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Abstract

Active learning, a technique in which a learner self-selects
the most important unlabeled examples to be labeled by a hu-
man expert, is a useful approach when labeled training data
is either scarce or expensive to obtain. While active learning
has been well-documented in the offline pool-based setting,
less attention has been paid to applying active learning in an
online streaming setting. In this paper, we introduce a novel
generic framework called ART (Availability-aware active
leaRning in data sTreams). We examine the multiple-oracle
active learning environment and present a novel method for
querying multiple imperfect oracles based on dynamic avail-
ability schedules. We introduce a flexible availability-based
definition of labeling budget for data streams, and present a
mechanism to automatically adapt to implicit changes in or-
acle availability based on past oracle behavior. Compared to
the baseline approaches, our results indicate improvements in
accuracy and query utility using our availability-based multi-
ple oracle framework.

Introduction

In supervised learning settings, a machine learning model is
trained using a set of pre-labeled data instances which serve
as the ground truth. In practice, these ground truth labels are
often nonexistent and expensive to obtain in large quanti-
ties. Active learning is a technique for dealing with this issue
(Settles 2010), whereby only the most informative instances
are labeled by an expert, who is often referred to as an ora-
cle. In this context, the most informative instance is typically
the one that, once labeled, provides the greatest increase in
generalized model accuracy. By adopting this approach, a
model can be trained on less labeled data while maintaining
similar performance.

Active learning methods are typically characterized by
how unlabeled data is processed. In a pool-based setting,
all unlabeled instances are immediately available as a single
offline batch, whereas in a stream-based setting, data points
arrive sequentially in an online manner. In both settings, in-
dividual instances are selected via a sampling strategy and
sent to one or more oracles to provide the labels. In this pa-
per, we focus on the stream-based setting.
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Traditional active learning settings typically involve a sin-
gle oracle, but multiple-oracle settings are becoming more
common (e.g. crowdsourcing). Nonetheless, existing work
on multiple oracle settings tends to focus only on oracle ex-
pertise as the determining factor for oracle sampling. How-
ever, for real-time streaming data, the schedule and avail-
ability of each oracle play an arguably larger role. In this
paper, we present a multiple-oracle active learning frame-
work for data streams based on oracle availability, which to
our knowledge has yet to be explored.

We refer to our novel active learning framework as ART
(Availability-aware active leaRning in data sTreams). In
summary, our main contributions are:

• A novel multiple-oracle active learning framework using
a probabilistic interpretation of oracle availability, that au-
tomatically adapts to implicit changes in oracle querying
behavior and schedule to provide maximum query utility
while minimizing query cost over the life of the system.

• Reformulating the existing definition of a static query
budget to a dynamic, parameter-less quantity that controls
query decisions in a more flexible and cost-effective man-
ner based on expected oracle behavior.

Related Work

In traditional active learning environments, oracles are as-
sumed to be perfect, meaning they are assumed to (1) al-
ways answer a query when asked, and (2) always provide
the correct label when they answer. One of the first works
to relax these idealistic assumptions was the proactive learn-
ing paradigm (Donmez and Carbonell 2008), in which mul-
tiple oracles are assumed to possess varying levels of exper-
tise, correctness, and cost. Other work on imperfect oracles
include active learning in crowds (Fung 2011), annotator
knowledge-based approaches (Yan and Rosales 2012), char-
acterization of unlabeled instances by knowledge category
(Fang and Zhu 2014), repeated noisy oracle labeling (Ipeiro-
tis et al. 2014), probabilistic committee-based approaches
(Wu et al. 2013), cost-sensitive novice-expert query allo-
cation (Wallace and Small 2011), and importance-weighted
ranking of noisy labels (Zhao 2012). While related to our
study in terms of modeling multiple fallible oracles, most
current research has focused on oracle expertise and model-
ing query costs based on the content of the query instance.
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In contrast, our ART framework addresses the issue of as-
signing online queries based on oracles’ schedules and past
availability trends, which to our knowledge has not been pre-
viously explored.

Similar to these studies, we also assume imperfect ora-
cles, but we provide a more structured formalization to our
assumptions. Namely, we assume that the probability of re-
ceiving the correct label from an oracle in a streaming envi-
ronment is based on three factors: (1) the oracle’s reliabil-
ity, (2) the oracle’s availability, and (3) aspects of the po-
tentially time-variant distribution of incoming data stream
instances (also known as concept drift). Most related work
has focused on reliability (Donmez and Carbonell 2008;
Fung 2011; Yan and Rosales 2012; Wu et al. 2013), which
derives models for estimating oracle labeling accuracy based
on the specific query posed, i.e., varying levels of oracle
expertise. Additionally, other studies have explored effects
of concept drift in stream-based active learning. We close
the understanding gap by focusing on what has been largely
omitted from recent studies: oracle availability. In a time-
sensitive setting, where stream instances arrive in real-time
and queries are made on demand, accounting for oracle
availability is of utmost importance. Thus, we focus purely
on this aspect of realistic active learning.

While most active learning studies focus on the pool-
based setting, there are several studies exploring the ap-
plication of active learning to streaming data. Methods for
adapting active learning to data streams include minimal
variance classifier ensemble techniques (Zhu et al. 2007;
2010), uncertainty-based model reconstruction (Shucheng
and Dong 2007), categorizing concept drift (Zhang et al.
2008), interval-based uncertainty sampling (Zliobaite et al.
2011), online optimization of Bayesian linear classifiers
(Chu et al. 2011), and sliding window-based density tech-
niques (Ienco, Pfahringer, and Zliobaite 2014). Most of these
works focus on the problem of adapting online classifiers to
changes in the underlying input distribution over time, i.e.,
exploring the notion of concept drift. To our knowledge, our
ART framework is the first to consider the real-world arrival
time of streaming instances and the subsequent optimization
of labeling cost by intelligently selecting the most available
oracle for each query.

ART Active Learning Framework

Our primary goal is to select an oracle for a given query
based on knowledge of each oracle’s time-sensitive avail-
ability schedule. We assume a probabilistic formulation of
receiving the correct answer from a queried instance x to
oracle k at time t as the following:

P (ans, k, t, x) = P (ans|k, x, t) ∗ P (k|x, t) ∗ P (x|t) (1)

where we define P (ans|k, x, t) as the reliability of oracle
k, P (k|x, t) as the availability of oracle k, and P (x|t) as
the time-variant input distribution of the data stream, i.e., its
concept drift. In our current work, we assume equal exper-
tise among oracles and focus primarily on oracle availability
as a function of time. Concept drift is out of scope for this
paper and will not be further discussed. However, extending
our methods to incorporate concept drift is straightforward.

Most previous work in this area has solely dealt with oracle
reliability and concept drift, so we bridge the knowledge gap
by showing the benefits of designing a schedule-sensitive ac-
tive learning framework specifically focused on oracle avail-
ability.

Active Learning Query Budget

Budget approaches for stream-based active learning typi-
cally rely on a predetermined, fixed fraction of the over-
all data stream that is to be queried (Zliobaite et al. 2011;
Ienco, Pfahringer, and Zliobaite 2014). That is, before a
query is made, the following budget constraint is typically
checked:

nQ

n
< B (2)

where nQ is the number of queries that have been made so
far, n is the total number of instances seen so far in the data
stream, and B is the fixed fraction of the total data stream
for which labels are desired. While this works for limiting
the total number of queries to a fixed amount, we see several
problems with this approach. First, the optimal budget frac-
tion B is difficult to determine prior to processing the entire
data stream. Since data streams can be of potentially infi-
nite length, and each query is associated with a cost, this can
result in unlimited cost being charged over time. Similarly,
this approach tends to incur queries that are spaced relatively
uniformly apart from one another, potentially missing out
on querying important instances that simply happen to ar-
rive in close proximity. Furthermore, when oracle availabil-
ities are taken into account, this approach to budget could
pose queries when no oracles are available to answer them;
conversely, when several oracles are available, this approach
unnecessarily limits the number of queries made. Thus, we
desire a more dynamic alternative that is sensitive to avail-
able oracles and adapts system queries accordingly.

Our solution is to have a separate budget for each ora-
cle, and to frame budget as being inherently tied to oracle
availability. If an oracle is highly available, we increase its
budget, resulting in more queries; conversely, if an oracle is
less available, we decrease its budget. Thus, if we assume
an oracle’s schedule can be partitioned into nT distinct time
intervals, we have nT distinct budget values for each oracle
- one per interval. Our budget constraint can be written in
the following form:

nQ(k, t)

nt
< P (k|t) (3)

where nQ(k, t) is the number of queries oracle k has been
sent in the current interval t, nt is the total number of in-
stances arriving in the current interval t, and P (k|t) is the
availability of oracle k at the current interval t. Thus, we pro-
vide an upper bound on the number of queries an oracle can
answer in a given interval. For example, if an oracle’s avail-
ability is 0.05, it will only be sent queries for a maximum of
5% of the instances arriving in the current interval. ART’s
approach to budget is much more flexible and dynamic than
previous approaches, and adaptively changes based on how
likely each oracle is to answer a given query.
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Figure 1: High-level block diagram of the ART framework. When a new data point arrives, the information gain (typically
uncertainty) of the instance is compared against the current query threshold. If a query should be made, the most available
oracle is chosen for the current time interval and is sent a query. The resulting label is used to incrementally update the classifier.

Problem Formulation

One of ART’s primary goals is to minimize the accumulated
cost of making queries while simultaneously maximizing
the information gained from them. We represent the prob-
lem as a cost-benefit tradeoff, where each query is assigned
some cost Ψ and expected information gain φ. Our primary
objective function is the following:

min (Ψ(k, t)− φ(x)) s.t.
nQ(k, t)

nt
< P (k|t) (4)

where Ψ(k, t) represents the cost of querying oracle k at
time t, and φ(x) is the expected information gain from re-
ceiving instance x’s label. As in Equation 3, we also con-
strain the maximum number of queries per oracle based on
their interval availability. We adopt the following probabilis-
tic formulation of the cost of querying oracle k at time t:

Ψ(k, t) = 1− P (k|t) (5)

where P (k|t) is the probability that oracle k will answer
a query at time t, if one is asked. We define this probabil-
ity as an oracle’s availability at time t. Thus, if an oracle is
highly available, the cost to query it will be low; if an ora-
cle is mostly unavailable, the cost to query it will be large.
The final objective function can be rewritten in the following
form:

max (φ(x) + P (k|t)− 1) s.t.
nQ(k, t)

nt
< P (k|t) (6)

where the choice of information function φ is largely dataset
dependent, and therefore will not be further discussed. In our
experiments, φ is the entropy of an instance’s predicted class
label distribution.

Availability

An oracle’s availability is fundamentally related to their
daily schedule. Since oracles are unique individuals each
with distinct commitments, working hours, and preferred
query answering times, each oracle will have a distinct prob-
ability of answering a given query for some particular point

Interval 1 2 3 4 5 6 7 8

Availability 0.9 0.2 0.25 0 0.55 0.7 0.3 0.45

Table 1: An example of an oracle’s schedule for 8 hourly
time intervals, representing a typical work day. An interval
encompasses the time from the end of the previous interval
until the start of the next interval. Availability is defined as
the probability that an oracle will answer a query during a
particular period of time.

in time. Our ART framework is general enough to allow for
these schedules to exist in multiple forms, but in all cases,
each oracle’s schedule is divided into nT time-based inter-
vals, each containing a distinct availability P (k|t). Table 1
shows a motivational example. Initial values of availability
are self-reported (or perhaps imported from a calendar as
the fraction of free time per interval), and will automatically
adapt over time to implicit changes in oracle behavior.

Adapting to Schedule Changes

As the data stream progresses, oracle availabilities are likely
to change; some oracles might become more available dur-
ing certain time intervals, while other oracles might become
less available. To account for this schedule drift, we auto-
matically adapt oracle availabilities based on their querying
behavior. After a query is posed to an oracle, we update their
availability according to the following:

P (k|t) = αI(x) + (1− α)P (k|t) (7)

where I(x) is an indicator function taking the value 1 if
the query was answered and 0 if the query was not answered,
and α is a parameter defining how quickly the system adapts
to changes in oracle behavior. In a particular setting, if or-
acle schedules are expected to frequently change, a large α
value will ensure a rapid availability adjustment. Similarly,
if schedules are expected to remain relatively stationary, a
smaller α will prevent overcompensation of the result of a
single query.
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Our final ART active learning framework is shown in Al-
gorithm 1. A high-level block diagram is also shown in Fig-
ure 1. For each stream instance xt, the expected information
gain φ(xt) is compared against the query threshold θ to de-
termine if the instance should be queried. ART can function
with any choice of φ, such as entropy or maximum margin
(uncertainty sampling).

Algorithm 1: ART framework
Input: Data stream X , set of oracles K, initial

availabilities P (k|t) for each oracle/interval
combination, adaptation parameter α, query
threshold θ, threshold adjusting step s,
information function φ

1 foreach instance xt ∈ X do

2 if new interval then

3 n = 0
4 nQ(k) = 0 ∀ k ∈ K
5 end

6 if φ(xt) < θ then

7 queryAnswered ←− False
8 Q ←− k ∈ K s.t. nQ(k)

n < P (k|t)
9 while !queryAnswered && |Q| > 0 do

10 k∗ ← argmax
k∈Q

[P (k|t)]
11 Request label yt from oracle k∗

12 nQ(k
∗) ← nQ(k

∗) + 1
13 n ← n+ 1
14 if Label received then

15 Update classifier with (xt, yt)
16 P (k∗|t) ← α+ (1− α)P (k∗|t)
17 queryAnswered ← True
18 else

19 Q ← Q− k∗

20 P (k∗|t) ← (1− α)P (k∗|t)
21 end

22 end

23 θ ← θ ∗ (1 + s)

24 else

25 θ ← θ ∗ (1− s)
26 end

27 end

Experiment Setup

We test our ART framework with three publicly available
classification datasets: 20 Newsgroups (text classification),
Digits (image classification), and Letters (image classifica-
tion). All datasets are summarized in Table 2. We simulate a
stream-based setting by sending single instances at random
real-world arrival times for all experimental settings. We ini-
tially train our classifiers on 1% of the total dataset prior to
starting the simulated data stream, and we hold out 10% of
the data for cross-validating each model.

Dataset No. Instances No. Features No. Classes

20 Newsgroups 11314 101631 20
Letters 20000 16 26
Digits 1797 64 10

Table 2: Summary of the datasets used in experimentation.
Individual instances were processed incrementally via a sim-
ulated data stream.

For all experiments, we use an online logistic regression
classifier that is incrementally trained via stochastic gradient
descent. For our base measure of information gain, we take
the entropy of predicted class probability distribution.

We run all simulations with 5 oracles for clear visualiza-
tion of results, but the fundamental concepts of our frame-
work apply equally well for any number of oracles. For each
experimental trial, we generate a random schedule of nT ini-
tial availabilities in the range [0,1] for each oracle. In order
to provide more naturally interpretable results, in our ex-
periments we fix the number of time intervals nT to be 8
(i.e., a typical work day), where each time interval can be
interpreted as a one-hour period. However, in practice our
framework can be used with any number of repeating inter-
vals. Based on dataset-dependent experimental feedback, we
choose an optimal query threshold adjustment step of 0.01.

In order to simulate an oracle’s probability of respond-
ing to a query, we store two availability tables for each ora-
cle: the observed interval availabilities, and the actual inter-
val availabilities. Observed availabilities are the quantities
known to the system, and are based on the empirical results
of previous queries. Actual availabilities are the true proba-
bilities that an oracle will answer a query in a given interval,
and is hidden to the system. At the start of each simulation,
both availability tables are initialized to the same random
values, however, over time the actual availabilities are ex-
pected to become out of sync as oracle schedules implicitly
drift. We simulate this schedule drift by sampling a drift pa-
rameter ζ ∼ N(0, λ) for each oracle at the start of each
trial, where λ is a simulation parameter controlling the over-
all level of schedule drift. At the beginning of each cycle
of intervals as the simulation progresses, we sample a value
ρ ∼ N(P, ζ) for each oracle, where P is the oracle’s actual
availability, and update as P = P ∗ ρ. Thus, some oracles
will have schedules which are changing quickly, while oth-
ers will have minuscule change.

We ran experiments with 10 different drift parameters ζ
in range [0.001, 10] and 13 different adaptation rates α in
range [0.1, 0.9]. For each parameter configuration, we ran
60 simulations and averaged the results.

Results

In the following experiments, we compare our ART frame-
work to the baseline approach of randomly sampled oracles,
which does not account for schedule availability. We be-
gin by demonstrating the percentage of successful queries
for the 20 Newsgroups dataset in Figure 2 (complete results
are shown in Table 3). We compare the effects of schedule
drift, i.e., how fast oracle schedules are implicitly chang-
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Figure 2: Percentage of successfully answered queries for
the Digits dataset experiments. The ART framework always
results in a higher fraction of answered queries. As sched-
ules become more in flux, models with a larger α value adapt
to these changes faster, resulting in the best query utility.
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Figure 3: Query variance among oracles for the Letters
dataset experiments. When oracles are randomly chosen,
queries are more evenly spread (smaller variance). The ART
framework queries the most available oracles, resulting in
larger query variance (which is the desired behavior given
oracle schedules.) As schedules are more in flux, the vari-
ance becomes more in line with random oracles.

ing, between both methods and experiment with various val-
ues of α to observe how well our framework adapts to im-
plicit changes in oracle behavior. For all datasets, the ART
framework yields a much larger fraction of queries answered
than the baseline for all settings of alpha and schedule drift.
We notice that when schedules are relatively stationary, i.e.
small latent drift parameter, the smallest α values yield the
best performance, and vice versa.

Because we sample oracles based on the availability cri-
terion, the most available oracles end up receiving the most
queries. In most situations, this is ideal, since we do not wish
to send queries to oracles who are unlikely to provide an an-
swer. However, depending on the application, it may be de-
sirable to achieve a more even spread of queries. In Figure 3,
we show the variance of total query counts among all oracles
at the end of each simulation for varying amounts of sched-
ule drift and adaptation rates for the Letters dataset. Most
configurations of ART result in higher query variance than a
random oracle sampling scheme, however, as schedules be-
come more in flux, ART yields similar query variances to
the random oracle baseline.
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Figure 4: Classifier accuracy as a function of the number of
queries posed to oracles for the 20 Newsgroups experiments
under low schedule drift settings. The random oracle base-
line induces more failed query attempts than ART, which do
not contribute to the incremental training of the classifier.

We plot the number of queries vs. classifier accuracy
for the 20 Newsgroups dataset in Figure 4 for the mini-
mal schedule drift setting (ζ = 0.001, α = 0.1). ART
shows significant accuracy benefits over the random oracle
approach. Because querying random oracles results in many
more failed query attempts, the ART framework results in
higher accuracy for the same number of queries.

In Table 3, we present results for the fraction of success-
ful queries, total queries, final classifier accuracy, and or-
acle query variance between our ART framework and the
baseline approach of randomly sampled oracles. For each
model, we ran experiments with 10 different schedule drift
parameters ζ in the range [0.001, 10]. We show the two ex-
treme cases in Table 3, which includes what we define as
the low drift setting (ζ = 0.001) and the high drift setting
(ζ = 10.0). Logical drift range thresholds were chosen ex-
perimentally.

From Table 3, it is apparent that the ART framework has
marked improvement over a random sampling scheme for
fraction of successful queries and final accuracy, both ob-
jective measures. Additionally, the ART framework results
in fewer total queries, which translates to less accumulated
query cost for higher accuracy. It is interesting to note that
the query variance is always lower when randomly sampling
oracles, i.e., queries are more spread out amongst all oracles.
While this could potentially be a positive for the baseline ap-
proach, as it prevents the same oracle from receiving multi-
ple consecutive queries, it fails to account for oracle avail-
ability, and could request labels from unresponsive oracles.

Conclusion

In this paper, we introduced our novel ART framework for
multiple-oracle online active learning that utilizes real-time
schedule and availability information to minimize query cost
and maximize query efficiency. ART shows significant im-
provement over baseline methods that do not factor in ora-
cle availability, arguably the most important factor in time-
sensitive active learning. We also demonstrated how online
active learning systems can be improved by automatically
adapting to implicit changes in oracle availability, resulting
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Value Drift Model 20 Newsgroups Digits Letters

Fraction Successful Queries
Low Random Oracles 0.495 0.503 0.498

ART 0.731 0.720 0.742

High Random Oracles 0.501 0.503 0.499
ART 0.586 0.562 0.554

Total Queries
Low Random Oracles 9952.8 915.17 9225.63

ART 6722.4 641.9 6180.1

High Random Oracles 9784.6 910.9 9092.9
ART 8331.0 812.9 8187.8

Final Accuracy
Low Random Oracles 0.264 0.467 0.189

ART 0.388 0.641 0.271

High Random Oracles 0.422 0.803 0.330
ART 0.460 0.840 0.342

Query Variance
Low Random Oracles 7990.8 123.3 6298.1

ART 342746.6 2695.3 370453.8

High Random Oracles 950.5 84.7 887.5
ART 15557.7 745.8 12109.1

Table 3: Summary of results for our ART framework vs. the random oracle baseline for both low (ζ = 0.001) and high
(ζ = 10.0) schedule drift environments.

in a dynamic and utility-aware query budget.
In future work, we plan to explore the effects of concept

drift, oracle reliability, and instance difficulty, as they pertain
to time-sensitive active learning and oracle availability in
real-world experiments. Furthermore, we intend to explore
in greater depth the influence of initial availability settings
as they pertain to automatic schedule adaptation.
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