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Abstract
The second-order Copeland voting scheme is NP-
complete to manipulate. This complexity is daunting to
deter a strategic voter from manipulation. However, NP-
completeness is a worst case measure, and only shows
that at least an instance of the problem requires such
complexity. Thus, real-life instances of an election that
we care about may be easy to manipulate. This paper
proposes a branch-and-bound heuristic for manipulat-
ing the second-order Copeland elections. We provide
empirical evaluation of the effects of manipulation of
an election by a strategic voter for a constant number,
4 ≤ k ≤ 7, of candidates, and an unbounded number,
v ∈ {2000, . . . , 10000}, of voters. Results from exper-
iments suggest that there are instances of the second-
order Copeland elections that may be efficiently ma-
nipulated using the proposed heuristic when a voter has
perfect information about the preferences of other vot-
ers. However, the second-order Copeland scheme be-
comes resistant to manipulation for fairly large number
of candidates.

1 Introduction
Preference aggregation is used in a variety of applications,
including artificial intelligence and multiagent systems - to
ease group decision-making when agents are faced with a
number of alternatives to make a single choice. Consider
the following. Ephrati and Rosenschein (1997) use virtual
elections for preference aggregation in multiagent systems
planning where agents vote on the next step of a plan un-
der consideration. Also, according to (Bartholdi, Tovey, and
Trick 1989), The Federation Internationale Des Echecs and
the United States Chess Federation (USCF) implement tie-
breaking rules that are either identical to, or are minor vari-
ants of, the second-order Copeland scheme to determine
winners in competitions.

Voting protocols, such as the Copeland and second-order
Copeland schemes are appropriate candidates, among oth-
ers, for modeling such preference aggregation. Bartholdi,
Tovey, and Trick (1989) define a voting scheme as an algo-
rithm that takes as input a set C of candidates and a set V of
preference orders that are strict (irreflexive and antisymmet-
ric), transitive, and complete on C. The algorithm outputs
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a subset of C, who are the winners (allowing for ties). The
ideal of a society is that a candidate emerging as a winner in
an election be as widely and socially acceptable as possible.

Strategic manipulation of elections by agents remains a
bane of voting protocols. Thus, the inability to limit or un-
derstand the effects of this menace may undermine the confi-
dence agents have in decisions made via such protocols. The
famous Gibbard-Satterthwaite theorem states: Every voting
scheme with at least three outcomes is either dictatorial or
manipulable (Gibbard 1973; Satterthwaite 1975). This im-
plies that in any non-dictatorial voting protocol with at least
three candidates, there exist some preferences of the voters
such that some voters achieve better outcomes voting strate-
gically i.e., not truthfully representing their preferences.

While the Copeland voting protocol can be efficiently ma-
nipulated in polynomial time, the second-order Copeland
voting scheme is NP-complete to manipulate even if a ma-
nipulator has free and complete information about the pref-
erences of other voters in an election (Bartholdi, Tovey, and
Trick 1989). Although this complexity result is daunting
to deter a would-be strategic voter from manipulation, NP-
completeness is a worst case measure. And only shows that
at least one instance of the problem requires such complex-
ity (Conitzer and Sandholm 2006). Thus, real-life instances
of an election that we care about may be easy to manipulate.

Bartholdi, Tovey, and Trick’s hardness result rests on an
assumption that the number of candidates in elections is un-
bounded. Contrary to this, Conitzer and Sandholm (2006)
show that such hardness results lose relevance when the
number of candidates is small, because manipulation algo-
rithms that are exponential only in the number of candidates
might be available. In line with this, and in an attempt to
determine how few the candidates of elections can be for
voting procedures to be hard, they show that at least four
candidates are needed in any Copeland election for the ma-
nipulation to become hard in the second-order Copeland
scheme (Conitzer, Sandholm, and Lang 2007).

We note that the problem of manipulation in elections
and voting systems are pervasive in human societies and
multiagent systems, and has received attention of many
researchers in recent years. See (Mossel and Racz 2012;
Faliszewski, Hemaspaandra, and Schnoor 2012; Hemas-
paandra, Rothe, and Hemaspaandra 2013; Rothe and Schend
2013; Narodytska and Walsh 2014; Lasisi and Allan 2014).
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The following is our working hypothesis: There are in-
stances of second-order Copeland elections that may be effi-
ciently manipulated using heuristics. We propose a branch-
and-bound heuristic for manipulation of the second-order
Copeland elections, and investigate the performance of the
heuristic using randomly generated data. The data, which
are the preference orders for each voter about candidates,
were generated using three distributions, including uniform,
normal, and Poisson. We provide empirical evaluation of the
effects of manipulation of an election by a strategic voter for
a constant number, 4 ≤ k ≤ 7, of candidates, and an un-
bounded number, v ∈ {2000, . . . , 10000}, of voters. Exper-
iments suggest that there are instances of the elections that
may be efficiently manipulated using the proposed heuris-
tic when a voter has perfect information about the prefer-
ences of other voters. However, the second-order Copeland
scheme becomes resistant to manipulation for fairly large
number of candidates.

2 Copeland and Second-order Copeland
Voting

The Copeland voting scheme (also known as the first-order
Copeland method) is a protocol in which all candidates in
an election engage in the same number of pairwise con-
tests. A winner is a candidate that maximizes her Copeland
score: the difference between her number of victories and
defeats in all pairwise contests (Niemi and Riker 1976;
Nurmi 1983). In the case of a tie, the eventual winner is the
candidate whose defeated competitors have the largest sum
of Copeland score. This tie-breaking rule is the second-order
Copeland voting (Bartholdi, Tovey, and Trick 1989).

Let C = {c1, . . . , ck} be a set of candidates in an election,
with k ≥ 4. Let V = {v1, . . . , vn} be the preference orders
of n voters over C. We define a relation, �, for each v ∈ V
over C. We say that a voter k ranks candidate i over candi-
date j denoted by, ci � cj , if k prefers i to j in her prefer-
ence order vk ∈ V . Since all candidates must engage in the
same number of contests, the preference orders are required
to be complete on C. Thus, we assume that candidates that
are not ranked in a voter’s preference order will be defeated
competing with other candidates that are ranked. Finally, de-
note by CS(ci), the Copeland score of candidate ci ∈ C in
an election.

Example 1. Copeland Voting

Consider the following truthful preferences by seven
agents for three candidates, a, b, and c, in an election:

3 agents : a � c � b

2 agent : c � b � a

1 agent : c � a � b

1 agent : b � a � c

In the pairwise contests1:

a vs b : 4 vs 3 ⇒ a wins and b loses
1The statement, a vs b : 4 vs 3 ⇒ a wins and b loses, reads, in

an election between a and b, a received 4 votes while b received 3
votes, so since a has more votes than b, a wins and b loses.

a vs c : 4 vs 3⇒ a wins and c loses

b vs c : 1 vs 6⇒ b loses and c wins

The Copeland scores for the three candidates are:

CS(a) = 2− 0 = 2

CS(b) = 0− 2 = −2

CS(c) = 1− 1 = 0

Thus, candidate a is the overall winner in this election.

Example 2. Manipulation of Copeland Voting

We consider the same set of candidates and voters as in
Example 1. However, one of the voters is using a different
preference order. Let s be the strategic voter in this election
with the preference b � a � c. Let c be the candidate that s
would like to manipulate her preference for. Suppose s em-
ploys the polynomial manipulation algorithm of Bartholdi,
Tovey, and Trick, designed to place favored candidate at the
top of strategic agent’s preference, to uncover a manipula-
tive preference, c � a � b, and then participates in the elec-
tion. The new Copeland scores for the three candidates are:

CS(a) = 0− 2 = −2

CS(b) = 1− 1 = 0

CS(c) = 2− 0 = 2

Thus, candidate c is the overall winner in this election
where the strategic agent s fails to report her preference or-
der truthfully. Note that the preference orders of the remain-
ing six agents remain the same as before.

Example 3. Second-order Copeland Voting

Consider the following preferences by seven agents for
four candidates, a, b, c, and d, in an election:

3 agents : a � b � c � d

2 agents : d � b � c � a

1 agent : d � b � a � c

1 agent : c � d � a � b

In the pairwise contests:

a vs b : 4 vs 3⇒ a wins and b loses

a vs c : 4 vs 3⇒ a wins and c loses

a vs d : 3 vs 4⇒ a loses and d wins

b vs c : 6 vs 1⇒ b wins and c loses

b vs d : 3 vs 4⇒ b loses and d wins

c vs d : 4 vs 3⇒ c wins and d loses

The Copeland scores for the four candidates are:

CS(a) = 2− 1 = 1

CS(b) = 1− 2 = −1

CS(c) = 1− 2 = −1

CS(d) = 2− 1 = 1
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Thus, candidates a and d tied in this first-order Copeland
voting. This tie is broken by computing the sum of the
Copeland scores for the defeated competitors for both a and
d. The sum of the Copeland scores for the defeated competi-
tors of a is CS(b) + CS(c) = −2 and that of the defeated
competitors of d is CS(a) + CS(b) = 0. Thus, candidate d
emerge as the overall winner in this election after the appli-
cation of the tie-breaking rule.

Winners in both the Copeland and second-order
Copeland votings can be efficiently computed in polyno-
mial time. However, while a strategic voter can efficiently
manipulate the Copeland voting in polynomial time, the
second-order Copeland voting is NP-complete to manip-
ulate (Bartholdi, Tovey, and Trick 1989). According to
Bartholdi, Tovey, and Trick: Intuitively, it is difficult to
construct a manipulative preference under Second-Order
Copeland because it is difficult to know where to place can-
didates in the preference. For example, placing a favored
candidadte at the top can unintentionally improve the scores
of rivals because of second order effects in the scoring.

3 Proposed Branch-and-Bound Heuristic
The previous section makes it clear that it is difficult for a
strategic voter to determine a preference order that allows a
distinguished candidadte to win in a second-order Copeland
scheme. This is because an attempt by a strategic voter to
alter her truthful preference in anticipation of making a par-
ticular candidate win may improve the Copeland scores of
some other candidates in the election. Hence, the manipula-
tor is constrained to examine an exponential number of her
preference orderings while being cognizance of other candi-
dates’ Copeland and second-order Copeland scores in each
of the orderings.

Heuristics are known to provide preferable solutions to
instances of hard problems in most practical situations with-
out having to examine all the possible choices. We propose
the use of branch-and-bound technique in the design of our
heuristic. The approach is to compute an estimated score of
the current problem instance, called the bound. This bound
is then use to determine how to branch or bypass (without
examination of) large instances of the problem whose scores
cannot be better than the bound found so far.

Let C and V be as defined in Section 2. Let s be a strate-
gic voter with preference order vs ∈ V. Let cd ∈ C be
a distinguished candidate that s would like to manipulate
her preference order for so that cd wins in an election. Sup-
pose m ≤ k of the candidates, including cd tied under the
Copeland voting protocol, then the difficulty is to manipu-
late the tie-breaking rule (under the second-order Copeland
scheme) such that candidate cd wins. Hence, our interest is
to find all such preference orderings vs of voter s that elicits
wins for cd.

We assume that the preference orders of all the voters
are fixed except that of s i.e., vs, and these other orderings
are known to s. Altogether, there are

(
k
2

)
pairwise contests

among the k candidates and each of the candidate partici-
pates in exactly k − 1 contests. For every new preference
order vs of s, dynamically compute the Copeland scores of

the k candidates in �k−1
2 � contests and set the bound for the

heuristic as the maximum score in the contests, denoted by
maxCS

. Let the Copeland score, CS(cd) of cd in the �k−1
2 �

contests be x. We estimate the overall score of cd in the
expected k − 1 contests as CSest

(cd) = x + 	k−1
2 
. Note

that this score gives an estimate of the upper bound on the
Copeland score that is attainable by cd since we have as-
sumed that cd will win in all of the remaining 	k−1

2 
 con-
tests. If this estimated score is less than or equal to the bound
value, i.e., CSest(cd) ≤ maxCS

, then bypass this and other
similar preferences, since this is the best score attainable by
cd in these k−1 contests using this particular preference or-
der. Otherwise, compute the Copeland scores of the k can-
didates in the remaining 	k−1

2 
 contests and determine the
winner. If candidate cd wins, then we have found an instance
of the second-order Copeland voting that is manipulable.

The salient point worthy of note in this heuristic is that
it allows the distinguished candidate to circumvent election
scenarios that lead to a tie with other candidates, thus en-
suring a win in all situations where the heuristic reports a
win.

4 Experiment and Analysis
This section provides a description of the experimental
design for the conduct and manipulation of second-order
Copeland elections using the proposed branch-and-bound
heuristic of the previous section. Our decision on the choice
of parameters in our experiments, i.e., the constant number,
4 ≤ k ≤ 7, of candidates, and a voter’s perfect infor-
mation about the preferences of other voters are influenced
by earlier results from the literature as discussed in Section
1. This assumption of free and perfect information about vot-
ers’ preferences is a theoretical import that is used to show
worst case situations. See for example, the introduction of
(Bartholdi, Tovey, and Trick 1989).

4.1 Simulation
In all our simulations, we let 4 ≤ k ≤ 7 be the number
of candidates and 1000 ≤ n ≤ 10000 be the number of
voters. Thus, we define a set C of candidates such that |C| =
k and a set V of preference orders of voters, where |V | =
n. We define a strategic voter s with preference order vs ∈ V
and a distinguished candidate cd ∈ C that s would like to
manipulate vs for in order to elicits a win for cd.

We represent the set V by a corresponding set Π of per-
mutations of the k candidates in an election. Consider an
election with three candidates, 1, 2, and 3. If a voter’s pref-
erence order in V is, 2 � 1 � 3, then the correspond-
ing permutation π ∈ Π of the preference order is given as
213. Since there are k! possible permutations for each k, we
identify a preference order with a unique number i such that
1 ≤ i ≤ k!. The initial preference orders assigned to all vot-
ers are randomly generated by assigning preference orders
identified by corresponding numbers from [1, k!]. We also
randomly select from [1, n] and [1, k], the strategic voter and
the distinguished candidate respectively. The initial prefer-
ence order assigned to a strategic voter is the identity permu-
tation i.e., 1, 2, . . . , k. Observe that any preference order of
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the strategic voter than the identity permutation that results
in a win for the distinguished candidate is a manipulative
preference order. Details of the different statistical distribu-
tions that are used to randomly generate preferences, deter-
mines strategic agents, and the distinguished candidates in
elections are provided in Subsection 4.2.

When starting a new experiment, we perform the steps
described above and freeze the preference orders of all the
voters except that of the strategic voter. The strategic voter
then examines her k! possible preference orders in relation
to other voters’ fixed preferences to determine preference or-
ders that result in wins for the distinguished candidate. Re-
call that the strategic voter has complete information about
other voters preference orders. The original election is the
election where the manipulator starts with the identity pref-
erence order. The remaining k!− 1 elections are attempts by
the strategic voter to determine potential manipulative pref-
erence orders.

We conduct elections among the k candidates and use the
branch-and-bound heuristic as described in Section 3 to en-
gage in manipulation for strategic agents. We determine the
percentage of the total elections that results in wins for the
distinguished candidate. We repeat the experiment 100 times
and compute the average value of the results to minimize de-
viations. For different runs of the experiments, we vary the
number, k, of candidates and the number, n, of voters ap-
propriately, within the ranges specified above while keeping
one of the other two parameters constant alternatively.

4.2 Distributions to Generate Preference Orders
Each possible preference order in an election with k can-
didates has a unique identifier between 1 and k!. The in-
teger number representing the unique identifier for each of
the preference orders of voters are generated using uniform,
normal, and Poisson distributions. We have used these dis-
tributions to model different perceptions of candidates by
the electorates. We give descriptions of how the preference
orders are generated using the distributions.

Preference Orders Using Uniform Distribution The
preference orders for all voters in an election are chosen
based on their corresponding unique identifiers and such
that they are integers drawn from a uniform distribution,
U(0, k! + 1). U(a, b) defines a uniform distribution over the
interval (a, b), where both a and b are finite.

Preference Orders Using Normal Distribution The
preference orders for all voters in an election are chosen
based on their corresponding unique identifiers and such
that they are integers drawn from a normal distribution,
N(μ, σ2), where μ and σ2 are the mean and variance. We
use a mean of μ = k!

2 and values of standard deviation
σ = k!

2 and σ = 3k!
4 , where k is the number of candidates in

an election.

Preference Orders Using Poisson Distribution The
preference orders for all voters in an election are chosen
based on their corresponding unique identifiers and such
that they are integers drawn from a Poisson distribution,

Poisson(λ), where parameter λ is the mean of the distribu-
tion. We use means of λ = k!

2 and λ = 3k!
4 , where k is the

number of candidates in an election.

We note that the parameters in these distributions are suf-
ficient to see patterns of behaviors in our experiments and
as well provide some generalization on the evaluation of the
effects of manipulations in the second-order Copeland elec-
tions.

5 Results and Discussion
We present the results of our extensive set of simula-
tions. For our study, we generate different numbers of can-
didates and voters with a distinguished candidate and a ma-
nipulator in each of the elections.

We show a summary of the extent of vulnerability of the
second-order Copeland scheme to manipulation by a single
voter in Figures 1 - 5, for elections where the preference or-
ders were generated using uniform (Figure 1), normal (Fig-
ures 2 & 3), and Poisson (Figures 4 & 5) distributions. The
x-axes in each of the figures indicate the number of voters in
elections while the y-axes are the average percentage of ma-
nipulations achieved by strategic voters in the elections. We
categorized the elections based on the number of candidates
involved, so we have a 4-Candidate election for an election
involving only four candidates, and so on. There are four
types of elections shown in the figure.

Figure 1: Extent of vulnerability of the second-order
Copeland scheme to manipulation (uniform distribution).

Figure 1 suggests that higher percentage of manipula-
tions are achieved by the strategic voter when the number
of candidates are few. In particular, consider the 4-Candidate
election, the percentage of manipulations fluctuates between
14% and 22% of the elections for all cases of the number
of voters. We can easily observe a trend in the figure as fol-
lows. As the number of candidates in the elections increases,
the range between which the percentage of manipulations
achieved by the voter oscillates also reduces. Consider the
7-Candidate election, this value fluctuates between 4% and
8% of the elections for all cases of the number of voters.

One would have expect that the percentage of manipu-
lations achieved by the strategic voter be very small when
the number of voters is large even for smaller size candi-
date elections like 4-Candidate, but this is not so. Our par-
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Figure 2: Extent of vulnerability of the second-order
Copeland scheme to manipulation (normal distribution with
μ = k!

2 and σ = k!
2 ).

Figure 3: Extent of vulnerability of the second-order
Copeland scheme to manipulation (normal distribution with
μ = k!

2 and σ = 3k!
4 ).

tial explanation for this unexpected oscillations of the per-
centage of manipulation even when the number of voters is
very large is the following. The more the number of can-
didates, the more independently distributed the preferences
of the voters are. So for the 4 and 5-Candidate elections,
the range of the distributions for the preference orders of
the voters are small, [1, 24] for 4-Candidate and [1, 120] for
5-Candidate elections. Hence, voters preference orders are
very close, making the distinguished candidate also popu-
lar among other voters, so the manipulator has better chance
to achieve more manipulations even for larger values of the
number of voters. On the other hand, the range of the dis-
trubution of the preference orders is large for fairly large
number of candidates.

Similar results of the extent of vulnerability of the second-
order Copeland scheme to manipulation when the prefer-
ence orders of the voters are generated using the normal
distribution are shown in Figures 2 and 3. Although the ex-
tent of vulnerability of the second-order Copeland scheme
is similar to that when the preference orders of the voters
were generated using the uniform distribution, we however,
noticed from these figures the effect of the spread of the
preferences across all voters in the elections. Also, observe
that unlike Figure 1, the percentages of manipulation for

Figure 4: Extent of vulnerability of the second-order
Copeland scheme to manipulation (Poisson distribution with
λ = k!

2 ).

Figure 5: Extent of vulnerability of the second-order
Copeland scheme to manipulation (Poisson distribution with
λ = 3k!

4 ).

the 7-Candidate elections are higher when the preferences
were generated using the normal distribution (Figures 2 and
3). These values fluctuate between 6% and 15%.

Finally, Figures 4 and 5 show the extent of vulnerability of
the second-order Copeland scheme when preferences of the
voters are generated using the Poisson distribution for dif-
ferent values of the mean. These results differ significantly
from those of the normal and uniform distributions, in part,
because Poisson distribution is used to simulate balls and
bins distributions. Thus, most of the unique identifiers for
the permutations obtained using this distribution concentrate
more around a region. The percentages of manipulation for
the 7-Candidate elections, when λ = 3k!

4 , fluctuates between
2% and 4%, representing the worst values in all three cases.

6 Conclusions and Future Work
Strategic manipulation of elections by agents remains a bane
of voting protocols. Thus, the inability to limit or under-
stand the effects of this menace may undermine the confi-
dence agents have in decisions made via such protocols. The
well-known second-order Copeland voting scheme, that
we consider in this paper, has been shown to be NP-
complete to manipulate. This complexity is daunting enough
to deter a strategic voter from manipulation, however, NP-
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completeness is a worst case measure, and only shows that
at least an instance of the problem requires such complex-
ity. We provide empirical evidence to show that despite
this complexity, finding beneficial manipulation is relatively
easy in practice, at least for the elections used in this work.

We propose a branch-and-bound heuristic for manipula-
tion of the second-order Copeland elections, and investi-
gate the performance of the heuristic using randomly gen-
erated data. The data, which are the preference orders for
each voter about candidates, were randomly generated us-
ing three distributions, including uniform, normal, and Pois-
son. We provide empirical evaluation of the effects of ma-
nipulation of an election by a strategic voter for a constant
number, 4 ≤ k ≤ 7, of candidates, and an unbounded num-
ber, v ∈ {2000, . . . , 10000}, of voters. We also evaluate the
extent of ease of vulnerability of the second-order Copeland
scheme to manipulation using the heuristic.

The results of our extensive experiments suggest that
there are instances of the elections that may be efficiently
manipulated using the proposed heuristic when a voter has
perfect information about the preferences of other voters,
thus validating our earlier stated hypothesis that: There are
instances of second-order Copeland elections that may be
efficiently manipulated using heuristics. It is, however, not
difficult to infer that second-order Copeland elections in-
volving large number of candidates will be highly resistant
to manipulation of the type considered in this work. This is
because the extent of vulnerability of the scheme when the
number of candidates is seven is lower on the average for
the three distributions, especially when the number of voters
is very large. In particular, strategic voters achieve less than
5% of manipulations in all elections for the Poisson distri-
bution when the mean, μ = 3k!

4 .
Our argument here is that, if it is difficult for strategic

agents to achieve high values of manipulation when they
have access to perfect information about the preferences of
other voters, then, there is a strong reason to believe that the
manipulators will achieve little or nothing in reality where
the preferences of other voters are rarely available and the
number of candidates is large. At best, only partial informa-
tion or probabilities of whether or not a candidate will defeat
another candidate may be available to strategic agents.

There are several areas of ongoing research on this prob-
lem. Here are some directions for future work. An extension
of the number of candidates beyond seven that was consid-
ered in this paper is planned. Also, based on the outcomes
of our experiments, we conjecture that the distributions of
other voters’ preferences are key to manipulation. We plan
to characterize distributions of voters’ preferences in which
manipulation is impossible. An obvious and interesting step
after this is to then determine which distributions are effi-
ciently manipulable. Another interesting view of this type of
manipulation is to consider the effect of when a coalition of
voters is the strategic manipulator for a distinguished candi-
date. Furthermore, we plan to consider situations where the
strategic voter or coalition of strategic voters have imperfect
information about the preferences of other voters in the elec-
tion. Finally, we plan to seek real-life data sets that we can
use to evaluate and improve the proposed heuristic.
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