this work only to refine 
the results. Towards aggregating two such extended CVSS 
assessments into a single (plain) CVSS scoring in twelve 
dimensions, our NN has 2×(12+10) = 44 input nodes, and 
12 output nodes. 
We trained (using resilient propagation learning; cf. Ana-
stasiadis, Magoulas and Vrahatis (2005)) and tested a total 
of 13 networks, whose structure and performance results 
are reported in Table 1. The best network in our experi-
ments was feed forward and had 16 hidden nodes in a 
single hidden layer, together with a bias neuron connected 
to all nodes in the hidden layer, and using a hyperbolic 
tangent as activation function for all nodes (the respective 
row in Table 1 is highlighted). Weights were assigned to 
all inner edges, except for the output edges. 
Table 1 is to be read as follows: besides the description of 
the concrete topology, we evaluated the error rate E after 
10.000 iterations, as the ration between network output and 
the expected result of the test set, counting the number N of 
iterations until the learning algorithm converged towards 
an error rate below 0.001. For validation, we took 25% of 
the expert-approved test-cases and checked the aggregation 
result from the network against the expert’s opinions. We 
noted “successful” if the value E (“error rate E after 10.000 
iterations”) of successful such verification among all trials 
was below 0.001. In this case we have an automatically 
approximated result of the test-set, so that we can see the 
results of the NN with high accuracy corresponding to a 
manual review.  

Integrating the Network in the Decision Process 
With the automated aggregation in place, we can now 
partially automate a decision process with help of NN-
based risk aggregation along hierarchical aggregation. The 
NN plays the role of the function � in the bottom-up tra-
versal.  
A crucial point here is the automated account for interde-
pendencies, which is also a central requirement in risk 
management decision making. This interdependency 
comes into the NN through the expert training data, and 
therefore does not have to be modeled explicitly (as would 
be necessary for other approaches like decision trees, fuzzy 
logic, etc.). Now, integrating the NN as a substitute tool at 
the point where the expert would be required to aggregate 
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1 12 no 0.01422627 - × 
1 12 yes 0.013914681 - × 
1 16 no 0.000999515 51,103 � 
1 16 yes 0.000997663 14,779 � 
1 20 no 0.000999628 13,892 � 
1 20 yes 0.000999795 5,955 � 
1 28 no 0.000999054 4,392 � 
1 28 yes 0.000999135 3,544 � 
1 36 no 0.000999939 4,340 � 
1 36 yes 0.000999672 3,806 � 
2 12 + 12 no 0.00859552 - × 
2 12 + 12 yes 0.005936428 - × 
2 16 + 16 no 0.003361971 - × 

Table 1 Neural Network Training Examples 
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risks manually, we end up with a widely automatic proce-
dure to reach a risk assessment for the overall system, 
which can be presented to a decision maker. 
Summarizing this procedure, let us assume that there is a 
hierarchical decomposition of the infrastructure into appli-
cations that (recursively) depend on others, until the bot-
tom of the hierarchy, where the physical system compo-
nents are located (cf. Figure 1 and Figure 2 as examples). 
The risk aggregation process then proceeds upwards by 
invoking the neuronal network for the aforementioned 
aggregation function f (cf. the motivating example in the 
introduction) so as to layer-by-layer aggregate risks up to 
the top. It is exactly the f-operation where the human ex-
pert would be required otherwise. 
In practice, the aggregation network should (must) be 
adapted to the particular context of an application, since 
risk aggregation may look different depending on the sys-
tem at hand. Moreover, NNs do not answer the “why” of a 
particular aggregation result, which, however, may rarely 
be necessary since the NN is trained to approximate human 
reasoning to the best possible extent. 

Conclusions and Outlook 
Although the task of risk assessment in general and risk 
aggregation in particular is usually widely based on human 
expertise, surprisingly little effort has so far been put on 
mimicking human reasoning within the standardized risk 
assessment processes. Tool support is particularly rare in 
this area, and artificial intelligence techniques seem to 
offer an invaluable contribution to the recognized need for 
decision support for risk managers. This work analyzed 
NNs for the purpose of risk aggregation. The networks are 
designed to resemble human decision processes as close as 
possible, to the end of taking the duty of risk aggregation 
from the human expert. We trained and evaluated several 
candidate network topologies, finding that a perceptron 
with one hidden layer performs quite well on the risk ag-
gregation problem, and easily integrates into standardized 
processes for better decision support. As we were using the 
common vulnerability scoring system as our running ex-
ample here, future work may as well target other such 
rating schemes for risk aggregation, to extend the capabili-
ties of these (and other) techniques from artificial intelli-
gence to the security area. Very little has been done in this 
direction so far, but the indications found in this work 
point this out as a promising direction for the future. 
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