
Hybrid of Qualitative and Quantitative Knowledge
Models for Solving Physics Word Problems

Savitha Sam Abraham and Deepak Khemani
Indian Institute of Technology, Madras

Chennai 600036
savithas@cse.iitm.ac.in, khemani@iitm.ac.in

Abstract

This paper describes a system that uses a hybrid of
quantitative and qualitative knowledge to solve physics word
problems. Such an integration of knowledge from two models
is useful to come up with the correct solution for many of
these problems. We have applied this hybrid model to solve
word problems from projectile motion. These types of word
problems have not been addressed in recent times. We have
solved a set of 30 problems in this domain.

1. Introduction
Word problems are scenarios expressed in natural language
that describe real world situations. Solving a word problem
in physics requires the application of the physics concept
that explains the situation. To solve such word problems,
the students have to often read between the lines and
identify the possible inferences that can be made. A machine
which is to mimic this process should first understand the
natural language description and then solve it using the
knowledge that it has. Since the complexity of natural
language understanding is high, especially for this domain,
the proposed system works on a subset of natural language
known as Controlled Natural Language (CNL).

Knowledge related to a physical system can be
quantitative or qualitative. Quantitative knowledge is the
description of different quantities and the equations relating
them. A qualitative model describes the behaviour of a
process in terms of the direction of change of the relevant
quantities with time. The qualitative variables themselves
take one of the three possible values {-, Z, +}. That is,
a qualitative variable, for example speed, can be negative,
zero or positive. To solve any word problem, we require
a quantitative representation of the problem, that is, a
set of “quantity=value” assignments. The values of the
quantities can be directly substituted in an equation to
get the unknown quantity. For some word problems, the
quantity-value mapping is directly given. Hence it is easy
to construct the quantitative representation of the problem.
For other word problems, the quantitative representation
cannot be directly obtained from the word problem. The
system has to do some reasoning and make inferences from

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the given facts. This is where qualitative reasoning can
help. But the qualitative models generated for a problem
scenario are often ambiguous as it considers many different
behaviours possible. These ambiguities are resolved using
the quantitative information and other facts in the problem
to get the right model for the problem. The qualitative model
thus obtained is then used to make the implicit information
in the word problem explicit.

2. Background and Motivation
(Clark et al. 2007) described a physics problem solver that
solved word problems expressed in CNL. The question in
CNL stated all the details required to solve the problem and
the only job left was to substitute the values of the given
quantities in the correct equation. Thus, the knowledge that
was used to solve the problem was quantitative knowledge.
But this cannot be extended to a certain class of problems.
For example, consider the following problem and its CNL:

Problem: John kicks the ball with an angle of 53 degrees to
horizontal. Its initial velocity is 10 m/s. What is the maximum
height reached? Where is the ball at time 3 seconds?
CNL: John kicks a ball. The angle of the ball is 53 degrees.
The initial velocity of the ball is 10 m/s. What is the height of
the ball after 3 seconds?

This is the best CNL conversion available. There is no CNL
construct for ‘What is the maximum height reached?’ as
there is no notion of trajectory in the knowledge base. Also,
some implicit information about the trajectory is missing.
For instance, the vertical velocity is 0 m/s at the maximum
height. So if it is given in the question that the ball is at
maximum height, then it should also be inferred that the
ball has vertical velocity 0 m/s at that point. This inference
should be made explicit by the user while she reconstructs
the question in CNL and it is not necessary that the user
would be aware of it. The system described in (Clark et al.
2007) fails to give a solution in the absence of this inferred
fact.

The above problem is solved by adding a qualitative
reasoning module to the problem solver. Qualitative
reasoning generates the quantitative representation of the
problem after performing some reasoning. It helps increase
the efficiency of CNL used as now the user does not have to
make the implicit details in the original question explicit.

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

510

Figure 1: Flow of the entire process

The use of qualitative reasoning in solving physics word
problems was first emphasized in (De Kleer 1975). (Pisan
1998) is a work related to ours where qualitative reasoning,
plan formulation, algebraic reasoning and diagrammatic
reasoning were used together to design a Thermodynamic
Problem Solver (TPS). This paper presents a problem
solving system that uses a hybrid model where there is a
closer integration between the qualitative and quantitative
information compared to the work in (Pisan 1998).
Envisioning is a process of generating all possible qualitative
behaviours of a physical system (Forbus 1997). There
are two types of envisioning algorithms - attainable and
total envisionment. Attainable envisioner produce all states
reachable from a set of initial states, and total envisioners
produce a complete envisionment of the system considering
all initial states (Forbus 1997). (Pisan and Bachmann 1998)
described a third type of envisioning called problem guided
envisionment that performs attainable envisionment but
stops when a state is found that either satisfies the final
conditions given in the problem statement or contradicts
with the problem statement. It always stops at the first state
that satisfies the final conditions which may not be the actual
final state. Hence, here we perform attainable envisionment
and stop either when a state is found to be irrelevant to
the given problem scenario or when no more transitions
are possible from it. Ambiguities in attainable envisionment
are then eliminated using domain knowledge and numerical
facts in the question to get the actual behaviour/model for
the problem. The partial state descriptions in the problem
are then mapped to qualitative states in the model to get the
hybrid representation of the problem which is then used for
further processing.

3. Proposed Approach
The proposed approach for solving physics word problems
uses a hybrid model of quantitative and qualitative
knowledge to understand the question in CNL and to provide
a mechanism for performing commonsense reasoning while
solving the problem. The flow of the entire process is shown
in Figure 1.

The user first restates the question in CNL. The CNL
defined has the following format: “The quantity is number
unit at state. What is the quantity at state?” where, quantity
is some quantity in the physics concept like velocity,
acceleration etc, number unit is the value of the quantity with

the unit specified and state is the state at which quantity has
the corresponding value. For example, a question in natural
language and its CNL is given below. The states mentioned
in the problem below are start state and minimum velocity
state.

Problem 1: A ball is launched at ground level with an initial
velocity of 28 m/s at an angle of 30 degrees to the horizontal.
At what time does the minimum speed occur?
Problem 1 in CNL: The angle of projection is 30 degrees at
start. The velocity is 28 m/s at start. The vertical distance is
0 m at start. What is the time at minimum velocity?

The hybrid representation of the problem is generated
next by first performing attainable envisionment to generate
the qualitative model for the given problem scenario, and
then, representing the numerical facts given in the question
in the model obtained. These two steps are described in
detail in sections 3.1 and 3.2 respectively.

3.1. Performing Attainable Envisionment
Attainable envisionment is performed using the standard
algorithm but the creation of invalid states during attainable
envisionment is avoided using the knowledge in the domain
theory and numerical facts in the question. Domain theory
has knowledge about how the quantities change (for
example, relations like v = dS/dt, a = dv/dt where a, v, S
and t are acceleration, velocity, displacement and time, are
encoded as rules). These rules are used to generate successor
states from a state. Domain theory also has knowledge
about relations between quantities. One such relation is
the Correspondence relation (Bredeweg et al. 2007), that
describes the relation between quantities of the form: ‘If
quantity Q1 has value V1, then quantity Q2 has value V2’.
Any state that violates these relations are invalid states. The
information in a state of a qualitative model is the set of all
quantities and the qualitative value they hold at that state.
The initial state is created such that it is consistent with the
initial conditions given in the problem1. The algorithm for
attainable envisionment is given in Algorithm 1.

1For problem 1, initially t=Z, hd covered is zero, vd=Z (object
is on ground), va=acceleration due to gravity, angle=+, v=+ (from
their values 30, 28) and values of remaining quantities are inferred
from these given quantities using correspondence relations in
domain theory.

511

Figure 2: Due to negative va, vv decreases to Z and then
negative. vd increases as long as vv=+ and then decreases.
t, hd are increasing and hv is found to be constant.

Algorithm 1: Attainable Envisionment
Input: Initial State, Domain Theory

1 State current= initial
2 Next=possible successor states from current state (invalid

states and states that are not relevant to the current problem
scenario are eliminated)

3 for each n in Next do
4 Generate possible successors of n. If no successors can be

generated mark it as final state. Else go to step 2.
5 end
6 Return graph representing attainable envisionment

The attainable envisionment for Problem 1 is shown in
Figure 2, where, t stands for time, v for velocity, vd for
vertical distance, hd for horizontal distance, vv for vertical
velocity, hv for horizontal velocity and va for vertical
acceleration.

Some quantities may not change continuously. For
example, the horizontal component of velocity is constant
during the flight of a projectile. But if the object hits a
wall on the path, the direction of horizontal velocity gets
inverted. Such changes occur as a result of some event
and are considered only when there is a possibility of its
occurrence, else such changes are irrelevant to the given
problem scenario. If there is a wall mentioned in the
question, then there is also a possibility for the event hitting
the wall to occur and hence the system considers the changes
of quantities due to this event at the time of producing
successor states. This is represented as :

Quantity : Horizontal Velocity
Condition: Exists(Wall)
Change : + to -

There is a possibility of horizontal velocity switching from
+ to - if the condition Exists(Wall) is satisfied. If there is a
wall mentioned in the question, then there are two possible
ways in which the quantity horizontal velocity can change.
Either it can remain the same (case where it is not hitting the
wall) or it can change its direction (case where it is hitting
the wall). For each case, a state will be generated.

Once the possible behaviours are generated, the next step

Figure 3: The wall can be anywhere in the path of the ball
or could be beyond the range of ball. The ball could hit the
wall or not hit the wall at all. The path in dotted lines shows
the behaviour when the ball does not hit the wall.

is to identify the actual behaviour for the problem. For
Problem 1, there is only one possible behaviour (Figure 2) as
there are no ambiguities. This need not be the case always.
There could be other cases of ambiguity as well, as shown
below:

Problem 2 in CNL: The angle of projection is 45 degrees at
start. The velocity is 40 m/s at start. The vertical distance is
0 m at start. There is a wall. The horizontal distance is 80
m at wall. The height of wall is 50 m. What is the horizontal
distance at final point?

The attainable envisionment for Problem 2 is shown in
Figure 3. At each state there is a possibility of the next
state being the state where the ball hits the wall. The final
point on ground depends on where it hits the wall. These
ambiguities are resolved after some numerical evaluations
using the numerical facts in the question (Section 3.5).

3.2. Inserting Quantitative Information into
Qualitative Model
Every numerical value and state mentioned in the problem
is identified in the model that is generated after performing
attainable envisionment. Consider the problem below:

Problem 3: The angle of projection is 30 degrees at start. The
velocity is 28 m/s at start. The vertical distance is 0 m at start.
What is the vertical velocity at time 2 seconds?

The above problem specifies 2 states: start state and the state
where time = 2 seconds. While ‘start’ state corresponds
to the initial state in the model generated, identifying the
state where ‘time = 2 seconds’ requires some more
computation. The state with time = 2 seconds comes
somewhere between the start and final states. Similarly in
problem 1, the state ‘minimum velocity’ also has to be
located in the qualitative model. System identifies states like
‘minimum/maximum quantity’ in the model by traversing
the states and analysing the way in which the quantity
changes as it goes from one state to the next. To identify
states with a ‘quantity = value’ assignment (as in
time = 2 seconds), the algorithm first calculates the value
of the corresponding quantity at every instantaneous state

512

starting from the initial state. Depending on how the quantity
varies between these instantaneous states, the new state is
positioned between them. For example, to locate ‘time =
2 seconds’ in the model shown in Figure 2, system first
calculates time at Initial state (t = 0 is already present),
Instant state (after calculation t = 1.4) and Final state (after
calculation t = 2.8). Since value 2 is between 1.4 and
2.8 and, time is increasing from one state to the next, the
state with time = 2 seconds should come between Instant
and Final state. A new instantaneous state is created in
between which is an instance of the already present interval
state (hence new state inherits the qualitative values for the
remaining quantities from this interval state) to represent
‘time = 2 seconds’ point. The value of a quantity at a
state is found using find(quantity, state) method which is
explained in detail in Section 3.4.

Figure 4: Hybrid representation for Problem 1

For Problem 1, after identifying the minimum velocity
point in the model, all the details in the question pertaining
to minimum velocity is added to the corresponding state in
model. Thus every fact given in the question is identified in
the qualitative model. The hybrid representation for Problem
1 is shown in Figure 4.

3.3. Generate Quantitative Representation of the
Problem
Given hybrid representation, the system first checks whether
it can add more details to a state using the details currently
in the state. This is possible if the concept has equations
relating quantities pertaining to a single state. For example,
the equations for projectile motion are represented in
domain theory as:

Physics Concept: Projectile Motion
Equations-Single State: vv = v ∗ sin(aop), hv =
v ∗ cos(aop)
Applied to: State(Si) [Any instantaneous state Si]
Variables:
v: velocity(Si)
aop: angle of projection(Si)
vv: vertical velocity(Si)
hv: horizontal velocity(Si)

For Problem 1, the system determines the values for vertical
velocity and horizontal velocity at the initial state using
above equations.

Si = Initial
v = velocity(Initial) = 28
aop = angle of projection(Initial) = 30
vv = vertical velocity(Initial) = 28*sin(30) = 14
hv = horizontal velocity(Initial) = 28*cos(30) = 24.2

These values are also added to the initial state of the hybrid
model of the problem in Figure 4. There are also equations
relating quantities from different states. It is important to
understand the meaning of an equation before assigning
values to its variables. For example, in projectile motion, we
have the equation v = u+ at, where v and u are the values
of vertical velocity from two states and t is the difference
between the time values at these two states. This equation
describes motion in a straight line segment of the trajectory
of the projectile. These equations are represented as follows:

Physics Concept: Projectile Motion
Equations: S = ut+ 1

2at
2, v = u+at , v2 = u2+2aS

Meaning: Motion(Si, Sj) and Adjacent(Si, Sj)
[captures that the equation is describing motion
from instantaneous states Si to Sj , and that they
are adjacent instantaneous states with no other
instantaneous states between them (though there can
be interval states).This assures the segment of the
trajectory considered is a straight line]
Variables:
v : vertical velocity(Sj) [captures that v is final
velocity as motion is towards Sj]
u : vertical velocity(Si) [captures that v is initial
velocity as motion is from Si]
t : time(Sj) - time(Si) [captures that t is the time taken
for the motion from Si to Sj]
a : vertical acceleration(Si) or vertical
acceleration(Sj) [captures that acceleration is
same at Si and Sj]
S: vertical distance(Sj)-vertical distance(Si) [distance
from Si to Sj]

In order to use the above equations in projectile motion,
the system has to first consider motion between two
instantaneous adjacent states Si, Sj and assign values to the
variables v, u, a, t and S accordingly. Out of the two states
Si and Sj , one will be the state in hybrid representation
having the unknown quantity and the other will be the
instantaneous state adjacent to it. If there is more than one
adjacent state available, then the system chooses the one
mentioned in the question given. If both the adjacent states
are mentioned in the question, then the system chooses
one randomly. For example, in Problem 1, the state with
unknown quantity is ‘Minimum Velocity’ and there are two
states adjacent to it - Initial and Final. Among Initial and
Final states, since Initial state is mentioned in the question,
system takes it as the other state. The variables are assigned
values to get the quantitative representation for Problem 1:

Si: Initial
Sj : Min. Velocity
v: vertical velocity(Min. Velocity) = 0 [it is not stated in the

513

problem but the system inferred it]
u: vertical velocity(Initial) = 14
a: vertical acceleration(Min. Velocity) = -10
t: time(Min Velocity)-time(Initial) → Time(Min Velocity)-0
S: vertical distance(Min. Velocity)-vertical distance(Initial)
Unknown: t [t at Min. Velocity should be found, hence t is
unknown]

3.4. Solve for the Unknown Quantity
Solving for the unknown requires finding the appropriate
equation. The hybrid representation should have only one
unknown at any time. In case of Problem 1, there is an
equation that can directly solve for the unknown which
is ‘v = u + a ∗ t’ as v, u, a and time at ‘Initial’ are
known to the system and the only unknown is the time at
‘Minimum Velocity’ state [Substituting, 0 = 14 + −10 ∗
(t(Min.V elocity) − 0)]. In some cases, in order to find
an unknown, the system has to find other quantities. The
system finds every other quantity possible with the available
information and then tries to solve for the unknown with
the newly added numerical values. This is not the ideal way
of solving, but since the domain chosen had less number of
variables and states, we used this approach. We intend to use
a better approach in future that will find only the quantities
actually required to solve the unknown. The algorithm is:

Algorithm 2: find(Quantity Q, State S)
1 Get ‘quantity-value’ mappings as described in section 3.3, if it

has not been generated yet.
2 If any equation can solve for Q directly, update the hybrid

model by setting value of Q at S to the value obtained after
solving and return the value.

3 Else, try to find value of every other quantity Q1, at every
instantaneous state S1, directly with the available
information in hybrid model by calling find Direct(Q1, S1)
[find Direct is just Steps 1 and 2 of find()]. This step is
repeated until no more new values can be added.

4 If new values are not added after Step 3, it returns that the
value of Q cannot be found as the system needs more
information. Else, try to find the value of Q with the updated
hybrid model using find Direct(Q, S).

3.5. Resolving Ambiguities in Attainable
Envisionment
This section describes how quantitative information in the
problem can be used to select the actual behaviour for the
problem from the many possible behaviors in attainable
envisionment. Consider the attainable envisionment in
Figure 3. To solve this problem the system has to first
choose the actual behavior for the problem from among
the multiple behaviours in the attainable envisionment
generated. The system requires more knowledge to select
the right behaviour. This knowledge is provided as part of
the domain theory as procedures. The procedure that helps
in resolving ‘ball hitting a wall’ ambiguity is encoded as
follows:

1. Get the qualitative model for the situation where there is
no wall i.e. the behaviour of the ball when there is no wall

Figure 5: Hybrid representation for Problem 2

(dotted line in Figure 3). Let’s call this model M. This is
encoded as M = getModel(Wall(False)). It gets the
model for the current problem based on the condition given
in its arguments (i.e. Wall = false).

2. Locate the horizontal position of wall with respect to the
initial state - The wall is at a horizontal distance of 80 m
from start point. If the wall is beyond the range of the
projectile, it wouldn’t hit the wall. Hence the state with
hd = 80 is identified (let it be S). The above is encoded
as S = findPosition(hd = 80). The method calls
find(hd, S) for every instantaneous state S to locate the
state with hd = 80. If (hd = 80) is beyond the final state,
the ambiguity has been resolved and the behaviour for the
problem chosen is M.

3. Find the height reached by the ball at S - This is done only
in cases where the wall is within the range of the projectile.
If height reached at S is lesser than the wall height (here
50 m) , it will hit the wall, else, it will pass over the wall.
This is done by:

(a) V = find(vd, S)
(b) if(V > WallHeight) hit = false else hit = true and

hits at State = S

Once the system knows whether the object hits the wall
or not, it selects the corresponding behaviour from the
attainable envisionment. Figure 5 shows that the ball hits
the wall at maximum height as the height of wall (50 m)
is greater than the height reached by the ball (40 m) at
horizontal distance 80 m. There can also be cases where
ambiguity cannot be resolved until the problem is solved.

Case 1-More than one behaviour, but only one returns
a solution: Consider the following problem:

John kicks a ball at an angle of 53 degrees with a velocity of
10 m/s. What is the maximum height reached?

The height from which the ball is kicked is not mentioned
in the question. Hence the algorithm returns two states as
possible initial states, one where the initial vertical distance
is ‘Z’ (i.e., ball is thrown from ground-Behaviour 1) and the
other where initial vertical distance is ‘+’ (i.e., ball is thrown

514

from a height-Behaviour 2). If initial vertical distance is
unknown, it is not possible to solve the problem. When a
student solves this problem, she assumes that the ball is
thrown from ground and proceeds. A similar approach is
used by the system here. It tries to solve the problem with
both the hybrid representations but finds a solution only
with one of them (Behaviour 1) and hence chooses that
representation.

Case 2-More than one behaviour, and each returns
different solutions: For example, consider the problem
similar to the problem in Case 1 but with the additional
information that total time taken is 20 seconds. This again
generates two hybrid representations: one where the initial
vertical distance is Zero (H1) and the other where initial
vertical distance is ‘+’ (H2). Both the representations can
solve the problem, but the maximum height found using
H1 is not found to be consistent with the value 20 seconds
given in the question. Hence H2 is chosen, i.e. the correct
assumption to be made here is that the object is thrown from
a height. Consistency is tested by calculating the value of
the given quantities one at a time using the value obtained
for unknown quantity.

Case 3-More than one behaviour, and each returns
same solution: If all the hybrid representations returns
the same solution, the solution does not depend on these
ambiguities and any one of the representations are chosen
randomly.

If the ambiguities cannot be resolved, then the system
returns that the problem given is under specified for it to
solve. This is a limitation of the system.

4. Discussion
The proposed system is implemented in Java. It is used
to solve a set of around 30 problems in projectile motion
taken from different sources on the Internet. In general
comparing with (Clark et al. 2007), it is seen that the
use of hybrid representation allowed solving problems that
required some reasoning to infer the implicit details in
the question, as illustrated in the examples above. Unlike
(Pisan and Bachmann 1998), our system identifies certain
partial state specifications in the problem (as in the case of
‘time = 2 seconds’ in the problem below) accurately in the
qualitative model.

The angle of projection is 53 degrees at start. The velocity is
10 m/s at start. The vertical distance is 0 m at start. What is
the velocity at time=2 seconds?

The state with time = 2 seconds is identified first in the
qualitative model. (Pisan 1998) can identify the initial state
correctly but it fails to identify the state with time = 2
seconds. It can be mapped to multiple states in the model
(any state with time = +) and it chooses the first state with
time = +.

There are also many issues to be resolved. For example,
consider the problem below:

A ball is kicked at an angle of 45 degrees to horizontal. The
ball should land in the back of a truck which has a trunk of
length 2.5 m. If the initial horizontal distance from the back of
the truck to the ball is 5 m, what is the max and min velocity

so that the ball lands in the truck? Initial height of the ball is
equal to the height of the ball at the instant it begins to enter
the truck.

In many cases problems describe situations that cannot be
represented in CNL. For example, the above problem refers
to new entities (like truck trunk length) and there is no
quantity in the domain theory to which the value 2.5 m
can be assigned. Also, the system needs to know how to
solve this problem - the conditions for min and max initial
velocity. Such knowledge becomes very problem specific.
Also, the system has to generate two representations - one
to solve for minimum initial velocity and the other for
maximum initial velocity.

5. Conclusion and Future Work
A problem solver was designed that used an intermediate
hybrid representation to solve problems that were stated in
CNL. This paper illustrated the advantages of having such
a representation by solving a set of problems in projectile
motion. In future, we would like to extend it to other
domains and build a system that will process the original
question and give the solution along with an explanation.
There are many challenges in developing such a system.
Knowledge acquisition is one of them. The domain theory
has two types of knowledge: there are rules that help in
envisioning and then there are procedures that describe
how a problem should be solved (they help in resolving
ambiguities in attainable envisionment). Currently, our input
is in CNL, but it would be more efficient if the system can
convert the original question into CNL or at least design
a CNL that is a bit more expressive and can represent
questions from other domains as well. When we extend the
system to other domains, there should also be a mechanism
by which the system can identify the concept to be applied
to solve a given problem. We would also like to work on
problems that requires application of more than one physical
concept to solve a problem.

References
Bredeweg, B.; Bouwer, A.; Jellema, J.; Bertels, D.; Linnebank,
F. F.; and Liem, J. 2007. Garp3: A new workbench for
qualitative reasoning and modelling. In Proceedings of the
4th international conference on Knowledge capture, 183–184.
ACM.
Clark, P.; Chaw, S.-Y.; Barker, K.; Chaudhri, V.; Harrison,
P.; Fan, J.; John, B.; Porter, B.; Spaulding, A.; Thompson,
J.; et al. 2007. Capturing and answering questions posed
to a knowledge-based system. In Proceedings of the 4th

international conference on Knowledge capture, 63–70. ACM.
De Kleer, J. 1975. Qualitative and quantitative knowledge in
classical mechanics. MIT, Artificial Intelligence Laboratory.
Forbus, K. D. 1997. Qualitative reasoning.
Pisan, Y., and Bachmann, A. 1998. Using qualitative reasoning
to solve dynamic problems. In Proceedings of the 12th

International Workshop on Qualitative Reasoning, 167–173.
Pisan, Y. 1998. An integrated architecture for engineering
problem solving. Technical report, DTIC Document.

515

