
GPU-Accelerated Parameter Optimization for Classification Rule Learning

Greg Harris
Department of Computer Science
University of Southern California

Los Angeles, California
gfharris@usc.edu

Anand Panangadan
Department of Computer Science

California State University
Fullerton, California

apanangadan@fullerton.edu

Viktor K. Prasanna
Ming-Hsieh Department
of Electrical Engineering

University of Southern California
Los Angeles, California

prasanna@usc.edu

Abstract

While some studies comparing rule-based classifiers
enumerate a parameter over several values, most use
all default values, presumably due to the high com-
putational cost of jointly tuning multiple parameters.
We show that thorough, joint optimization of search
parameters on individual datasets gives higher out-of-
sample precision than fixed baselines. We test on 1,000
relatively large synthetic datasets with widely-varying
properties. We optimize heuristic beam search with the
m-estimate interestingness measure. We jointly tune
m, the beam size, and the maximum rule length. The
beam size controls the extent of search, where over-
searching can find spurious rules. m controls the bias
toward higher-frequency rules, with the optimal value
depending on the amount of noise in the dataset. We as-
sert that such hyper-parameters affecting the frequency
bias and extent of search should be optimized simul-
taneously, since both directly affect the false-discovery
rate. While our method based on grid search and cross-
validation is computationally intensive, we show that it
can be massively parallelized, with our GPU implemen-
tation providing up to 28x speedup over a comparable
multi-threaded CPU implementation.

Introduction

Classification rule finding is a well-studied data mining tech-
nique for learning “If-Then” concepts from data. The search
for high-precision rules involves testing many candidates
against training data. This repeated use of the training data
is called multiple testing and increases the false-discovery
rate. Several authors have shown that searching too hard
for good rules can lead to over-fitting, particularly if com-
plex rules are allowed (Quinlan and Cameron-Jones 1995;
Jensen and Cohen 2000; Možina et al. 2006; Janssen and
Fürnkranz 2009). This is a trade-off, because some search-
ing must certainly be done.

Another trade-off is the balance of preference given to
precision and frequency. Higher-frequency rules are more
statistically significant and robust to over-fitting. A rule with
many examples in the training data may be preferable to a
higher-precision rule with fewer examples.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

These two trade-offs depend on each other and should be
decided jointly. Both affect the false-discovery rate. They
also both depend on the amount of noise in the domain. For
example, if performing an extensive search through a noisy
dataset, one may need to increase the frequency bias in order
to reduce the chances of selecting a spurious rule. These
trade-offs are controlled through algorithm-specific hyper-
parameters.

Despite the sensitivity of rule learning accuracy to search
parameters, rarely are they tuned for individual datasets.
Studies which compare algorithm precision often use default
parameter values. A review of 100 experimental studies on
Inductive Logic Programming found that only 38 mention
values assigned to some parameters, and only 17 describe
an enumerative search over a small set of possible values to
optimize typically one parameter (Srinivasan and Ramakr-
ishnan 2011). Our study shows that thorough, joint parame-
ter optimization significantly improves out-of-sample preci-
sion.

Presumably, the reason joint optimization of multiple
hyper-parameters is not done in rule learning is due to the
high computational cost. To show this approach is feasible,
we show that it can be massively parallelized. We describe a
GPU implementation that provides up to 28x speedup over
a comparable multi-threaded CPU implementation.

Background

Classification Rules

The classification rules we consider take the form:
“If A, then B.” In binary classification, B is always the
same: (class = Positive). A consists of a conjunction of
logical conditions placed on input attributes, called features.

We use the same notational conventions as Fürnkranz and
Flach (2005): The number of positive samples covered by
the rule is p. The total number of positive samples is P . The
number of negative samples covered by the rule is n. The
total number of negative samples is N .

Interestingness Measures

Rule-finding is a combinatorial optimization problem with
the objective of maximizing an interestingness measure.
Many interestingness measures have been proposed. Sur-
veys on the topic compare and contrast the proposed mea-

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

436

Covered
by rule

Not covered
by rule

Pos samples p P − p P

Neg samples n N − n N

p+ n P +N − p− n P +N

Table 1: Notational conventions for a confusion matrix of
positive and negative samples covered or not covered by a
classification rule.

sures (Tan, Kumar, and Srivastava 2002; Geng and Hamilton
2006; Lenca et al. 2008; Janssen and Fürnkranz 2010). In-
terestingness measures are calculated from values found in
a 2× 2 contingency table, as seen in Table 1. Each measure
has a unique way of trading-off precision for frequency (i.e.
coverage or support).

Beam Search

Counter-intuitively, searching more extensively for good
rules can lead to worse out-of-sample performance. Search-
ing involves generating hypotheses, or candidate rules, and
evaluating them on the training data.

Quinlan and Cameron-Jones (1995) speculate that any
training dataset contains “fluke theories” that fit the data
well but have poor predictive accuracy. The more extensive
the search is, the higher the probability of discovering the
flukes. Greedy heuristic search algorithms, such as beam
search, work well in this regard. They tend to find good
rules quickly, while covering only a small fraction of the
search space. By contrast, complete search algorithms such
as Apriori (Agrawal et al. 1996) or FP-growth (Han, Pei,
and Yin 2000) are guaranteed to discover all flukes as well
as good rules.

Top-down heuristic beam search has emerged as the most
commonly used search algorithm in rule finding. It is similar
to hill-climbing, although less myopic. Hill-climbing starts
with an empty rule that covers all samples and greedily re-
fines it by adding conditions. Beam search considers more
refinements or alternatives than hill-climbing throughout the
search. It maintains a beam of the best b rules of each rule
length. To find rules of length l, each feature is added as a
refinement to each rule in the beam for length l − 1. The
refined candidate rules are evaluated, and the the top b rules
are then stored in the beam for length l. After reaching some
stopping criterion, the best rule from all lengths is selected.

Limiting the beam size limits the extent of the search. Set-
ting b = 1 makes the algorithm equivalent to hill-climbing.
Setting b = ∞ makes it equivalent to exhaustive search.

Related Work

For related work, we consider research on methods of tuning
search parameters for each dataset with the goal of finding
high-precision rules.

Cestnik (1990) proposed the m-estimate, a parameterized
interestingness measure for estimating conditional probabil-
ities. Dzeroski, Cestnik, and Petrovski (1993) show an im-
provement over the Laplace estimate by trying many values
of m on each dataset. They mention cross-validation as a
possibility for choosing m.

Quinlan and Cameron-Jones (1995) use the Laplace es-
timate for an interestingness measure. They iteratively in-
crease the beam size until two successive iterations fail to
find a better rule. They call this layered search, and report
an improvement over a more extensive search. This is re-
lated, because they adapt the beam size to the dataset.

Cohen (1995) propose RIPPER, which is still a popular
and competitive algorithm. RIPPER learns one rule at a time
using hill-climbing in conjunction with FOIL’s information
gain and pre-pruning. Each rule is learned on only 2/3 of
the training data. Each is then post-pruned by removing any
final sequence of conditions from the rule to optimize preci-
sion on the remaining 1/3 of the training data. The stopping
criterion for adding new rules is based on total description
length. Finally, there is a post-processing phase for optimiz-
ing the rule set. This is related work, because using held-out
data for post-pruning is a method of adapting the rules to the
dataset.

Možina et al. (2006) remove the multiple testing-induced
optimism in rule evaluation measures by performing permu-
tation tests. They choose the rule that is most statistically
significant based on permutation tests for each rule length.

Srinivasan and Ramakrishnan (2011) study parameter op-
timization for Inductive Logic Programming (ILP) systems.
They propose first using a regression model to find the most
relevant factors. This is followed by response surface op-
timization on the relevant parameters. Their optimization
method is based on gradient ascent and is not guaranteed to
find the global maximum. They do not use cross-validation
for parameter optimization. In their experiment, they con-
sider four parameters: maximum rule length, maximum
nodes explored in the search, minimum precision, and mini-
mum support. They validate their method on 8 biochemistry
datasets. Our method uses grid search instead of gradient
ascent, because we believe some variables, such as extent of
search and frequency bias, interact in a way that is difficult
for greedy algorithms to optimize. We use cross-validation
to reduce the chances of over-fitting the hyper-parameters.
We also test more extensively, using 1,000 datasets.

We include here two related GPU search implementa-
tions. Fang et al. (2009) showed some speedup when im-
plementing Apriori on a GPU versus a CPU. Langdon, Yoo,
and Harman (2011) implemented beam search on a GPU for
the purpose of Formal Concept Analysis, although they did
not achieve speeds as fast as an optimized CPU algorithm.

Approach
Our approach to rule learning is to thoroughly optimize
search parameters for each dataset. Our experiments eval-
uate doing this through grid search with cross-validation.
Grid search works even when optimizing variables that inter-
act. Cross-validation helps reduce the chances of over-fitting
the search parameters.

437

We assert that frequency bias and extent of search should
be optimized jointly. Both affect statistical significance. In-
creasing the extent of search increases the number of false
discoveries. This lowers the statistical strength of the search,
making it difficult to recognize good low-frequency rules
among all the spurious ones. Only higher frequency rules
can still possibly be found statistically significant as the false
discovery rate rises. Therefore, the optimal frequency bias
depends on the extent of search. In noisy datasets with little
structure, dropping unnecessary hypothesis tests will enable
a reduction in frequency bias, potentially leading to an in-
crease in out-of-sample precision.

Baseline Method

We begin by choosing a baseline search method to optimize;
namely, beam search with the m-estimate, with parameter
values recommended in the literature. This baseline repre-
sents arguably the best general-purpose algorithm for find-
ing high-precision rules.

Search Algorithm. Top-down beam search is a greedy
heuristic search method which is used by the vast major-
ity of rule learning algorithms (Fürnkranz, Gamberger, and
Lavrač 2012). It is used by systems built on the AQ algo-
rithm (Clark and Niblett), CN2 (Clark and Niblett 1989),
and SeCo (Fürnkranz 1999). Beam search generalizes hill-
climbing, which is used in FOIL (Quinlan 1990) and RIP-
PER (Cohen 1995).

The parameter b for beam size varies the extent of search.
For the baseline beam size, we use b = 5. This value has
been commonly used and is the default value used in CN2
(Clark and Niblett 1989; Možina et al. 2006). Low values of
b have been shown to often out-perform large values when
tested out-of-sample (Quinlan and Cameron-Jones 1995;
Janssen and Fürnkranz 2009).

Interestingness Measure. The m-estimate (Cestnik
1990) in conjunction with beam search is commonly
used in rule learning, with accuracy comparable to other
state-of-the-art algorithms. The m-estimate generalizes the
Laplace estimate, replacing the assumption of a uniform
initial distribution with a more flexible probability density
function:

f(x) =
1

B(a, b)
xa−1(1− x)b−1

where a > 0, b > 0, and B(a, b) is the Beta function. The
values for a and b are determined from an estimate of the
class proportion and a parameter m, which is chosen based
on the amount of noise in the domain. The formula for the
m-estimate is:

hm =
p+m · p

P+N

p+ n+m
Janssen and Fürnkranz (2010) included the m-estimate in

a study comparing five parameterized interestingness mea-
sures. They optimized the parameter value for each mea-
sure with respect to ruleset accuracy across 27 datasets and
validated the results using that parameter on 30 datasets.
The optimal general-purpose value of m they reported is
m = 22.466, which we use for m in the baseline.

Rule Length. Shorter rules are easier to interpret and eas-
ier to find. In addition, shorter rules are believed by some
to generalize better to unseen data. The number of features
in a ruleset is a measure of model complexity. Fürnkranz,
Gamberger, and Lavrač (2012) have proven that when learn-
ing from noisy datasets, the size of an over-fitting model
grows at least linearly with the number of samples. They
say that biasing a learner toward shorter rules is a typical
way to counter the growth and avoid over-fitting. The bias
is generally not explicit, but implemented through pre- or
post-pruning.

One way to ensure rules are short is simply to constrain
the maximum rule length, an approach often taken in as-
sociation rule mining. The baseline method does not have
a restrictive maximum rule length. However, we include
it as a search parameter to be optimized, because either it
or another stopping criterion must be specified. Setting a
maximum rule length adds little extra complexity to the grid
search, because it entails simply storing intermediate results
during the search for longer rules.

In summary, the baseline we compare against uses:

1. Beam search (b = 5)
2. m-Estimate (m = 22.466)
3. Maximum rule length (l = ∞)

Experiments

We test the hypothesis that grid search with cross-validation
can reliably identify parameter combinations that lead to
higher-precision rules than the baseline parameters. We fo-
cus on the covering algorithm subroutine that finds the single
best rule for the uncovered training samples. For stability in
the precision estimation, we combine as many of the best
rules as needed until they cover at least 100 samples in the
test data.

3-Fold Cross-Validation

We use k-fold cross-validation with k = 3. Our prior exper-
iments have shown the results are not sensitive to the value
of k. We choose k = 3 primarily on the basis of lowered
computational complexity.

Synthetic Data

In order to report statistically significant results, we test on
many datasets. Using synthetic data allows us generate un-
limited datasets. It also allows us to experiment on data with
a wide variety of attributes.

We have identified important attributes used to describe
datasets. Before generating each dataset, we first pick rea-
sonable values at random for each attribute (see Table 2). We
then generate random binary samples and labels, constrained
to meet the chosen attribute values. We also create random
rules with reasonable attributes, and we incorporate them
into the dataset without affecting the other attributes. This
gives the otherwise random data some amount of predictable
structure. We follow this process to create two datasets, one
for training, and one for testing. Each has identical attributes
and contains the same structure from the generated rules.

438

Attribute Value Distribution

Sample count (M) M ∼ U{50000, 500000}
Feature count (N) N ∼ U{50, 5000}
Positive class
proportion (μ) μ ∼ U(0.1, 0.9)
Mean noise features
per sample (λ) λ ∼ U{10, �N/4�}
Noise features
for sample m (fm) fm ∼ Poisson(λ) | fm ≥ 1

Rule count (R) R ∼ U{1, 20}
Max rule lift (φ) φ ∼ U(0, 0.95− μ)

Max rule support (θ) θ = �M × μ/10�
Length for rule r (lr) lr ∼ U{2, 6}
Precision for rule r (pr) pr ∼ U(μ, μ+ φ)

Support for rule r (sr) sr ∼ U{5, pr × θ}

Table 2: Synthetic data attribute values are drawn from the
given distributions, and samples and rules are randomly gen-
erated such that the attribute conditions are satisfied.

Experiment Plan

We use 3-fold cross-validation in a three-dimensional grid
search to find the best values for m in the m-estimate, b in
beam search, and l, the maximum rule length. We test all
combinations of the following values:

• m ∈ {1, 2, 5, 10, 22.466, 50, 100, 1000}
• b ∈ {1, 2, 3, 5, 10, 20, 50, 100, 1000}
• l ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Cross-validation evaluates each parameter combination
on folds of the training data. The best combination is then
used to search the full training data for rules which are eval-
uated on the test data. This is done for 1,000 datasets.

Three-dimensional grid search seems computationally
cumbersome, but the third dimension, maximum rule length,
doesn’t add much complexity. This is because longer rules
build on shorter rules when using top-down beam search. If
the intermediate results are stored, a single beam search for
long rules collects the same information as separate beam
searches for smaller values of l. The baseline recommenda-
tion is having no maximum rule length at all, meaning long
rules need to be searched anyway.

In addition to testing cross-validation for all three parame-
ters, we also evaluate cross-validation for individual param-
eters (one-dimensional grid search) and pairs of parameters
(two-dimensional grid search), with left-out parameters be-
ing set to recommended values from the baseline approach.

For comparison, we test beam search (b = 5) with a
large selection of non-parameterized interestingness mea-
sures. We also test five parameterized interestingness mea-
sures, using parameter values recommended by Janssen and
Fürnkranz (2010). One of these tests, the m-estimate (m =
22.466), is the baseline method all other experiments are

compared against. These tests should ideally be done with
no maximum rule length, but for practical purposes, we set
the maximum rule length to l = 10. This limit should
not generally be restrictive, because the maximum true rule
length in our synthetic data is l = 6.

We test an implementation of RIPPER modified for our
use case. Our implementation only finds enough rules to
cover 100 test samples. We do not generate the full rule list
or perform ruleset pruning, but we still post-prune the indi-
vidual rules we do find. We only search for rules predicting
the positive class. We call this, “Modified RIPPER.”

Results

Experiment results are listed in Table 3. The first notice-
able feature is that most of the p-values are essentially 1,
meaning the method is unlikely to be higher precision than
the baseline, given the win-loss-tie record. These results
confirm the results of Janssen and Fürnkranz (2010), find-
ing that the m-estimate (m = 22.466) outperforms all non-
parameterized interestingness measures. Both our study and
theirs also confirm that RIPPER and the m-estimate perform
equally well. Our results differ, however, in that Relative
Cost (cr = 0.342) performed better in their study than ours.

The experiment results confirm our hypothesis that grid
search with cross-validation can be used to improve on the
baseline method with respect to out-of-sample precision.
The best result, CV (m, b), has a win-loss-tie record of 511-
416-73 against the baseline.

While cross-validation with all three parameters still out-
performs the baseline with statistical significance, it is not
the best result. The results show worse performance in ev-
ery case where the maximum rule length (l) is included in
the cross-validation. Evidently, either enforcing a maximum
rule length is counter-productive, or else the optimal value
of l is difficult to determine using cross-validation.

Figure 1 confirms our assertion that extent of search and
frequency bias should be optimized jointly. It shows that
large beam sizes are optimal in the training data more often
when m can be varied to compensate.

Beam Size (b)

1 2 3 5 10 20 50 100 1000

N
u
m

b
e
r

o
f
T

im
e
s
 C

h
o
s
e
n

0

50

100

150

Frequency of b Selection by Cross-Validation

CV (b)

CV (m,b)

Figure 1: The number of datasets where cross-validation
chose each beam size.

439

Method Win - Loss - Tie p-Value

CV (m, b) 511 - 416 - 73 0.0007
CV (m) 420 - 344 - 236 0.0016
CV (m, b, l) 494 - 438 - 68 0.031
CV (m, l) 436 - 390 - 174 0.13
CV (b) 419 - 403 - 178 0.21
Modified RIPPER 497 - 497 - 6 0.51
CV (b, l) 444 - 438 - 118 0.64
CV (l) 275 - 391 - 334 ∼1
J-Measure 408 - 582 - 10 ∼1
Klösgen (ω = 0.4323) 403 - 553 - 44 ∼1
Two-Way Support
Variation 402 - 587 - 11 ∼1

Klösgen (ω = 0.5) 395 - 580 - 25 ∼1
Correlation 392 - 584 - 24 ∼1
Linear Correlation 391 - 585 - 24 ∼1
Example and
Counterexample Rate 375 - 622 - 3 ∼1

Odds Ratio 372 - 580 - 48 ∼1
Odd Multiplier 371 - 582 - 47 ∼1
Added Value 370 - 626 - 4 ∼1
Conviction 369 - 585 - 46 ∼1
Lift/Interest 369 - 626 - 5 ∼1
Certainty Factor 366 - 626 - 8 ∼1
Sebag-Schoenauer 366 - 587 - 47 ∼1
Yule’s Y 365 - 630 - 5 ∼1
Information Gain 364 - 631 - 5 ∼1
Yule’s Q 361 - 634 - 5 ∼1
One-Way Support 357 - 636 - 7 ∼1
Zhang 354 - 642 - 4 ∼1
Relative Risk 352 - 589 - 59 ∼1
Rel Cost (cr = 0.342) 339 - 634 - 27 ∼1
Laplace Correction 325 - 575 - 100 ∼1
Leverage 316 - 680 - 4 ∼1
Two-Way Support 282 - 716 - 2 ∼1
Accuracy 259 - 731 - 10 ∼1
Piatetsky-Shapiro 259 - 741 - 0 ∼1
Cost (c = 0.437) 255 - 733 - 12 ∼1
Least Contradiction 254 - 735 - 11 ∼1
Gini Index 244 - 756 - 0 ∼1
Collective Strength 242 - 758 - 0 ∼1
Loevinger 237 - 761 - 2 ∼1
Cosine 217 - 783 - 0 ∼1
Jaccard 217 - 783 - 0 ∼1
F-score (β = 0.5) 217 - 783 - 0 ∼1

Table 3: Result of comparing each rule-finding method
against the baseline method, m-estimate (m = 22.466) with
beam search (b = 5). “CV (m, b, l)” means cross-validation
was performed to find the best values of m, beam size, and
max rule length. p-Values are from a paired-sample sign
test.

GPU Acceleration

Our large-scale experiment is made feasible through the use
of commodity GPUs, which provide considerable process-
ing power and high memory bandwidth. To take advantage
of the power, an algorithm must be structured to fit into a
single instruction, multiple data (SIMD) paradigm. Each
thread in a GPU performs the exact same operations, and
essentially only the thread ID is unique. The thread ID is
used to index into different parts of an array in global mem-
ory, so that each thread can be made to see different data.

For simplicity, we parallelize the algorithm by having
each thread evaluate one rule at a time. This choice works
well for medium and large problems, but does not fully uti-
lize the GPU threads for small problems. As a rough rule of
thumb, if the number of candidate rules for each rule length
(number of features times beam size) is greater than 1,000,
the GPU outperforms a pure CPU implementation.

Algorithm 1 shows a high-level overview of our approach
to beam search on a GPU. The CPU loads data, generates
candidate rules, and manages the beam. The GPU performs
the computationally intensive task of comparing each candi-
date rule against each sample in the training data.

Algorithm 1 Simple GPU Beam Search
1: procedure BEAMSEARCH
2: Load data into GPU global memory
3: beam[0] ← {} � initialize with empty rule
4: for i = 1 to l do � l = maximum rule length
5: Prepare rules by refining beam[i− 1]
6: EVALUATECANDIDATES(rules)
7: beam[i] ← BEST(rules, b) � b = beam size
8: end for
9: end procedure

10: function EVALUATECANDIDATES(rules)
11: Copy rules from host to GPU global memory
12: for rule ∈ rules do � one thread per rule
13: p = 0 � initialize covered positives
14: n = 0 � initialize covered negatives
15: for each sample s ∈ data do
16: if rule covers s then
17: if s is positive class then
18: p ← p+ 1
19: else
20: n ← n+ 1
21: end if
22: end if
23: end for
24: end for
25: Copy all p and n back to host
26: Calculate interestingness measure for each rule
27: end function

The GPU code consists of copying all candidate rules of
the same length to the GPU, evaluating the rules, and copy-
ing back the counts of n and p to the host. We benchmark
the execution time of the GPU code compared to function-
ally equivalent multi-threaded CPU code. The GPU code

440

runs 20 times faster on our largest datasets. These tests were
run on a desktop computer with an Intel Core i7-3820 CPU
and an NVIDIA GeForce GTX 980 Ti GPU.

Two GPU code optimizations further increase the speedup
to 28x. The first is caching the rules under evaluation into
shared memory, which has higher bandwidth than global
memory. The second optimization is having a single thread
per block load each sample and label into shared memory
visible to the other threads. This reduces the number of
threads reading from global memory.

Conclusion
We have shown that rule finding precision can be increased
by jointly optimizing the search parameters for each indi-
vidual dataset using grid search with cross-validation. We
found the most statistically significant improvement over the
baseline method when simultaneously choosing values for
both m in the m-estimate and the beam size in beam search.

Our results did not show a benefit for tuning the maximum
rule length. Instead, we got better results by leaving rule
length practically unrestricted.

We showed that beam search can be accelerated using a
commodity GPU, with our implementation achieving a 28x
speedup over a multi-threaded CPU implementation.

Our work adapts traditional rule learning techniques to
take advantage of dramatically increased modern processing
power. Recall that in 1990, when Cestnik proposed the m-
estimate, the fastest Intel CPUs were single core with clock
speeds of only 50 MHz.1. In contrast, the GPU we tested
has 2,816 cores, each clocked at 1,190 MHz. The näive way
of taking advantage of the extra processing power would be
to simply expand the extent of search with other parameters
unchanged, which would likely lead to more false discover-
ies and lower out-of-sample precision. Our method uses the
extra processing power to recognize and avoid settings that
lead to over-fitting, thereby improving precision.

Acknowledgment
This work is supported by Chevron USA, Inc. under the
joint project Center for Interactive Smart Oilfield Technolo-
gies (CiSoft), at the University of Southern California.

References
Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H.;
Verkamo, A. I.; et al. 1996. Fast discovery of association
rules. Advances in Knowledge Discovery and Data Mining
12(1):307–328.
Cestnik, B. 1990. Estimating probabilities: A crucial task
in machine learning. In ECAI, volume 90, 147–149.
Clark, P., and Niblett, T. Induction in noisy domains. Cite-
seer.
Clark, P., and Niblett, T. 1989. The CN2 induction algo-
rithm. Machine Learning 3(4):261–283.
Cohen, W. W. 1995. Fast effective rule induction. In Twelfth
International Conference on Machine Learning, 115–123.
Morgan Kaufmann.

1http://www.intel.com/pressroom/kits/quickrefyr.htm#1990

Dzeroski, S.; Cestnik, B.; and Petrovski, I. 1993. Using
the m-estimate in rule induction. Journal of computing and
information technology 1(1):37–46.
Fang, W.; Lu, M.; Xiao, X.; He, B.; and Luo, Q. 2009. Fre-
quent itemset mining on graphics processors. In Proceed-
ings of the fifth international workshop on data management
on new hardware, 34–42. ACM.
Fürnkranz, J., and Flach, P. A. 2005. ROC nrule learn-
ingtowards a better understanding of covering algorithms.
Machine Learning 58(1):39–77.
Fürnkranz, J.; Gamberger, D.; and Lavrač, N. 2012. Founda-
tions of Rule Learning. Springer Science & Business Media.
Fürnkranz, J. 1999. Separate-and-conquer rule learning.
Artificial Intelligence Review 13(1):3–54.
Geng, L., and Hamilton, H. J. 2006. Interestingness mea-
sures for data mining: A survey. ACM Computing Surveys
(CSUR) 38(3):9.
Han, J.; Pei, J.; and Yin, Y. 2000. Mining frequent patterns
without candidate generation. In ACM SIGMOD Record,
volume 29, 1–12. ACM.
Janssen, F., and Fürnkranz, J. 2009. A re-evaluation of the
over-searching phenomenon in inductive rule learning. In
SDM, 329–340. SIAM.
Janssen, F., and Fürnkranz, J. 2010. On the quest for optimal
rule learning heuristics. Machine Learning 78(3):343–379.
Jensen, D. D., and Cohen, P. R. 2000. Multiple comparisons
in induction algorithms. Machine Learning 38(3):309–338.
Langdon, W.; Yoo, S.; and Harman, M. 2011. Non-
recursive beam search on gpu for formal concept analysis.
RN 11(18):1.
Lenca, P.; Meyer, P.; Vaillant, B.; and Lallich, S. 2008.
On selecting interestingness measures for association rules:
User oriented description and multiple criteria decision aid.
European Journal of Operational Research 184(2):610–
626.
Možina, M.; Demšar, J.; Žabkar, J.; and Bratko, I. 2006.
Why is rule learning optimistic and how to correct it.
Springer.
Quinlan, J., and Cameron-Jones, R. 1995. Oversearch-
ing and layered search in empirical learning. breast cancer
286:2–7.
Quinlan, J. R. 1990. Learning logical definitions from rela-
tions. Machine learning 5(3):239–266.
Srinivasan, A., and Ramakrishnan, G. 2011. Parameter
screening and optimisation for ilp using designed experi-
ments. The Journal of Machine Learning Research 12:627–
662.
Tan, P.-N.; Kumar, V.; and Srivastava, J. 2002. Selecting
the right interestingness measure for association patterns. In
Proceedings of the eighth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 32–41.
ACM.

441

