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Abstract

Unsupervised outlier detection algorithms often suffer
from high false positive detection rates. Ensemble ap-
proaches can be used to address this problem. This pa-
per proposes a novel ensemble method which adopts the
use of an adaptive sampling approach, and combines
the outputs of individual anomaly detection algorithms
by a weighted majority voting rule in a complete un-
supervised context. Simulations on well-known bench-
mark problems show substantial improvement in perfor-
mance.

Introduction

Outlier detection algorithms have been used in many appli-
cations such as intrusion detection and credit card fraud de-
tection (Chandola, Banerjee, and Kumar 2009). Recently,
several kNN based detection algorithms have been pro-
posed, including local density based methods (Breunig et
al. 2000)(Jin et al. 2006), and rank based methods (Huang,
Mehrotra, and Mohan 2012) (Huang, Mehrotra, and Mohan
2013). Many of these algorithms output an outlier score as-
sociated with each object, thresholded to determine whether
a point is outlier. Although they were reported to have been
successful in capturing anomalies, most such algorithms suf-
fer from high false positive rates, a problem that can be ad-
dressed using ‘Ensemble’ approaches.

A well-known ensemble approach is the ‘AdaBoost’
supervised classification algorithm (Freund and Schapire
1995), which trains 7" rounds of weak learners over the
training set, in each round focusing on the ‘hard’ exam-
ples from the previous round, then combines their output
by weighted majority voting. AdaBoost calls a ‘booster’ in
each round to draw a subsample D; from D with a set of
sampling probabilities, initially uniform. A weak learner
or base method h; is trained over Dy, then the probabili-
ties are increased for incorrectly classified examples. After
T rounds, each weak learner hy is assigned with a weight
o which is lower if error is higher. The final decision out-
put is made by applying weighted majority voting over all
hy fort = 1,2, ...,T. The training error will be substantially
reduced if all the weak learners are better than random
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guessing. AdaBoost has gained considerable popularity for
its elegance and performance.

For clustering problems, an Adaptive Clustering algo-
rithm was proposed in (Topchy et al. 2004), with an adap-
tive sampling ensemble method for better partitioning gen-
eration. They use a consistency index to determine the sam-
pling probability and adaptively focus more on points in in-
consistent clustering label regions. A consensus function is
used for the final decision output, using an agglomerative al-
gorithm applied on the co-association similarity matrix. Em-
pirical study has shown improved performance compared to
the classical k-means clustering algorithm.

The application of ensemble methods for unsupervised
outlier detection is an emerging research topic, addressed
in only a few works so far, such as (Aggarwal 2013;
Zimek, Campello, and Sander 2014; Lazarevic and Kumar
2005; Abe, Zadrozny, and Langford 2006; Keller, Miiller,
and Bohm 2012); of these the work in (Abe, Zadrozny, and
Langford 2006) is the only attempt to apply AdaBoost to
solve the outlier detection problem. Their proposed method
converts the outlier detection problem to an AdaBoost-
solvable classification problem by drawing some number of
points from an underlying distribution, and marking them as
outliers, whereas all the points in the original data set are
considered to be inliers. Their resampling method is based
on minimum margin active learning by iteratively assigning
lower sample rejection probabilities to points with low mar-
gin values, because they have less consistency. The weights
for each classifier are adjusted by the classification error rate
in each subsample.

By contrast to the above approaches, this paper proposes
a novel adaptive learning algorithm for unsupervised outlier
detection which uses the score output of the base algorithm
to determine the ‘hard’ examples, and iteratively resamples
more points from such examples in a complete unsupervised
context. The method is evaluated on multiple well-known
datasets, and our simulations show better results than the
base algorithm as well as other existing outlier detection ap-
proaches.

The next section describes the adaptive sampling ap-
proach. This is followed by discussing the combination
method and the proposed algorithm. Experimental simula-
tions and results on benchmark problems are then presented.



Adaptive Sampling
The main idea of adaptive sampling is to give greater em-
phasis to the examples that are hard to identify. To extract

such examples from the data set, we need to answer two
questions:

1. How can we determine whether an object cannot be easily
classified as an inlier or an outlier?

2. How can we combine the outputs from different itera-
tions?

In this section, we focus on the first question. We first re-
view how classification and clustering ensemble methods
can be used to determine the hard-to-identify objects and
adjust their sampling weights. We then discuss our proposed
adaptive sampling method for outlier detection.

The popular ensemble classification method AdaBoost is
adaptive with respect to the training errors of various weak
hypotheses, and in each iteration increases sampling proba-
bility for points with a high error rate. In the adaptive clus-
tering ensemble approach, clustering consistency is used to
estimate the difficulty of assigning a clustering label to an
object. Objects near cluster boundaries are assigned higher
sampling probabilities, and the boundaries are successively
refined in later iterations.

In AdaBoost, the classification decision boundaries are
refined gradually by resampling the objects that are more
likely to be near the decision boundaries. Adaptive cluster-
ing is also focused on cluster boundaries refinement. The
outlier detection problem is more difficult: unlike classifi-
cation and clustering, there is no clear boundary in outlier
detection. Instead, most outlier detection algorithms output
a score for each object indicating the probability of that ob-
ject being an outlier; we now discuss our proposed method
to use outlier scores to determine the ‘decision boundary’ in
outlier detection adaptive learning.

Justification with local density-based kNN
algorithms

Local density based methods consider the outlier score of
a point o to be proportional to the density of its k& near-
est neighbors over the local density of o. The outlier score
Score(o) of an object o can be rewritten as follows:

DEN(Ng (o))

Score(o) x deny (0)

where Ny (o) is the set of k nearest neighbors of o, deny (o)
is the local density of o, and DENy(Ng(0)) is the aver-
aged local density of 0’s k nearest neighbors. For an inlier 4,
Score(i) = 0; for an outlier o, Score(o) > 0.

Many algorithms have been proposed to solve the outlier
detection problem in an unsupervised context, but all have
high false positive rates. An algorithm misidentifies an in-
lier p to be an outlier when p’s neighborhood is dense;then
Score(p) is high due to other inliers in this neighborhood.

Likewise, if an outlier ¢ is in a sparse neighborhood, other
outliers in this neighborhood force the score of ¢ to be small;
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and therefore q is declared to be an inlier. Our sampling ap-
proach aims to sample more from the ‘boundary’ area, in
order to resolve such problems.

In our approach, we remove the obvious inliers and obvi-
ous outliers from the dataset. The benefits from such sam-
pling are: (1) removal of the outliers from N (q) will in-
crease deny (N (q)); (2) removal of the inliers from Ny (p)
will decrease deny (N (p)). Hence, after such subsampling,
the ‘boundary’ points can be separated better, while the ob-
vious outliers remain identifiable.

Decision Boundary Points

Many outlier detection algorithms assign a score for each
object, roughly indicating the relative probability of the ob-
ject being an outlier (or inlier). Objects with higher scores
are considered more likely to be outliers. Most existing out-
lier detection algorithms perform well on capturing the ob-
vious outliers, but may fail to capture the hard-to-detect out-
liers. We use the state-of-the-art local density based anomaly
detection algorithm LOF (Breunig et al. 2000) in the follow-
ing as our base detection algorithm.

A simple example is illustrated in Figure 1, where
non-anomalous (inlier) data points occur within a two-
dimensional Gaussian cluster, outside which three outliers
have been inserted: points p, ¢, and . We apply the LOF
anomaly detection algorithm with £ = 3, obtain outlier
scores for each object, and normalize the scores to be in
[0,1]. The mapping of original objects into the score space
is shown in Figure 2.

We observe that the object on the left top corner (p) is the
most obvious outlier among all of the three outliers, and was
assigned the highest outlier score as shown on Figure 2; this
illustrates that the detection algorithm performs very well
when detecting the easy-to-detect outliers.

Next, we address how to use the score space to distinguish
potential outliers and inliers. We use the obvious and often
used method: choose a threshold 6 such that all objects with
an outlier score greater than 6 will be identified as outliers
and all other objects are marked as inliers; 6 determines the
decision boundary. In the example of Figure 2, if we choose
0 = 0.3, then two real outliers p,q are identified, but five
false positives are introduced, and we have one false nega-
tive r (undetected outlier). Points near the threshold bound-
ary are more likely to be hard to identify, i.e., whether they
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Figure 1: Toy example with 3 outliers
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Figure 2: Converted to normalized score space

are true outliers.

Our approach is to re-evaluate such points that are near a
decision boundary. In the following, we describe our method
of how to adjust the sampling weights.

Sampling Weights Adjustment

As stated above, we consider normalized scores for each ob-
ject o such that Score(o) € [0, 1]; Score(o) ~ 0 identifies
a clear inlier, Score(o) ~ 1 identifies a definite outlier, and
Score(o) = 6, implies that o is more likely to be a boundary
point, where 6 € [0, 1] is an appropriately chosen threshold.

Most false positives and false negatives are expected to
occur at boundary points, with existing algorithms. In our
approach, a new weight is assigned to each object o, roughly
measuring the expectation that it is a boundary point, as fol-
lows:

Score(0)  Seore(o) < 6
-~ 9
WB(o) = { %‘Wee(o) Score(o) > 6. M

This weight assignment increases sampling probability
for boundary points and decreases the sampling probability
for points that are easy to detect (clear inliers and outliers).
Instead of iteratively refining the boundaries as in classifi-
cation or clustering problems, we iteratively re-evaluate the
points near the boundaries in outlier detection, in order to
reduce the number of false positives.

Final Outputs Combination with Different
Weighting Schemes

It is very important in ensemble methods to determine how
to combine different outputs from all the weak learners (in-
dividual modules). A commonly used method is weighted
majority voting in which the weight of a learner is as-
signed by measuring the quality of its results. At iteration
t,t =1,2,...,T, for object o, if a learner’s output is (o),
the final output is denoted by:

T
H(o) = Bihi(0)

where (; indicates how important the learner h; is in the
final combination. In classification, one can use the trained
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error as an indication of how well a learner performed. The
absence of labeled training data makes it difficult to measure
the goodness of a clustering or outlier detection algorithm
in an ensemble approach. If the outputs from all the iter-
ations are independent, we can use the correlation between
them as an indication of how well one individual learner per-
forms. However, in the adaptive learning process, the input
of each learner is dependent on the previous one, and this
makes the process of selection of weights (for each learner)
even harder. We now propose heuristics for how to assign
weights ; to the different learners and evaluate them em-
pirically.

The problem of measuring how well a learner performs
in an iteration is essentially the question of how many ‘real’
outliers were captured in that iteration. Obviously, the ob-
jects with higher scores are more anomalous than the ones
with lower scores. But a more pertinent question is that of
determining the size of the gap between scores of anoma-
lous vs. non- anomalous objects.

In Figure 3, we show the zoomed histograms of normal-
ized scores for two datasets: (1) with no outlier and (2) for
the same dataset with 3 outliers inserted. We observe that the
outliers get larger scores, and also the gap in scores between
the inliers and outliers increases, in Figure 3a, the ‘gap’ is
from 0.7 to 0.8 while in Figure 3b, the ‘gap’ is from 0.6 to
0.9.

Using these concepts, we have evaluated three alternative
weight assignments for 3;:

a) The simplest approach is to take the arithmetic average
for all values of ¢. Thus, we assign:

Bi=1/T;t=1,2,...T

b) Select a score threshold 7, and at each iteration ¢, calculate
ay=the number of objects with score greater than 7. Using

this, we assign:
at
fr=1-
| D]
where | D;| is the size of the sample in ¢th iteration .

c) At each iteration ¢, obtain the histogram of the score out-
put, calculate the ‘gap’ b; between the right-most bin and
the second right-most bin, and set:

b, +1
fo= Bt
Yobi+1
t=1
Algorithm

The algorithm begins by giving equal sampling weight to all
points in the original dataset D, such that for every point
x;, w) =1/|D|. At each iteration, we draw N observations
following the sampling distribution p®, in the set of ob-
servations, duplicates are removed and the scores are re-
evaluated, this new set of observations is denoted as D;. We
adjust the sampling weights for all the points in D; as men-
tioned above, and normalize their sampling weights w.r.t all
the sampling weights in D,; for unsampled data, the sam-
pling weights remain unchanged. This process continues for
t=1,2,..,T.
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Figure 3: Zoomed Score Histogram Example

The result of our sampling makes the sampling weights
for possible boundary points (hard-to-identify points) higher
in the following iterations, so the ‘effective’ sample size will
decrease over iterations. To prevent the sample size from re-
ducing too fast, we select N = 2|D| in our experiments.
Details of the algorithm (Algorithm 1) are shown below.

Algorithm 1

Input: Dataset D, and detection algorithm A.

Initialize the weight vector: w9, = 1/|D] for each point ;;
for iteration t=1,2,....,T:

1. Set:

pt = Wt/Zz w;z
2. Draw N observations from D using p*, remove the duplicates,
denote this set of observations as Dy
3. Run A on D, get a score vector Score®, normalize the scores
to [0,1]
4. h¢(x;)=normalized score of x;
5. Set the new weights vector to be:
witt = (1 —a) xwk, + (o) * WB(z:);
(WB is defined in equation (1))

Output: Make the final decision

H(z;) = Z Behe(x;)

Experiments and Results

This section describes the datasets used for simulation, sim-
ulation results, and discussions of model parameters. In our
results, the AUC (Area Under Curve), defined as the sur-
face area under ROC curve, is used to measure the perfor-
mance of detection algorithms. An ROC curve plots a func-
tion between the true positive rate and false positive rate.
If the value of AUC is higher for an outlier detection al-
gorithm, then, the algorithm is more capable of capturing
outliers while introducing less false positives.

Dataset Description
Five well-known datasets were used in our simulations:

1. Packed Executables dataset (PEC)! Executable pack-
ing is the most common technique used by computer virus

"http://roberto.perdisci.com/projects/cpexe
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2. KDD 99 dataset (KDD)?

writers to obfuscate malicious code and evade detection
by anti-virus software. This dataset was collected from the
Malfease Project to classify the non-packed executables
from packed executables so that only packed executables
could be sent to universal unpacker. In our experiments,
we select 1000 packed executables as normal observa-
tions, and insert 8 non-packed executables as anomalies.
All 8 features are used in experiments.

KDD 99 dataset is available
from DARPA’s intrusion dataset evaluation program. This
dataset has been widely used in both intrusion detection
and anomaly detection area, and data belong to four main
attack categories. In our experiments, we select 1000 nor-
mal connections from test dataset and insert 14 attack-
connections as anomalies. All 41 features are used in ex-
periments.

3. Wisconsin Dataset (WIS)? This dataset contains 699 in-

stances and has 9 attributes. There are many duplicate in-
stances and instances with missing attribute values. Af-
ter removing all duplicate and instances with missing at-
tribute values, 236 instances are labeled as benign class
and 236 instances as malignant. In our experiments the
final dataset consisted 213 normal instances and 10 ma-
lignant instances as anomalies.

4. Database Basketball dataset (NBA)* This dataset con-

tains Basketball player statistics from 1951-2009 with 17
features. It contains all players statistics in regular sea-
son and information about all star players for each year.
We construct our outlier detection evaluation dataset by
selecting all star players for year 2009, use their regular
season stats as the outlier data points, and select all the
other players stats in year 2009 as normal points.

5. Smartphone-Based Recognition of Human Activities

and Postural Transitions Data Set (ACT)> This dataset
collects data from 30 volunteers from age 19-48 wearing
smartphones. The 3-axial linear acceleration and 3-axial
angular velocity values from the sensors data are used for
classification, with 561 features and 12 classes. To con-
struct our outlier detection evaluation dataset, we consider
the class with the least number of instances (sit-to-stand)
as outlier points and the class with most number of in-
stances (standing) as inlier points.

Performance Comparisons

We evaluated our ensemble approach with base algorithm
LOF for different k£ values (the number of local neighbors).
In Figure 4, we plot AUC for various k values, where the
x-axis shows the ratio of k to the size of the dataset. A solid
line shows the AUC values for base algorithm LOF, and a
boxplot shows the results of our ensemble approach using

*http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
3http://archive.ics.uci.edu/ml/machine-learning-
databases/breast-cancer-wisconsin/
*http://databasebasketball.com/
Shttp://archive.ics.uci.edu/ml/datasets/Smartphone-

Based+Recognition+of+Human+Activities+and+Postural+Transitions
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Figure 4: AUC Performance Comparison with Base Algorithm (LOF) over Different k&

By =1— |g1|, using 25 iterations in this experiment. Re-
sults show that for all k£ values, our approach outperforms
the base algorithm for all the 5 datasets. The ensemble ap-
proach has large variations when k is small, which decreases

as k increases.

We also compared our proposed ensemble approach with
the Active-Outlier approach proposed in (Abe, Zadrozny,
and Langford 2006), Feature Bagging approach proposed
in (Lazarevic and Kumar 2005), and HiCS (high contrast
subspace) outlier detection method proposed in (Keller,
Miiller, and B6hm 2012). In Active-Outlier approach, (Abe,
Zadrozny, and Langford 2006) propose to use AdaBoost
with decision tree classifier (CART) as the base classifier,
and the synthetic outliers are generated from a specific dis-
tribution (Uniform, Gaussian). In Feature Bagging, we use
the same number of ensemble members and use LOF as base
method. In HiCS, we use LOF as base method. Feature Bag-
ging and HiCS approaches are implemented in ELKI tool-
box(Achtert et al. 2009), results for three different k values
are reported. In our ensemble approach, we do not add any
additional observations; we use LOF as the base outlier de-
tection algorithm with @ = 0.2, 7 = 0.95 and results are
reported for three different values of k. For fair comparison,
we use the same number of iterations in all methods.

Table 1 presents the averaged AUC for performance over
20 repeats. Active-Outlier approach is denoted as AcrOut,
Feature Bagging is denoted as FB, while our proposed en-
semble approach is denoted as Ensemble. As can be seen
that the performance of our proposed ensemble approach is
better in almost all cases and increases as k increases.
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Effect of Model Parameters

Effect of Number of Iterations: In Fig. 5, we plot the
AUC value versus the number of iterations for a synthetic
dataset and a real dataset. As we can see, on the synthetic
dataset, performance stabilized after 10 iterations and on the
real dataset, performance stabilized after 20 iterations.
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Figure 5: AUC Performance vs. Number of Iterations

Effect of Combination Approach: The simulations for
comparing different possible combination approaches were
set up as follows:

1. For each dataset, for each k value, apply the algorithm
with each of the three different combination approaches.

2. Repeat the whole process 20 times, report the mean of
AUC.

3. For each dataset, for each k value, rank the AUC perfor-
mance of each combination approach, so the best one will
have a rank of 1, the worst one has a rank of 3.



Table 1: Performance Comparison: Averaged AUC over 20 Repeats

DataSet ActOut k=1% k=3% k=5%

Unif | Gauss FB HiCS | Ensemble FB HiCS | Ensemble FB HiCS | Ensemble
WIS 0.865 | 0.921 0.446 | 0.564 0.963 0.407 | 0.539 0.965 0.448 | 0.761 0.978
NBA 0.903 | 0.810 0.822 | 0.709 0.920 0.855 | 0.864 0.959 0.884 | 0.885 0.961
ACT 0.5 0.980 0.833 | 0.922 0.961 0.977 | 1.000 0.999 0.993 | 1.000 1.000
PEC 0.907 | 0.686 0.762 | 0.768 0.975 0.775 | 0.808 0.986 0.701 | 0.894 0.985
KDD 0.873 | 0.685 0.844 | 0.778 0.985 0.780 | 0.836 0.993 0.787 | 0.795 0.993

4. For each dataset, calculate the sum of the above ranks for
each combination approach, so the best one has the lowest
sum.

In Table 2, we summarize the accumulated sums of AUC
rankings over all different k£ values for the three approaches
and denoted as Sum,,Sumy, and Sum, respectively. The
one with best detection performance will have the lowest
Sum over the three different combination approaches.

We observe that combination approach a ranks once as
the best, twice as the second, and twice as the third; combi-
nation approach c ranks twice as the best, three times as the
third; while the combination approach b ranks twice as the
best, three times as the second and none as the third. So we
can say that combination approach b, where §; = 1 — IRI
outperforms the other two combination approaches over the
5 datasets we considered.

Table 2: Performance over Sum of AUC Rankings with Dif-
ferent Combination Approaches

DataSet | Sumg | Sump | Sume
WIS 42 33 73
NBA 55 52 43
ACT 41 27 73
PEC 59 45 33
KDD 33 41 57
Conclusion

Unsupervised outlier detection is a challenging task with
many applications, but widely used algorithms are often
prone to generating too many false positives. In this pa-
per, we have proposed a novel adaptive sampling approach
which succeeds in addressing this problem. Simulation re-
sults on five well-known data sets show the relative success
obtained with the new approach, compared to the LOF base
algorithm as well as other recent approaches.
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