
Scalable Image Retrieval with Multimodal Fusion

Yang Peng, Xiaofeng Zhou, Daisy Zhe Wang
University of Florida

Gainesville, FL
{ypeng, xiaofeng, daisyw}@cise.ufl.edu

Chunsheng Victor Fang∗
Awake Networks

Mountain View, CA
vicfcs@gmail.com

Abstract

As the number of images grows rapidly on the Internet, the
scalability of image retrieval systems becomes a significant
issue. In this paper, we propose two distributed clustering al-
gorithms to scale up the bag-of-visual-words model on mil-
lions of images and billions of visual features by leveraging
distributed systems. We also introduce a multimodal fusion
model to utilize textual data to improve the quality of image
retrieval. Our experiments on multimodal datasets demon-
strated our fusion approach can achieve high retrieval quality
compared to image-only retrieval and text-only retrieval.

Introduction

Image retrieval is the search for desired images from an im-
age dataset according to queries from users. Content-based
image retrieval (CBIR), which emerged in 1990s, is a spe-
cial case of image retrieval, where the queries are images and
the search process is based on the visual content of images
rather than textual captions or image labels. In the follow-
ing sections, the term ”image retrieval” specifically refers to
CBIR, since our focus is to solve the image retrieval problem
based on visual content on large-scale datasets.

Huge image datasets of terabytes or even petabytes have
been generated from the Internet. For example, ImageNet
(Deng et al. 2009), an open image dataset for computer sci-
ence research, contains over 20 million images. And so-
cial networks, such as Facebook and Twitter, can gener-
ate over petabytes of images everyday. Comparing all the
images in an existing dataset to the query images is not a
scalable solution. Thus indexing is a necessary step to han-
dle large-scale image datasets. In order to index images,
they should be represented as vectors, similar to the bag-
of-words model in information retrieval. With this motiva-
tion, the bag-of-visual-words model was designed in the
computer vision community (Sivic and Zisserman 2003;
Philbin et al. 2007) to represent images in ”visual words”
vectors. Existing indexing approaches in information re-
trieval, such as inverted indexing, can be directly applied on
the ”visual words” vectors.
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Since the building process of the bag-of-visual-words
model requires a lot of time on large image datasets, we de-
signed two distributed clustering algorithms to scale up the
building process of the bag-of-visual-words model by uti-
lizing the state-of-the-art distributed systems. In this paper,
we also introduce a multimodal ensemble fusion model to
achieve higher retrieval quality by leveraging both images
and text. Our experiments on multimodal datasets demon-
strated this fusion model can achieve high retrieval quality
compared to image-only and text-only retrieval.

Our main contributions focus on two aspects:

• First, we have designed and implemented two distributed
clustering algorithms on Hadoop, which can run much
faster than Mahout K-Means, to build the bag-of-visual-
words model on large image datasets with high efficiency.

• Second, we have designed a multimodal ensemble fu-
sion model to combine image-only retrieval and text-only
retrieval to achieve higher retrieval quality compared to
single-modality retrieval systems.

Overview For the rest of the paper: (i) we introduce the bag-
of-visual-words model and systems used inside our system;
(ii) we then explain how to scale up the bag-of-visual-words
model with the details of the two distributed clustering algo-
rithms; (iii) we present a multimodal fusion model to utilize
both images and text; (iv) experiments on image datasets and
multimodal datasets are conducted to demonstrate high per-
formance and retrieval quality of our approaches; (v) finally,
we discuss the research work related to large-scale image
retrieval systems and multimodal fusion.

Background

The bag-of-visual-words (BoVW) model first appeared in
early 2000s (Sivic and Zisserman 2003) and has been widely
used in the computer vision community for tasks such as
category classification (Li and Perona 2005) and image re-
trieval (Philbin et al. 2007). BoVW can represent one image
as a histogram of independent visual words in vector format.
Visual words are generated by applying clustering on local
features of images. Then we can use indexing approaches
to index the visual words vectors of images. The process to
build the bag-of-visual-words model on an image dataset is
described in Figure 1.
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Figure 1: The process of building the BoVW model

In the feature extraction step, local features, such as in-
terest points or local patches, are extracted from images. We
have chosen SIFT (Scale-Invariant Fast Transform) features,
which are invariant to scale, rotation and illumination, mak-
ing SIFT (Lowe and David 1999) an ideal candidate for the
bag-of-visual-words model.

After feature extraction, a clustering algorithm is used to
divide features into different clusters. Researchers (Sivic and
Zisserman 2003; Li and Perona 2005; Philbin et al. 2007)
have commonly used K-Means clustering for its simplic-
ity and rapid convergence, but previous work (Philbin et al.
2007) pointed out K-Means cannot scale up with a large
number of clusters. Even a distributed K-Means, such as
Mahout K-Means, fails to scale up with large numbers of
clusters. Thus we have implemented two distributed cluster-
ing algorithms on Hadoop to overcome this issue.

After the clustering step, clusters are treated as indepen-
dent visual words and finally a visual vocabulary is formed
with these visual words. Then for a given image, the local
features are quantized by assigning the closest visual words
to them, to create a histogram of visual words. For example,
the cat image is represented as (1, 3, 2, 2)T in Figure 1.

To handle millions of images and billions of features,
state-of-the-art distributed systems were employed for both
scalability and stability in our algorithms. All the time-
consuming steps, such as feature extraction, vocabulary
construction and image representation, are run on Hadoop
(Apache Hadoop ). Mahout (Apache Mahout ), an open-
source scalable machine learning library, provides a dis-
tributed K-Means implementation on top of Hadoop, which
we also utilized in our distributed hierarchical K-Means.
Solr (Apache Solr ), an information retrieval server based on
Lucene (Apache Lucene ), is used for indexing and search-
ing.

Scaling up the BoVW Model

To process a large number of images at high speed, the
BoVW model is built in parallel on top of Hadoop. After
encoding images with visual words, the size of the visual
words vectors is significantly smaller than the original im-
age dataset, usually less than 0.1%. A Solr server can then
be deployed to handle the indexing and searching quite ef-
ficiently without requiring significant resources. In our ex-
periments, the image searching process is very fast, ususally

Table 1: The time complexity of one iteration of Mahout K-
Means (d-KM), d-AKM and d-HKM

Algorithm d-KM d-AKM d-HKM
Complexity O(s× k) O(p%s× k) O(s× sqrt(k))

costing less than a few seconds.
Someone may argue the BoVW building process can be

conducted offline, so scaling up the building process is not
necessary. However, people usually need to run the BoVW
building processes many times to tune the vocabulary size,
i.e. the number of visual words. And a slow approach may
take a few days to finish on large datasets with large numbers
of visual words, while a fast approach only costs a few hours
in the same scenario, as will be shown in experiments.

Overview

Since a single-node cluster and multi-processing cannot
deal with such many images, we employed a Hadoop clus-
ter to provide scalability and stability for our system. The
feature extraction and image representation both fit the
data-parallel scheme of the Map-Reduce paradigm, hence
straight-forward to be parallelized on the Hadoop using
Map-Reduce. Lire (Mathias and Chatzichristofis 2008) is
used to extract 128-dimensional SIFT features from images.

The bottleneck of the system is the vocabulary construc-
tion step, because it involves iterative clustering algorithms
to generate visual words from large numbers of local fea-
tures. As shown in related work (Sivic and Zisserman 2003;
Li and Perona 2005; Philbin et al. 2007), K-Means was
used as the default clustering algorithm to generate visual
words for its fast convergence and good performance. How-
ever, the performance of K-Means, even a distributed Ma-
hout K-Means, deteriorates quickly as the number of clus-
ters increases. Thus we have designed and implemented
distributed approximate K-Means (d-AKM) and distributed
hierarchical K-Means (d-HKM) algorithms on Hadoop to
solve this problem. While both d-AKM and d-HKM run
much faster than Mahout K-Means, d-AKM has better run-
ning time performance than d-HKM for smaller cluster num-
bers and d-HKM works better for larger cluster numbers, as
will be shown in experiments.

Distributed Clustering Algorithms

Since the most time consuming step of each iteration in these
three algorithms is the assignment step, where the features
are assigned to their corresponding nearest clusters. Let’s
assume that each HDFS block in Hadoop can hold s fea-
tures and the Hadoop cluster has sufficient resources, then
the time complexity of one iteration of Mahout K-Means (d-
KM) on the Hadoop is O(s× k). The complexities of these
three algorithms for one iteration are shown in Table 1.

Distributed Approximate K-Means In the d-AKM, we
have applied an approximate process using a randomized
k-d tree forest to find the nearest cluster centroid for each
feature, as introduced in (Sipla-Anan and Hartley 2008;
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Figure 2: The distributed hierarchical K-Means

Muja and Lowe 2009; 2014). The d-AKM is parallelized us-
ing Map-Reduce on Hadoop. Let’s assume the d-AKM uses
at most p%k comparisons each feature when searching for
its closest cluster centroid among k clusters, then the run-
ning time complexity for one iteration of d-AKM is reduced
to O(p%s× k). The time complexity of k-d tree building is
O(k× logk) (Sipla-Anan and Hartley 2008), which is much
smaller than O(p%s×k), since s is usually much larger than
k and logk.

Distributed Hierarchical K-Means The d-HKM is
shown in Figure 2. At the top layer, a single Mahout K-
Means is applied to divide the feature dataset into kt clusters
parallelly on Hadoop. At the bottom layer, for each cluster of
the kt clusters, a single Mahout K-Means is applied to divide
this cluster into kb clusters in parallel. All the bottom-level
Mahout K-Means clustering processes run in parallel with
the total number of clusters k = kt × kb.

At the top level, the running time complexity of one iter-
ation of Mahout K-Means is O(s× kt). At the bottom level,
for each Mahout K-Means, the time complexity of one itera-
tion is O(s×kb). Assuming we have m bottom-level Mahout
K-Means clustering running at the same time, the running
time complexity of one iteration of all the bottom-level K-
Means processes is O(s×kb×kt/m) = O(s×k/m). Thus,
when kt, kb and m are close to each other, the time complex-
ity of one iteration of both the top-level and the bottom-level
clustering processes could be O(s× sqrt(k)).

In addition, the number of iterations is also positively re-
lated to the number of clusters. The d-AKM usually con-
verges with a similar number of iterations as Mahout K-
Means. For the d-HKM, both top-level and bottom-level K-
Means converges with smaller numbers of iterations com-
pared to Mahout K-Means. In conclusion, both d-HKM and
d-AKM should run much faster than Mahout K-Means. The
experimental results comparing Mahout K-Means, d-AKM
and d-HKM are explained in Section 5. The code repository
is hosted on Github (Peng and Zhou ).

Figure 3: The system architecture of the multimodal fusion
model

Multimodal Fusion

For a query multimodal document, the query image and the
title are searched using image retrieval and text retrieval sep-
arately, and then a linear rule fusion model is applied to com-
bine the image retrieval and text retrieval results. The system
architecture of the multimodal fusion model is shown in Fig-
ure 3.

Hadoop and Solr are used to provide storage, distributed
computation, indexing and searching services. The BoVW
model is built on top of Hadoop and the inverted indexing
with tf-idf weighting is provided by Solr. The image retrieval
system uses BoVW model, indexing and searching compo-
nents to represent, index and search images. The text re-
trieval system uses the indexing and searching services to in-
dex and search textual sentences. Then both image retrieval
and text retrieval provide similarity scores to the multimodal
fusion layer, where a linear rule is employed to combine the
similarity scores.

Linear Rule Fusion

From our observation of multimodal datasets, there exists
a complementary relationship between different modalities.
Images and text often contain different semantic informa-
tion. Textual sentences contain more useful information for
retrieval in some cases, while images contain more infor-
mation in other cases. In addition, text retrieval usually has
high precision but low recall, while image retrieval has high
recall but low precision. Thus we employed a rule-based en-
semble fusion approach to combine text retrieval and image
retrieval to achieve higher retrieval quality.

For a multimodal document doc with one title t and one
image i in the datasets, the similarity score of this document
returned by the linear rule fusion is:

similarityd = λ× similarityt + (1− λ)× similarityi (1)

λ =
qualityt

qualityt + qualityi
(2)

where similarityt is the similarity score of the textual sen-
tence in doc to the query keywords; similarityi is the sim-
ilarity score of the image of the doc to the query image; λ
is calculated by dividing the retrieval quality of text-only re-
trieval and image-only retrieval on training queries. Average
precision and top-5 accuracy have been used to evaluate the
quality of these retrieval systems, as explained in Section 5.
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Table 2: Dataset specifics

Dataset image # image size feature # feature size
Oxford 5,062 2.2GB 2,734,105 3.0GB
ImageNet 1,737,734 185.0GB 230,428,057 260.6GB
Google 2,209 1647MB 527,131 831MB
Twitter 200,000 7.2GB 29,308,586 32.6GB

The similarity scores of documents are used to sort the doc-
uments in descending order to provide a ranked list.

Experiments

The Oxford dataset and ImageNet dataset were used to eval-
uate the running time performance of our system, especially
the distributed clustering algorithms. Experiments on sev-
eral multimodal datasets also demonstrate multimodal fu-
sion can boost the retrieval quality compared to image-only
retrieval and text-only retrieval. The experiments were run
on the Pivotal Analytics Workbench (AWB) and Amazon
Web Services (AWS).

Datasets

Oxford The Oxford building dataset, provided by Uni-
versity of Oxford (Philbin et al. 2007), contains 5062 im-
ages about different landmark buildings in Oxford Campus
searched from Flickr.

ImageNet The two training datasets of the Ima-
geNet Large Scale Visual Recognition Challenge 2014
(ILSVRC14) (Russakovsky et al. 2015) were used to
provide a large dataset of 185GB with over 1.7 million
images and over 230 million features.

Google We have crawled multimodal documents using
Google Images with 20 object categories (airplane, cat, dog,
etc.) and 14 landmarks (Big Ben, Eiffel Tower, The Taj Ma-
hal, etc.). Each document is composed of one title and one
image. For each category/landmark, we have prepared one
query for training and one query for testing, with each query
containing a few keywords and one image. For each train-
ing/testing query, the ground truth results are provided for
retrieval quality evaluation.

Twitter Another much larger multimodal dataset has been
crawled from Twitter by searching these 20 categories and
14 landmarks using Twitter API. This multimodal twitter
dataset contains 200k pairs of textual tweets and images.
The training queries and testing queries were also prepared
for this dataset.

The specifics of the 4 datasets are shown in Table 2.

Performance of Mahout K-Means, d-AKM and
d-HKM

This section compares the performance of Mahout K-Means
(denoted as d-KM in the figures), d-AKM and d-HKM with
different cluster numbers. Note performance is equivalent to
running time in this paper. In all the experiments listed in
this paper, the maximum number of comparisons conducted

Figure 4: Running time of different algorithms on Oxford
dataset

Figure 5: Performance comparison between AKM and HKM
with larger cluster numbers. Note: k refers to a thousand in
the figure

in each iteration for d-AKM is 5% of the number of clusters,
and kt, kb and m are roughly the same for d-HKM.

The first experiment is to compare the running time
of Mahout K-Means, d-HKM and d-AKM on the Oxford
dataset with small cluster numbers on AWB, as shown in
Figure 4. The running time of d-KM increases almost lin-
early with the number of clusters, while d-AKM and d-HKM
are very flat. d-AKM performs better than d-HKM because
d-HKM has very large overhead, due to its two-layer setup
and multi-threading mechanism. When the cluster number
increases to 10k, the running time of d-KM increases to over
1000 minutes, demonstrating Mahout K-Means cannot scale
up with large cluster numbers.

A second experiment to compare d-AKM and d-HKM on
the Oxford dataset with larger cluster numbers is shown in
Figure 5. The running time of d-AKM increases almost lin-
early with the number of clusters, while the running time of
d-HKM is quite flat as the cluster number increases, since d-
HKM has better running time complexity than d-AKM for
large cluster numbers.

Performance on Large Datasets

The ImageNet dataset was used for testing the performance
of the building process of the BoVW model on large num-
bers of images. Since d-HKM has better running time com-
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(a) Group 1 with 10k visual words and 300
containers

(b) Group 2 with 2.5k visual words and 2000
containers

(c) 20GB with 300 containers

Figure 6: Experiments on Large Datasets. Note: k refers to a thousand in the figures

plexity than d-AKM and Mahout K-Means with regard to
the numbers of clusters, d-HKM was used for vocabulary
construction in all the experiments shown in this section.

Different Subsets There are two groups of subsets gen-
erated from ImageNet: the first group with 20GB, 40GB,
60GB, 80GB and 100GB; the second group with 5GB,
10GB, 20GB, 30GB and 47GB. The experiments on the first
group were run with 10,000 clusters and 300 containers us-
ing AWS, as shown in Figure 6(a). The experiments on the
second group were run with 2,500 clusters and 2,000 con-
tainers on Pivotal AWB, as shown in Figure 6(b).

With sufficient resources, the running time of the build-
ing process of BoVW grows sublinearly to the dataset size
on Hadoop, as shown in Figure 6(b). But with limited re-
sources, the running time of our approach grows almost lin-
early to the dataset size on Hadoop, as shown in Figure 6(a).
But even with only 300 containers, our approach still can
process 100GB image data with 10k visual words in less
than 9 hours.

Different Cluster Numbers The number of clusters has
significant influence on the running time of the vocabulary
construction and image representation steps. Several exper-
iments has been conducted on a 20GB dataset with differ-
ent cluster numbers from 10k to 90k using 300 containers
on AWS as shown in Figure 6(c). The performance of our
system is sublinear, very close to sqrt(k), in the number
of clusters with d-HKM for vocabulary construction. It can
process 20GB with 90k clusters in less than 4 hours, which
is quite fast with only 300 containers.

Retrieval Quality

MAP (mean average precision) was used to measure the re-
trieval quality of the multimodal retrieval system on Google
datasets and mean top-5 accuracy was used to measure the
quality of the multimodal retrieval system on the Twitter
dataset. Top-5 accuracy refers to the accuracy of the top 5
documents of the ranked list returned by any retrieval sys-
tem for one query. The experimental results are shown in
Table 3.

On both Google and Twitter datasets, multimodal fusion
achieves higher retrieval quality compared to image-only
and text-only retrieval. The results demonstrate the linear

Table 3: Quality of differnt retrieval systems on Google and
Twitter datasets. MAP is used as quality measure on the
Google dataset and mean top-5 accuracy is used on the Twit-
ter dataset

dataset text-only image-only multimodal
Google 0.76 0.12 0.80

Twitter 0.55 0.11 0.62

rule fusion can capture the complementary relationship be-
tween image retrieval and text retrieval to achieve better re-
trieval quality than single-modality retrieval systems.

As shown in the table, the image retrieval has very poor
retrieval performance due to the imperfect representation of
images and lack of sophisticated reranking algorithms. The
text retrieval has much better quality than image retrieval
because the textual keywords is very informative for text re-
trieval and the sentences usually contain the keywords. Peo-
ple can improve the quality of image retrieval by applying
state-of-the-art reranking algorithms or developing a bet-
ter representation of images, but it is beyond the scope of
this paper. Even in cases image retrieval has better retrieval
qualilty, the image retrieval and text retrieval still provide
complementary information to each other, and hence our lin-
ear rule fusion model can still improve the retrieval quality
based on image retrieval and text retrieval.

Related Work

In recent years, some of the research efforts in image re-
trieval community have been focusing on developing scal-
able algorithms for image retrieval. For example, in (Per-
ronnin et al. 2010), Perronnin et.al. applied compressed
Fisher kernel framework instead of the BoVW model to ob-
tain better retrieval quality, and the compressed Fisher ker-
nel framework was more efficient than the non-compressed
version. In (Deng, Berg, and Fei-Fei 2011), Deng et.al.
proposed a hierarchical semantic indexing to handle large-
scale similarity learning for images. The proposed learning
approach was fundamentally parallelizable and as a result
scales more easily than previous work, as stated in their pa-
per. These previous work focus on designing new algorithms
to improve retrieval quality without spending too much time
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for the retrieval process, while what we did was to scale up
an existing mature BoVW model.

A few projects have used Hadoop as a distributed plat-
form to process image search in parallel. Hadoop was used
to parallelize feature extraction, indexing and searching in
(Gu and Gao 2012) by Gu and Gao. In (Yin and Liu 2013),
Yin and Liu first built a database of image features using
SURF (Speeded Up Robust Features) algorithm and LSH
(Locality-Sensitive Hashing) and then performed the search
on Hadoop in a parallel way. In (Premchaiswadi et al. 2013),
Premchaiswadi et.al. proposed a similarity metric between
images and performed parallel similarity computation be-
tween the query image and existing images using Map-
Reduce on Hadoop. Grace et.al. (Grace, Manimegalai, and
Kumar 2014) employed Hadoop Map-Reduce to extract fea-
tures, compute similarity scores and rank the images based
on similarity scores on medical datasets. Most of the related
work listed above employed Hadoop Map-Reduce to paral-
lelize the search process of finding similar images, while in
our projects we used Hadoop as the platform to accelerate
the building process of the BoVW model.

In multimedia analysis community (Atrey et al. 2010),
people developed two kinds of multimodal fusion ap-
proaches, early fusion and late fusion, for multimedia tasks
such as event detection. Early fusion models develop unified
features for multimodal data and late fusion models fuse the
results at the decision level of each modality. In informa-
tion retrieval, Rasiwasia et.al. (Rasiwasia et al. 2010) pro-
posed several state-of-the-art approaches to achieve cross-
modal information retrieval. The first approach was corre-
lation matching, which aimed to map the different feature
spaces for images and text to the same feature space based
on correlation analysis of these two spaces. The second ap-
proach was semantic matching, which represented images
and text with the same semantic concepts using multi-class
logistic regression. Their approaches can be categorized as
early fusion, while our linear rule fusion model is one of the
late fusion models. The experiments in our project reveal
certain improvement in the retrieval quality, demonstrating
late fusion can be very useful in multimodal information re-
trieval.

Conclusion
We have introduced our scalable image retrieval system and
the multimodal fusion model. Our main contributions fo-
cus on two aspects. First, we have designed and imple-
mented two distributed clustering algorithms on Hadoop,
which can run much faster than Mahout K-Means, to scale
up the BoVW building process. Second, we have designed a
multimodal ensemble fusion model to combine image-only
retrieval and text-only retrieval to achieve higher retrieval
quality.

Our next steps would have two directions: (i) using more
sophisticated computer vision models and machine learning
techniques to improve retrieval quality, for example deep
learning; (ii) constructing a large-scale multimodal dataset
for multimodal retrieval and employing sophisticated algo-
rithms to combine the image-only and text-only retrieval re-
sults.
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