
On Similarities Between Workflow Verification and Grammar Checking

Roman Barták and Vladislav Kuboň
Charles University in Prague, Faculty of Mathematics and Physics,

Malostranské nám. 25, 118 00 Prague 1, Czech Republic
bartak@ktiml.mff.cuni.cz, vk@ufal.mff.cuni.cz

Abstract
The paper investigates the similarities in the applica-
tion of attribute grammars to two seemingly different
research areas, namely the area of formal description of
workflows and the area of checking the syntactic cor-
rectness of natural languages. It uses existing mod-
els and formalisms and tries to find a common ground
which would enable to exploit mutually the experience
gained in both individual fields. It shows how a slight
adaptation of a grammar formalism used for grammar
checking of languages with a high degree of word-order
freedom may lead to a tool useful for a workflow verifi-
cation.

Introduction
Although the description of workflows and the syntactic
analysis of natural languages seem to constitute very dis-
tant research topics, the closer look at the nature of the tasks
being solved reveals interesting similarities. If we look at
them from a more abstract point of view, we may notice that
they both deal with large units which may be decomposed
into smaller units (the workflows into individual tasks and
activities, the natural language sentences into clauses and
individual words) and which have certain inner structure.

Workflows are used to formally describe processes of var-
ious types such as business and manufacturing processes.
There exist many formal models to describe workflows
(van der Aalst and t. Hofstede 2005) that include decision
points and conditions for process splitting as well as loops
to describe repetition of activities. Hierarchical structure
of workflows is in particular interesting for real-life work-
flows (Bae et al. 2004) as many workflows are obtained by
decompositions of tasks. Barták and Čepek (Barták and
Čepek 2008) proposed a hierarchical workflow model called
Nested Temporal Networks with Alternatives that was later
extended with extra constraints to model a wider range of
workflows (Barták et al. 2011). Later on, it has been shown
that nested workflows with extra constraints can be repre-
sented by attribute grammars (Barták 2016), which consti-
tute grounds to exploiting grammar-related techniques in
workflow processing. For example, the problem of verify-
ing whether a given word belongs to the language of a given

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

grammar seems intrinsically similar to verify whether a spe-
cific process complies with the description of a workflow
using an attribute grammar.

Natural language sentences seem to be even more compli-
cated, they are less formal than workflows, more ambiguous
and vague. On top of that, their correctness, as it is per-
ceived by humans, does not depend entirely on syntax, it is
very often also influenced by semantics, or, even worse, by
a real-world knowledge. This broad perception of correct-
ness must nevertheless be abandoned in applications such as
automatic grammar checkers which may rely solely on rel-
atively well defined syntactic rules. One attempt to build a
pilot implementation of a grammar checker for a language
with relatively high degree of word-order freedom has been
described in (Holan, Kuboň, and Plátek 1997).

This paper investigates one issue which might bring to-
gether nested workflows and attribute grammars handling
grammar checking of natural languages. We are going to
describe how a concrete type of an attribute grammar might
be used for verification of concrete workflows and what kind
of modifications this grammar requires in order to be able to
fulfill this task.

Nested Workflows
In this work we use nested workflows from the FlowOpt sys-
tem (Barták et al. 2011). The nested workflows were for-
mally introduced in (Barták and Rovenský 2014) and for
completeness, we will recapitulate the formal definitions
here.

The nested workflow is obtained from a root task by ap-
plying decomposition operations that split the task into sub-
tasks until primitive tasks, corresponding to activities, are
obtained. Three decomposition operations are supported,
namely parallel, serial, and alternative decompositions. Fig-
ure 1 gives an example of a nested workflow that shows
how the tasks are decomposed. The root task Chair is de-
composed serially to two tasks, where the second task is a
primitive task filled by activity Assembly. The first task
Create Parts decomposes further to three parallel tasks
Legs, Seat, and Back Support. Back Support is the only
example here of alternative decomposition to two primitive
tasks with Buy and Welding activities (Welding is treated
as an alternative to Buy). Hence the workflow describes two
alternative processes. Naturally, the nested workflow can be

Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

585

Figure 1: Example of a nested workflow as it is visualized
in the FlowOpt Workflow Editor (from top to down there are
parallel, serial, and alternative decompositions).

described as a tree of tasks (Figure 1 bottom right).
Formally, the nested workflow is a set Tasks of tasks that

is a union of three disjoint sets: Parallel, Alternative, and
Primitive. For each task T (with the exception of the root
task), function parent(T) denotes the parent task in the hi-
erarchical structure. Similarly for each task T we can de-
fine the set subtasks(T) of its child nodes (subtasks(T) =
{C ∈ Tasks|parent(C) = T}). The tasks from sets Paral-
lel and Alternative are called compound tasks and they must
decompose to some subtasks:

∀T ∈ (Parallel ∪Alternative) : subtasks(T) �= ∅, (1)

while the primitive tasks do not decompose:

∀T ∈ Primitive : subtasks(T) = ∅. (2)

The workflow defines one or more processes in the following
way. Process selected from the workflow is defined as a
subset P ⊆ Tasks in the workflow satisfying the following
constraints:

∀T ∈ P, T �= root : parent(T) ∈ P (3)
∀T ∈ P ∩ Parallel : subtasks(T) ⊆ P (4)
∀T ∈ P ∩Alternative : |subtasks(T) ∩ P | = 1 (5)

Formula (3) says that for each task in the process (except the
root) its parent task is also in the process. Formula (4) says
that all subtasks of a parallel task in the process must also
be in the process. Finally, formula (5) says that exactly one
subtask is in the process for each alternative task in the pro-
cess.

In addition to the hierarchical structure of the nested
workflow, the nested structure also defines certain implicit
temporal (ordering) constraints (the arcs in Figure 1). These
temporal relations must hold for all tasks in a single pro-
cess. Assume that Si is the start time and Ei is the end time
of task Ti. The primitive tasks Ti are filled with activities
and each activity has certain duration Di. Then for tasks in

the process P the following relations hold:

∀Ti ∈ P ∩ Primitive : Si +Di = Ei (6)
∀Ti ∈ P ∩ (Parallel ∪Alternative) :

Si = min{Sj |Tj ∈ P ∩ subtasks(Ti)}
Ei = max{Ej |Tj ∈ P ∩ subtasks(Ti)}. (7)

Notice that the duration of a compound task is defined by
the time allocation of its subtasks while the duration of a
primitive task is defined by the activity.

A feasible process is a process where the time variables
Si and Ei of tasks in the process can be instantiated in such
a way that they satisfy the above temporal constraints. It is
easy to realize that if there are no additional constraints then
any process is feasible. The process defines a partial order
of tasks so their start and end times can be set in the left-to-
right order while satisfying the constraints (6) and (7).

The nested structure may not be flexible enough to de-
scribe naturally some additional relations in real-life pro-
cesses, for example when an alternative for one task influ-
ences the selection of alternatives in other tasks. The follow-
ing constraints can be added to the nested structure to sim-
plify description of these additional relations between any
two tasks Ti and Tj (Barták et al. 2011):

precedence (i → j) : Ti, Tj ∈ P ⇒ Ei ≤ Sj (8)
start-start sync. (i ss j) : Ti, Tj ∈ P ⇒ Si = Sj (9)
start-end sync. (i se j) : Ti, Tj ∈ P ⇒ Si = Ej (10)
end-start sync. (i es j) : Ti, Tj ∈ P ⇒ Ei = Sj (11)
end-end sync. (i ee j) : Ti, Tj ∈ P ⇒ Ei = Ej (12)
mutual excl. (i mutex j) : Ti /∈ P ∨ Tj /∈ P (13)
equivalence (i ⇔ j) : Ti ∈ P ⇔ Tj ∈ P (14)
implication (i ⇒ j) : Ti ∈ P ⇒ Tj ∈ P (15)

Note that if extra constraints are used then the existence of
a feasible process is no longer guaranteed. For example an
equivalence constraint between the tasks Buy and Welding
in Figure 1 causes no feasible process to exist.

In summary, we can model the nested work-
flow with extra constraints as a tuple W =
(Parallel, Alternative, Primitive, root, parent,D, C),
where the parent relation defines a tree rooted at the
node root with leaves Primitive and internal nodes
Parallel ∪ Alternative. The set C defines the extra
constraints (8) – (15) and D maps the tasks in Primitive to
non-negative integers defining durations of primitive tasks.
The process is a subtree of this tree satisfying constraints
(3) – (5) and (13) – (15), where each node Ti has assigned
two integers Si and Ei satisfying the constraints (6) – (12).

Robust Free Order Dependency Grammar
The paper (Barták 2016) answers a question whether it
would be possible to unify various hierarchical structures of
workflows using a single concept. The answer is relatively
simple – attribute grammars (Knuth 1968) are suggested as
a unifying concept for the description of hierarchical work-
flows. Figure 2 shows a complete attribute grammar mod-
eling the nested workflow from Figure 1. Each grammar

586

Chair(Schair, Echair) →
Parts(Sparts, Eparts).
Assembly(Sassembly, Eassembly)

[Schair = min{Sparts, Sassembly},
Echair = max{Eparts, Eassembly},
Eparts ≤ Sassembly,
Sassembly +Dassembly = Eassembly]

Parts(Sparts, Eparts) →
Legs(Slegs, Elegs).Seat(Sseat, Eseat).
Back(Sback, Eback)

[Sparts = min{Slegs, Sseat, Sback},
Eparts = max{Elegs, Eseat, Eback}]

Legs(Slegs, Elegs) →
Saw1(S1, E1), Saw2(S2, E2), Saw3(S3, E3),
Saw4(S4, E4)

[Slegs = min{S1, S2, S3, S4},
Elegs = max{E1, E2, E3, E4},
S1 +D1 = E1, S2 +D2 = E2, S3 +D3 = E3,
S4 +D4 = E4]

Seat(Sseat, Eseat) →
Cutting(Scut, Ecut).Polishing(Spolish, Epolish)
[Sseat = min{Scut, Spolish},
Eseat = max{Ecut, Epolish},
Ecut ≤ Spolish, Scut +Dcut = Ecut,
Spolish +Dpolish = Epolish]

Back(Sback, Eback) →
Buy(Sbuy, Ebuy)
[Sback = Sbuy, Eback = Ebuy, Sbuy +Dbuy = Ebuy]

Back(Sback, Eback) →
Weld(Sweld, Eweld)
[Sback = Sweld, Eback = Eweld,
Sweld +Dweld = Eweld]

Figure 2: An attribute grammar modeling the nested work-
flow from Figure 1.

symbol has two attributes S and E representing the start and
end times of the corresponding task. Symbol D is a constant
representing duration of primitive activities. The constraints
attached to grammar rules are describing particular relations
as specified in (6) – (7).

This theoretical result shows that the transformation of a
workflow into an attribute grammar is feasible. Let us now
make one step further and to search for a concrete interpreter
of an attribute grammar which would serve not only as a
theoretical framework for the description of workflows, but
it will also make it possible to interpret and verify concrete
grammars describing concrete workflows.

In the literature it is often mentioned that attribute gram-
mars are typically used in compiler construction. Another
application area for attribute grammars is very often ne-
glected – the attribute grammars are also suitable for natural
language parsing, their ability to hold a wide variety of at-

tributes and their values in one grammar symbol enables to
hand-craft grammars describing complex phenomena in nat-
ural languages. The endeavor to verify workflows by means
of attribute grammars actually seems to have certain com-
mon features with the process of checking the grammatical
correctness of natural language sentences.

In this paper we would like to discover whether the gram-
mar checking of natural languages (and the type of attribute
grammar which has been developed for this task) can also be
used for the verification of workflows (and which changes
or modifications are required). This would not, of course,
completely solve the problem of verification of nested work-
flows, because there are in fact two types of verification.
One is the decision whether a given process consisting of
primitive tasks fulfills the criteria and constraints of the
model of nested workflows or if such a process can be gen-
erated by a particular attribute grammar. This is the type of
verification where we believe that it actually resembles the
process of grammar checking of natural language sentences.

The second type of verification, which we are not going
to address in this paper, is the verification of the model it-
self. This represents the verification whether a given at-
tribute grammar actually generates any process and/or find-
ing the nonterminal(s) which cannot be used in generation of
the workflow. This research direction is also very important
and interesting, but it goes beyond the scope of this paper.

One implementation of a certain type of an attribute gram-
mar serving primarily for grammar checking of a natural lan-
guage with a high degree of word order freedom has been
completed some time ago for Czech (Holan, Kuboň, and
Plátek 1997). In the remaining part of this paper we would
like to show that this particular implementation might serve
(with minor extensions) also for workflow description.

The implementation of the Robust Free Order Depen-
dency Grammar (RFODG) has been thoroughly described
in (Holan 2001). Let us now mention those properties of its
implementation which are relevant for our purpose.

Concepts Used in the RFODG
The input data for RFODG had the form of a sequence of
data items representing individual word forms and punctu-
ation marks from the input sentence. Each data item had a
general form of a list of attributes and their values. Some
attributes were obligatory (the attributes describing the orig-
inal word form, its lemma, Part–of–speech information and
syntactic properties), the rest of attributes had been optional.
One specific attribute is allowed for complex values in a
form of a list of attribute–value pairs. This attribute repre-
sented a valency of a word, i.e. the list of obligatory require-
ments on properties of dependent words. The requirements
described in this list had to be fully satisfied before the anal-
ysis could go on. The list has been introduced in order to
make it possible to verify whether all words required by a
particular governing word (a verb in most cases) are actually
present in the input sentence. For example, the verb to give
requires at least three (obligatory) dependent words repre-
senting a subject (who), object (what) and indirect object (to
whom), thus its list contained three sets of requirements, one
for each dependent word.

587

The grammar rules of RFODG have a common general
form AB ⇒ X (RFODG had been used as an analytical
grammar) where the letters A and B represent two data items
from the input sentence and A stands (immediately) to the
left from B (i.e., the order of those two items in the input
sentence is relevant). In case that some rule is successfully
applied to items A and B, a new item X is created (X inher-
its all attributes and their values from a dominant item – the
dominance of either A or B is explicitly expressed by assign-
ments X := B or X := A. Each grammar rule is interpreted
as a sequence of tests or assignments, it actually expresses
a procedural description of the process of checking the ap-
plicability of a given rule to a particular pair of items A and
B. For handling the list of valency requirements, a special
temporary item P is used.

The grammar uses also the following concepts relevant
for our purpose:

• Hard (A.x = B.y) and soft (A.x ? B.y ERR) constraints.
The concept of soft constraints allows to capture gram-
matical errors. If a soft constraint is violated, the process-
ing continues, but the rule inserts an error flag ERR into
the syntactic tree of the input sentence. If a hard con-
straint is violated, the processing of the rule immediately
stops for the given pair of A and B.

• Branching in a form of a simple IF THEN ELSE ENDIF
command.

• The choice of an element from the list (P in A.x). The
temporary item P makes it possible to test all members of
a list of valency requirements one by one. If, for exam-
ple, the item A represents an object and the item B a main
verb of the input sentence, the temporary item P sequen-
tially represents all items in the valency list of B, until it
finds which of those items actually has the requirements
consistent with the attributes of A.

• Deleting from the list of valency requirements (\ P from
X.x). If P successfully identifies a valency requirement
consistent with the attributes of A, the corresponding re-
quirement is deleted from the list. This operation guaran-
tees that each requirement is satisfied only once.

• Constants OK and FAIL marking a successful and unsuc-
cessful end of application of a particular grammar rule to
a given pair of data items.

• Comments (any text following a semicolon located at the
beginning a row of a text)

Let us now present a sample grammar rule in RFODG. It
processes the incongruous attribute standing to the right of a
governing noun.

IF A.SYNTCL = noun THEN ELSE
IF A.SYNTCL = prephr THEN ELSE
FAIL

ENDIF
ENDIF
B.SYNTCL = noun
B.CASE = gen
A.RIGHTGEN ? yes Second_genitive
X:=A

X.RIGHTGEN := no
OK
END_P

The rule works in the following way:
The symbol A must represent either a noun or a prepo-

sitional group. If not, the application of the rule immedi-
ately fails. The symbol B must represent a noun in the geni-
tive case. The soft constraint checks whether this is the first
incongruous attribute in genitive case being attached to the
same noun. If not, it inserts an error flag. Then A is selected
as the governing word and X inherits all its attributes. The
subsequent assignment(X.RIGHTGEN := no) marks the
fact that the incongruous attribute in genitive case is being
attached and thus no other such attribute may be attached in
the future. The keyword OK confirms a successful applica-
tion of the rule on the given pair of symbols A and B.

Workflow Verification by means of RFODG
RFODG has been developed as an analytical grammar,
therefore the verification of a concrete workflow is the most
natural task which we may use it for. Let us start with the
basic concepts first.

As it was already mentioned above, each workflow may
be decomposed into the primitive tasks by three decompo-
sition operations, namely parallel, serial and alternative de-
compositions. Let us now look at the possible ways how
these three operations may be described in the RFODG.

Serial decomposition
Serial decomposition seems to be the most natural one for
RFODG. Two primitive tasks in a sequence actually corre-
spond to two word forms of a natural language, one preced-
ing the other in a sentence. RFODG distinguishes the mutual
position of items A and B (A standing always to the left of
B), therefore in the rule describing the sequence Create parts
and Assembly from our workflow example, A will represent
the task Create parts and B will correspond to Assembly.
The first two commands of a grammar rule describing this
sequence may then look like this:

A.task = Create_parts
B.task = Assembly

Unlike in the analysis of a natural language, in the work-
flow verification it is not necessary to distinguish between
the governing (dominant) and dependent item, therefore the
assignment of A or B to X is practically arbitrary. We only
must make sure that all relevant attributes are transferred
from both tasks to X. For example, if both A and B have
attributes marking the start and end time of each task, the
rest of our grammar rule might look like this:

X := A
X.task := Chair
X.end := B.end
OK
END_P

588

It is not necessary to transfer explicitly the value of A.start
because all attributes and their values from A are inherited
by X.

Alternative decomposition
Alternative decomposition can also be handled relatively
easily. RFODG makes it possible to handle alternatives by
means of a conditional statement IF, as we can see in the fol-
lowing example of a grammar rule for the alternative tasks
of Buying and Welding.

IF A.task = Buy THEN ELSE
IF A.task = Welding THEN ELSE
FAIL

ENDIF
ENDIF
X := A
X.task := Back_support
OK
END_P

This grammar rule has two possible outcomes, the result-
ing item Back support will consists either from the task Buy
or from the task Welding, but it cannot include both primitive
tasks. If the input sequence of primitive tasks will contain
both alternatives, the grammar interpreter will apply this rule
twice, once for each primitive task, but because the grammar
will not contain a grammar rule combining together Back
support with any of the two primitive tasks, the grammar
will fail and thus it will indicate that the input sequence is
incorrect.

Parallel decomposition
Unlike in the theoretical model described in the paper
(Barták and Rovenský 2014) where the parallel decompo-
sition served even as a possible model for serial decomposi-
tion, it constitutes a serious issue for verification. Just recall
that parallel decomposition means that child tasks can be
used in any order. A specific order is used in the grammar
rule, but this order can be arbitrary and does not correspond
to actual temporal allocation of tasks (Barták 2016). On
the first sight it seems that verifying primitive tasks which
constitutes a parallel decomposition of some more complex
tasks is very similar to processing of valency constituents
in natural language processing. The obligatory constituents
(such as subject, direct and indirect object etc.) are also in
a certain sense parallel – they are immediate children of a
governing verb, they occupy the same level in a syntactic
tree and all of them must be present in a sentence (or they
must be identifiable from the previous context if they are not
present), otherwise the sentence would not be complete.

Unfortunately, there is one substantial difference which
makes this idea invalid. In a natural language sentence, the
governing word is actually also present in the input sentence,
therefore we can easily identify all constituents from its va-
lency frame and analyze them as direct dependents of the
verb. In a nested workflow, the complex task which has
been parallely decomposed into several primitive tasks is not
present in the input and therefore it may not provide the in-
formation about the primitive tasks it was decomposed into.

This actually means that the information which tasks are
parallel has to be incorporated into the grammar. Instead of
having a single grammar rule for each decomposition, we
have to combine n-1 grammar rules together in a way which
will guarantee that all primitive parallel tasks are present in
the input sequence. For this purpose we might exploit some
technical items which whose only role will be to bind the set
of grammar rules together. The solution for the complex task
Legs which has been parallely decomposed into four prim-
itive tasks Saw1, Saw2, Saw3and Saw4 might then look for
example like this (It is of course necessary to make sure that
all necessary attributes from Saw2, Saw3 and Saw4 are prop-
erly inherited, this is not contained in the sample grammar
rules.):

A.task = Saw1
B.task = Saw2
X := A
X.task := Saw12
OK
END_P

A.task = Saw12
B.task = Saw3
X := A
X.task := Saw123
OK
END_P

A.task = Saw123
B.task = Saw4
X := A
X.task := Legs
OK
END_P

There is one more issue which might require certain mod-
ifications of RFODG. The above mentioned grammar rules
would work only in the case that the parallely decomposed
primitive tasks are ordered (we suppose that although they
are parallel, they will constitute a part of a input sequence
of tasks) in the same way as it is expected by the grammar
rules, i.e. Saw1 will stand to the left from Saw2 and so on.
This ordering of the input represents the application of cer-
tain additional input constraints, different from the the ac-
tual order of individual tasks in time. Let us note that these
constraints are not going to contradict the time constraints
because the latter ones are going to be explicitly written in
the attributes and thus they don’t have to be repeated in the
input. Possible modification of the RFODG formalism so
that it will be able to ignore the general requirement for an
item A being to the left from item B for a specified set of
grammar rules the constitutes a second option how to solve
this issue.

Constraints
If we look at additional constraints which might be used
in nested workflows, the case of constraints (1)-(7) from
the section Nested Workflows seems to be relatively easy.
These simple constraints will be transformed into attributes

589

and their values. As it was mentioned above, RFODG can
deal with two types of constraints, hard and soft ones and
thus it has enough expressive power to deal also with these
constraints for nested workflows. The only difference is the
fact that the constraints used in RFODG are able to compare
the values of individual attributes on equality only. This is
caused by the expectation that values of attributes always
have the form of text, using any other data type does not
make sense in natural language analysis. For the smooth
transformation of constraints from nested workflows into
RFODG constraints it will be necessary to enrich the set of
applicable data types and comparison operators. This should
be merely a technical issue. As for the constraints of types
(8)-(15), their representation in the RFODG will require fur-
ther investigation.

Conclusions
This paper describes the first step towards bridging the gap
between two relatively distant areas – the nested workflows
and grammar checking of natural languages. Concrete types
of grammar rules in the formalism originally developed for
grammar checking (RFODG) have been suggested for all
three main types of decomposition of nested workflows. It
turned out that the similarity of the two tasks is not abso-
lute, that one of those types, a parallel decomposition, might
require a modification of the RFODG formalism or the ex-
ploitation of specific constraints governing the order (left to
right) of primitive tasks in the input. The natural next step
in our research will be the investigation of additional, more
complex constraints and their transformation into RFDG.
Last but not least is then the research whether RFODG may
also be used as a generative grammar, whether it will be pos-
sible (maybe again after a slight modification) to generate a
sequence of primitive tasks by means of this type of an at-
tribute grammar.

Acknowledgments
The research reported in this paper has been supported by
the Czech Science Foundation GACR, grant No. P103-15-
19877S

References
Bae, J.; Bae, H.; Kang, S.-H.; and Kim, Z. 2004. Automatic
control of workflow processes using eca rules. IEEE Trans-
actions on Knowledge and Data Engineering 16:1010–
1023.
Barták, R., and Rovenský, V. 2014. On verification of nested
workflows with extra constraints: From theory to practice.
Expert Systems with Applications 41:904–918.

Barták, R., and Čepek, O. 2008. Nested Temporal Networks
with Alternatives: Recognition, Tractability, and Models. In
Artificial Intelligence: Methodology, Systems, and Applica-
tions (AIMSA 2008), 235–246. Springer Verlag: LNAI.
Barták, R.; Cully, M.; Jaška, M.; Novák, L.; Rovenský, V.;
Sheahan, C.; and Skalický, T. 2011. Workflow Optimization
with FlowOpt, On Modelling, Optimizing, Visualizing, and

Analysing Production Workflows. In Proceedings of Con-
ference on Technologies and Applications of Artificial Intel-
ligence (TAAI 2011), 167–172. IEEE Conference Publishing
Services.
Barták, R. 2016. Using Attribute Grammars to Model
Nested Workflows with Extra Constraints. In SOFSEM
2016: Theory and Practice of Computer Science, 171–182.
Springer Verlag.
Holan, T.; Kuboň, V.; and Plátek, M. 1997. A Prototype
of a Grammar Checker for Czech. In Proceedings of the
Firth Conference on Applied Natural Language Processing.
Washington, DC: ACL.
Holan, T. 2001. Nástroje pro vývoj závislostnı́ch anayzátorů
přirozených jazyků s volným slovosledem. Prague: MFF UK.
(in Czech).
Knuth, D. E. 1968. Semantics of context-free languages.
Mathematical Systems Theory 2:127–145.
van der Aalst, W., and t. Hofstede, A. H. M. 2005. Yawl: yet
another workflow language. Information Systems 30:245–
275.

590

