Proceedings of the Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference

Neural Networks Learning the Concept of Influence in Go

Gabriel Machado Santos, Rita Maria Silva Julia, and Marcos Saito
Computer Science Department
Universidade Federal de Uberlandia

Matheus Araujo Aguiar
Informatics Department
Instituto Federal do Triangulo Mineiro

Abstract

This paper describes an intelligent agent that uses a MLP
(Multi-Layer Perceptron) Neural Network (NN) in order to
evaluate a game state in the game of Go based, exclusively,
in an influence analysis. The NN learns the concept of In-
fluence, which is domain specific to the game of Go. The
learned function is used to evaluate board states in order to
predict which player will win the match. The results show
that, in later stages, the NN can achieve an accuracy of up
to 89.3% when predicting the winner of the game. As fu-
ture work the authors propose the incorporation of several
improvements to the NN and also its integration intelligent
player agents for the game of go, such as Fuego and GnuGo.

Introduction

Since the early beginning of artificial intelligence sci-
ence field there has been the interest to implement player
agents for board games like chess and checkers(Shannon
1950)(Schaeffer 1997). The task of implementing automatic
players for such games involves both theoretical and techni-
cal difficulties which are very similar to those that arise in
the treatment of a range of problems of everyday life such as
urban traffic control(Walker 2000), human-computer inter-
action(Thorpe and Anderson 1996) and robot autonomous
navigation(Monteiro and Ribeiro 2003)(Alers et al. 2014).
These similarities are due to the fact that all these prob-
lems demand strategic combinations for making decisions
in situations where an opponent aims to minimize the pos-
itive effects of the actions of the agent. Furthermore, the
involved agents acting within these domains need to learn
through their interaction with the environment and each
other as well as through the state changes which occur af-
ter each single action execution. After the chess match
between DEEP BLUE and Kasparov, in 1997, many re-
searchers turned their attention to other games, especially
Go(van den Herik 2010). This ancient game has been con-
sidered a great challenge for researchers in artificial intelli-
gence and it is interesting to note that the classical meth-
ods in game tree search, which have worked so success-
fully for board games like chess and checkers, haven’t been
able to achieve the same success in the game of Go(Gelly

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

340

et al. 2012). Because of that, the domain of Go demands
from A.I researchers new techniques and approaches to it.
This has led to the development, in recent times, of the
Monte-Carlo Tree Search (MCTS)(Coulom 2006), which
has allowed a substantial change in the computer Go field
(Coulom 2010)(Gelly and Silver 2008). Since that, the per-
formance of player agents has been increasingly improving
and nowadays programs based on Monte-Carlo Tree Search
play at human-master level and are able to challenge top pro-
fessional players(Gelly et al. 2012). Even with the success
of MCTS, top level of playing has not yet been achieved by
artificial go players and other well-known techniques, such
as Neural Networks (NN), continue to be topic of study and
experimentation. For example, the recent works of (Mad-
dison et al. 2014) and (Clark and Storkey 2014) use NN to
predict moves after being trained over a set of professional
games. It could be inferred that future improvements of the
go players agents will be based not only on the promising
MCTS results, but also on other known and yet to be dis-
covered tools of artificial intelligence. Considering this con-
text, this work describes the system NN-Influence, an in-
telligent program that learns to predict the winner of a Go
match. The main concept that the NN learns is called in-
fluence and it is domain-specific of the game of Go. The
influence represents the advantage or potential that a group
of stones yields around its neighbouring points. Influence
may become points at the end of a match of Go. Thus, the
system is able to learn this basic concept of the game and
use it to predict the winner of the match given a board state.
Also, the system implements a graphical interface that can
show the influence on the points of the board. This tool also
gives some statistics about the game, such as territory and fi-
nal score points estimates, groups liberties and other useful
information which is not the topic of this work. The remain-
der of this document is arranged as follows: the concepts and
rules of the game of Go are described in section “The Game
of Go”, followed by section “Related Work™, where related
and prior work are presented. Section “NN-Influence” de-
scribes the architecture of the system NN-Influence imple-
mented in this work, while in section “Experiments and Re-
sults” the experiments and results obtained are presented and
discussed. Finally, in section “Conclusions”, the achieve-
ments and problems encountered in this work are summa-
rized and future works are proposed.

Figure 1: Illustration of a 9x9 Go board configuration after
the game has ended.

The Game of Go

The history of Go stretches back some 4,000 years and the
game still enjoys a great popularity all over the world(Gelly
and Wang 2006). Although its rules are simple, its com-
plexity has frustrated the many attempts to build a good
Computer-Go player since the late 70s(Bouzy and Cazenave
2001). The game is played by two players on an empty
square board typically in the sizes of 9x9 and 19x19, al-
though other sizes are also possible. Starting with black,
each player alternately places a stone of her color (black or
white) on an empty point of the board grid. At any moment,
a player may opt to skip his turn and not place any stone on
the board, in which case it becomes now the turn of the other
player. Once the stones are placed on the board, they do not
move. Nevertheless, the stones may be removed from the
board if they are completely surrounded by enemy stones.
In short, the main objective of the game is to surround with
stones the most points on the board. The game develops in
this fashion until both players pass consecutively. In this
case it is assumed that they both agree on the points which
they have control of and thus the game is scored and fin-
ished. The example of Figure 1 illustrates a board config-
uration after the game is finished. The black stones have
control over the points in the areas A, C and E, while the
white stones have control over only the area B. Although the
white stones marked with D seem to be controlling that area,
they can be captured because of the presence of the black
stone marked with E. On the other hand, the black stones
marked with C may not be captured, because it is impos-
sible for white to play both on the points wich are marked
with an X. For more information about the rules and dy-
namics of the game of Go we refer to (Miiller 2002) and to
the following pages on the Internet: http://gobase.org and
http://gogameguru.com.

Related Work

This section briefly presents and describes prior work which
are related to the present one. In the early work of (Zo-
brist 1969), a visual model of the game of go is proposed.
The author recognizes the great complexity of the game tree
and the difficulty of exploring such a tree with any form of
heuristic search. Zobrist also raises the importance of dis-

341

criminating the different groups of stones and the spheres of
influence that are formed by these. The board is represented
by a few 19x19 layers of integers, which store information
such as the size of the group each stone belongs to, its num-
ber of liberties and also under which influence a given point
is. The process used by Zobrist computes the influence of
a board state by attributing positive or negative values to
each position, according to the color of the stone. Then each
point receives a value of 1 or -1 from its neighbours. This
later process is repeated four times and the values gener-
ated are accumulated. The result is considered by Zobrist a
visual organization heuristic”. A similar process was more
recently proposed in the work of (Bouzy 2003), obtaining
successful results. The method applies mathematical mor-
phology to compute influence and territory of a board state.
It extends and refines the previous work of Zobrist, allowing
that not only influence is calculated but also territories (score
points). In order to accomplish this, two operators which are
well-known in digital image processing are used, namely, a
dilatation operator D, and a erosion operator E,. These two
operators are combined in the form of an operator X, = E.°
o D,¢, where E, is iterated e times and D, is iterated d
times. In this way, the operator X, can be used to recognize
territories in the game of Go. In regard to approaches that
involve neural networks, it is interesting to cite the works
of (Schraudolph, Dayan, and Sejnowski 1994) and (Enzen-
berger 2003). Both works use convolution neural networks
(CNN) trained by reinforcement learning from self-play to
predict the final territory and they exploit the advantages
of the rotational, reflectional, and colour inversion symme-
tries of the board. In addition to that, Neurogo (Enzenberger
2003) use a more sophisticated architecture and could also
predict eyes and connectivity of the groups. Also, Neurogo
was combined with an alpha-beta search, achieving the per-
formance of GnuGo (an open-source and benchmark pro-
gram) on 9x9 board. Later, in the work of (Werf et al. 2003)
a two layer NN using a set of hand constructed features was
trained by supervised learning of expert moves. The results
showed that the NN was able to predict the move an expert
would have made with 25% accuracy. Moreover and related
to this, the work of (Sutskever and Nair 2008) also uses two-
layer CNN trained by supervised learning that outputs the
probability an expert player would play in each point of the
board. The accuracy achieved was initially 34% and after
refinements increased to 37%. More recently, the works of
(Maddison et al. 2014) and (Clark and Storkey 2014) both
use Deep Convolutional Neural Networks (DCNN) trained
by supervised learning on a database of expert games to
predict moves. In the former work, it used a technique of
tying the weights in the network to take advantage of the
symmetries expected to occur on the board. The best NN
had 8 layers and was able to 41% of accuracy after train-
ing and testing on a dataset of professional games. In the
later work, a DCNN with 12 layers also exploited the advan-
tages of the symmetries of the board was used. The results
from the work reveal that the NN was able to correctly pre-
dict the move of the expert in 55% of the board states. The
playing strength of this NN was able to surpass GNUGo in
97% of the time and matched the performance of state-of-

the-art Monte-Carlo Tree Search programs as Pachi(Baudis
and Gailly 2011) and MoGo(Gelly and Silver 2007). It is
important to note that while the related work presented in
this section seek to predict the move of an expert on a given
board state, the system NN-Influence, presented in next sec-
tion, is intended to predict the winner of the match.

NN-Influence

This section presents the system NN-Influence: an intelli-
gent program that uses the strong concept of stone influence,
specifically for the game of Go, in order to evaluate a board
configuration trying to predict the winner at the end of that
match. In order to do that, the system takes into account all
influence power computed from a specific board state. Al-
beit it is, in a broad sense, a simple approach, the concept
of Influence is one of the basic aspects of the dynamics of
the game and even defines a playing style. Such an analysis,
based on the influence, allows for a more concise evaluation
which takes into account the global state of the board state,
which is a quite difficult task for intelligent agents for the
game of Go(Wang and Gelly 2007). The process used by
the NN-Influence system to predict an winner for an ongo-
ing match is illustrated in Figure 2.

T AR

e

Winner
Prediction

3

inputs Hidden Layer ouiput

Figure 2: The steps taken in predicting a winner for an on-
going match of the game of Go.

NN-Influence Agent

As depicted in Figure 2, the prediction of a winner for a
match is composed of three main tasks:

1. Influence Transformation: at a specific moment of the
game (after 21 ply moves in Figure 2, for example), the
agent will evaluate the board configuration and apply the
model of influence used in order to obtain information
about the influence projected by each stone on the board.

2. Feed the Neural Network: Once the influence transfor-

mation is performed, the next task is to feed the neural
network, already trained, according to its proper inputs in
a specific format.

3. Interpret the Output: Finally, after receiving the input,

the neural network resumes its task, performing the pre-
diction based exclusively on the features learned during
the training process.

Influence Transformation

The process of Influence Transformation consists of taking a
board state at a given moment of the game and interpret each
stone individually according to an Influence Model. Once
the power of influence for each stone is calculated, it has
computed the influence value for each intersection point in-
dividually, subsequently, generating the influence map, alto-
gether.

Influence Model The influence model is a quantitative
representation of the intersection points affected by a sin-
gle stone. This model corresponds roughly with the manhat-
tan distance(Craw 2010) from the stone projecting influence.
Figure 3 shows a representation of a white stone and its in-
fluence power according to the cross-influence model. This
model is named cross-influence by the authors and it was
conceived to reflect common connection relations between
stones. For example the one-space jump has an influence
value of 6, which is greater than the influence value of the
two-space jump, which is 4.

Figure 3: The values of the influence model (left) and its
graphical representation in the Influence Goban (right).

As it is show in the Figure 3, the nearer the point is of
the stone, the stronger is the influence value attributed. In
the same way, the farthest the point is the weaker the influ-
ence, until at a certain distance it becomes null. The black
stones projects influence values that are positive integers,
while white stones projects influence values that are negative
integers. Thus, stones from different values project different
signed integers of the same magnitude. In this way, if an
intersection is at the same distance from a white stone and

a black stone simultaneously, then, for example, the white
stone projects a value of —6 and the black stone projects a
value of +6. The resulting influence value is the sum of all
influence taken, which becomes 0 in the previous example.
After the influence of every stone in the board is computed,
an influence map is generated representing the given board
state. Figure 4 shows an example of the generated influence
map of a board state.

Figure 4: Illustration of a Go board configuration and its
influence map.

Feed the Neural Network

Once the board state is interpreted as an influence map, the
information encoded in it must be inputed, in a specific for-
mat, to the already trained Neural Network module which
will, subsequently, predict the player who has the greatest
chance of winning.

The Neural Network Architecture The Neural Network
implemented in this work is a well known Multilayer Per-
ceptron (MLP)(Bishop 1995) with 363 inputs, one hidden
layer composed of 200 neurons and only one neuron in the
output layer. The number of neurons of the hidden layer
was choosen to be 2/3 (or 70% to 90%) of the number of
neurons in the input layer(Boger and Guterman 1997). The
input layer comprises 363 neurons, in which 361 ones corre-
spond to each intersection present in a 19x19 layer, which is
the matrix of positions of the Go board. Each one of the 361
inputs is represented as a scalar which is equal to the influ-
ence value for each corresponding intersection in the board,
as previously explained. There are two more inputs which
correspond to the number of black and white prisoners, re-
spectively. All the neurons present in the hidden layer as
well as in the output layer use the sigmoid function as acti-
vation function, equation 1, where x and y are the input and
output value for each neuron, respectively.

y < 1/(1+exp(—2)) M

The Training Process During the training process, two
different databases of Go games were used, resulting in al-
most 160, 000 games:

e The Games of Go on Download (GoGoD): The GoGoD
library(GoG) comprises over 82,300 pro games (as of
Winter 2014), all in the SGF format.

343

e The KGS amateur games: The KGS database(KGS) con-
tains about 77,000 games from strong amateur players.

For the training of the network, 80% of the whole
database (~ 128,000 games) was used, while the remain-
ing 20% (~ 32,000 games) were used as the validation set
of the network. The games were randomly choosen to com-
pose both the training and validation set. The process con-
sisted of taking a “snapshot” at a specific moment of each
training sample board state, interpret it as an influence map
and send its respective scalars values to the input layer of the
neural network. Also, the input layer receives the number of
prisoners taken for each player. For the output layer, as a sig-
moid function was used, the values may vary between 0 and
1. The output values equal or below 0.5 are interpreted as
victory for white and the output values above 0.5 as victory
for the Black. During the training of the neural network it
was used a maximum value of 10, 000 epochs and a desired
error below of 0.03. For comparison matters, the authors
have trained four different networks in order to evaluate the
learning power of the agent regarding distinct moments of
each matching, as shown in the Experiments section. It is
important to remark that the thorough process was repeated
for each network trained during the experiments.

Interpret the Output

As soon as the network receives all the inputs regarding a

particular board state, it will compute, as a result, a value Y’

where {Y|0 <Y < 1}. This is interpreted as follows:

1. If Y < 0.5, then the White player has more probability
of winning that very match according to the current influ-
ence power.

2. Otherwise, the power balance is more favorable to the

Black player, who, consequently, has better chances of
victory in that match.

This estimative allows for a player to scrutinize if a spe-
cific move increases or not its chances of winning a match.
In other words, a player may simulate a move and check
whether its probability of winning increases or decreases. It
is important to highlight that this process may be used in the
future as a move generator for an automatic playing agent.

Agent Details

The agent was completely implemented in the C++ lan-
guage, using the Fast Artificial Neural Network library
(FANN) for the Neural Network module. As explained pre-
viously, the goal of the system is to predict the winner of
a match. Nevertheless, in order to accomplish that, the
agent generates an influence map, as well as gathers statis-
tics about the groups of stones such as liberties and territory
estimative. The information that is encoded in the influence
map can be better visualized by humans if shown graphically
over the board. Thus, the system NN-influence has a graphic
interface where the influence can be visualized in terms of
colors over the areas of the board. This is illustrated next in
Figure 5.

In the figure, the triangles indicate the areas that are col-
ored as white influence, while the squares indicate the areas
that are colored as black influence.

Influence Goban

Figure 5: The Influence Goban Program: an additional tool
created in order to help visualize the influence map for a
game of Go.

Experiments and Results

This section presents all the test scenarios performed in or-
der to evaluate the performance of the NN-Influence agent.
First off, it is important to remark that in a Go match, even
for strong humans players, is a quite harsh task to predict a
winner depending on the game phase. Obviously, as soon
as the match advances it becomes clear the player who has
more advantage in the game. In this sense, as shown in this
section, the more the match advances the more assertive is
the agent predictions. The goal of the authors, in this pa-
per, is to find the earlier moment in the game that com-
prises a good correctness rate of prediction, so an automatic
agent based on MCTS simulations, for instance, could bene-
fit from that approach by combining the power of the predic-
tions to stop the simulations in the play-out phase as soon as
possible, which could allow for it to perform more simula-
tions during the search process, increasing the agent power.
It is important to mention that a 19x19 Go game has an av-
erage length of 200 moves. In this sense, the authors have
performed tests in four different scenarios:

I Phase 30: in this scenario, a snapshot was taken of the
board around the 30th move for each game in the train-
ing and the validation set. Through this scenario it is
possible to evaluate the learning power of the network
for opening phases of the game.

IT Phase 80: a snapshot of the board at the 80th move for
each game in the training and validation set. This phase
represents the early middle-game.

Phase 130: a snapshot of the board at the 130th move
for each game in the training and validation set. This
phase represents a final middle-game phase.

III

IV Phase 180: it represents an endgame phase, also known

as yose, and starts around the 170th move.

The processor used for training and executing the agent
is an Intel Core 2 Quad 2.4 GHz with 8GB of RAM. The

344

results for all scenarios are shown in Table 1. The success
rate represents the percentage of correct predictions made
over the validation set (around 32,000 games), after each
network related to its specific scenario has been trained.

Table 1: The success rate in predicting a winner, based on
influence power, for the game of Go in four different phases.
| Test Scenario | Success Rate |

I - Phase 30 52.1%
11 - Phase 80 61.8%
III - Phase 130 76.7%
IV - Phase 180 89.3%

Table 1 shows the results for each test scenario. The re-
sults show that is clear that the later the moment in the game,
the better the success rate of the agent. Professional and
strong amateur games are, in a broad sense, quite balanced
since the players are experts in the game. This fact hinders
the success of predictions when the game is in the open-
ing phase, once it is pretty difficult to say if a player has a
much stronger position. As it can be seen, for Test Scenario
I (phase 30 in the game) the agent behaves quite random,
succeeding in just 52.1% of the games used in the database.
The results improve slightly for Test Scenario II (phase 80),
where the success rate comes to 61.8%. In Test Scenario
IIT (phase 130), it is observed an improvement of almost
15%, raising the success rate to 76.7%. Although it is not
an opening, it is still a good point in the game, since the
match is still in the middle phase. For the Test Scenario IV,
the endgame phase, the agent has shown a success rate of
89.3%, which is an excellent outcome. However, as previ-
ously mentioned, it is a bit easier to predict a winner in the
endgame phase, as long as the majority of the areas in the
board are already taken and, in most of the cases, one player
has already greater influence than the other one. Despite
the random behavior and the poor learning power presented
by the agent in the opening phase, the results confirm that
the usage of an influence model combined with the learning
power of a MLP Neural Network is a good approach in the
task of predicting a winner for the game of Go.

Conclusions

It was presented in this work the NN-Influence Agent, a pro-
gram that uses an influence model, specific for the game of
Go, and a MLP Neural Network in order to predict the win-
ner of a match based exclusively on its board dominance
aspect, also called influence power. The authors had two
motivations (and goals) in creating such a tool: (1) Cre-
ate a tool capable of graphically indicating the dominance
limits in a board game of an ongoing match in addition to
have a intelligent system capable of evaluating the decision
made (by indicating the probability of victory) based on its
influence power and (2) create an evaluation function, that
could receive as parameter a board state and return who is
the player with more chances of winning in that specific sit-
uation. Although it is conspicuous that the task of effectively
predicting a winner in the early opening phase is still a harsh

challenge for all researchers in the field, the results show that
the authors have accomplished some positive effects regard-
ing their two goals. In addition, they have also developed a
tool in order to help visualize the influence power of each
stone in a board, which is released under the LGPL license
and available at http://bitbucket.org/goresearchers/go_tools.
git. As further developments, the authors will implement a
DCNN and compare the results with the current approach.
In a second moment, the authors will also implement the
approach here presented into intelligent agents that use the
MCTS algorithm as main technique and compare the perfor-
mance with other well-known agents. Finally, they will scru-
tinize different models of influence for the game, study dif-
ferent approaches to use the prediction, such as computing
the delta between the NN’s prediction and the actual move
played and also create more indicators of performance for a
player during the game.

References

Alers, S.; Claes, D.; Fossel, J.; Hennes, D.; and Tuyls,
K. 2014. Applied robotics: Precision placement in
robocup@work. In Proceedings of the 2014 International
Conference on Autonomous Agents and Multi-agent Sys-
tems, AAMAS ’14, 1681-1682. International Foundation
for Autonomous Agents and Multiagent Systems.

Baudis, P., and Gailly, J.-L. 2011. Pachi: State of the art
open source go program. In ACG, volume 7168 of Lecture
Notes in Computer Science, 24-38. Springer.

Bishop, C. M. 1995. Neural networks for pattern recogni-
tion. Oxford university press.

Boger, Z., and Guterman, H. 1997. Knowledge extraction
from artificial neural network models. In /997 IEEE In-
ternational Conference on Systems, Man, and Cybernetics,
volume 4, 3030-3035.

Bouzy, B., and Cazenave, T. 2001. Computer go: an ai
oriented survey. Artificial Intelligence 132:39-103.

Bouzy, B. 2003. Mathematical morphology applied to com-
puter go. IJPRAI 17(2):257-268.

Clark, C., and Storkey, A. J. 2014. Teaching deep convolu-
tional neural networks to play go. CoRR abs/1412.3409.

Coulom, R. 2006. Efficient selectivity and backup operators
in monte-carlo tree search. Proceedings of the 5th interna-
tional conference on Computers and games 72—83.

Coulom, R. 2010. Computing elo ratings” of move patterns
in the game of go. ICGA Journal 30(4):198-208.

Craw, S. 2010. Manhattan distance. In Sammut, C.,
and Webb, G., eds., Encyclopedia of Machine Learning.
Springer US. 639-639.

Enzenberger, M. 2003. Evaluation in go by a neural network
using soft segmentation. /0th advances in computer games
conference 97-108.

Gelly, S., and Silver, D. 2007. Combining online and offline
knowledge in uct. 273-280.

Gelly, S., and Silver, D. 2008. Achieving master level play
in 9 x 9 computer go. In AAAI, 1537-1540. AAAI Press.

345

Gelly, S., and Wang, Y. 2006. Exploration exploitation in
go: Uct for monte-carlo go. in: Nips-2006: On-line trading
of exploration and exploitation workshop. In In Twentieth
Annual Conference on Neural Information Processing Sys-
tems (NIPS).

Gelly, S.; Kocsis, L.; Schoenauer, M.; Sebag, M.; Silver,
D.; Szepesvari, C.; and Teytaud, O. 2012. The grand chal-

lenge of computer go: Monte carlo tree search and exten-
sions. Commun. ACM 55(3):106-113.

GoGoD - Games of Go on Download. http://gogodonline.
co.uk. [Online].

KGS - KGS Go Server. https://www.gokgs.com/. [Online].

Maddison, C. J.; Huang, A.; Sutskever, I.; and Silver, D.
2014. Move evaluation in go using deep convolutional neu-
ral networks. CoRR abs/1412.6564.

Monteiro, S. T., and Ribeiro, C. 2003. Aprendizagem da
navegacao em robos moveis a partir de mapas obtidos au-
tonomamente. In Anais do XXIII Congresso da Sociedade
Brasileira de Computacao, volume 1, 152-162.

Miiller, M. 2002. Computer go.
134(1-2):145-179.

Schaeffer, J. 1997. One Jump Ahead: Challenging Human
Supremacy in Checkers. New York, NY, USA: Springer-
Verlag New York, Inc.

Schraudolph, N. N.; Dayan, P.; and Sejnowski, T. J. 1994.
Temporal difference learning of position evaluation in the
game of go. volume 6, 817-824. Morgan Kaufmann, San
Francisco.

Artificial Intelligence

Shannon, C. E. 1950. Programming a computer for playing
chess. Philosophical Magazine (314):256-275.

Sutskever, 1., and Nair, V. 2008. Mimicking go experts
with convolutional neural networks. In Proceedings of
the 18th International Conference on Artificial Neural Net-
works, Part II, ICANN 08, 101-110. Berlin, Heidelberg:
Springer-Verlag.

Thorpe, L., and Anderson, C. W. 1996. Traffic light con-
trol using sarsa with three state representations. Technical
Report, IBM Corporation.

van den Herik, H. J. 2010. The drosophila revisited. ICGA
Journal 33(2):65-66.

Walker, M. A. 2000. An application of reinforcement learn-
ing to dialogue strategy in a spoken dialogue system for
email. Artificial Intelligence Research 12 387-416.

Wang, Y., and Gelly, S. 2007. Modifications of uct and
sequence-like simulations for monte-carlo go. In CIG, 175-
182. IEEE.

Werf, E. V. D.; Uiterwijk, J.; Postma, E.; and Herik, J. V. D.
2003. Local move prediction in go.

Zobrist, A. L. 1969. A model of visual organization for
the game of GO. In American Federation of Information

Processing Societies: AFIPS Conference Proceedings, 103—
112.

